Supplementary material for "Nonparametric LAD cointegrating regression"

Details of (23), (25), (27), (33), and (34) are given here.
(23), (25), (27):

We can establish (23), (25), and 27) by combining the standard arguments in the literature of nonparametric quantile regression. First put

$$
a_{i}=\frac{1}{2}\left(\frac{X_{i}-x_{0}}{h}\right)^{2} h^{2} g^{\prime \prime}\left(\bar{X}_{i}\right) \text { and } b_{i}=\tau_{n}^{-1} \eta_{i}^{T} \theta .
$$

and notice that a_{i} and b_{i} tends to 0 uniformly in i since we can assume $\left|X_{i}-x_{0}\right| \leq C h$.
(23): v_{i}^{*} is defined in (9) as $v_{i}^{*}=v_{i}+a_{i}$. Then

$$
\left|v_{i}^{*}\right| \leq C\left|b_{i}\right| \Rightarrow-C\left|b_{i}\right|-a_{i} \leq v_{i} \leq C\left|b_{i}\right|-a_{i} .
$$

Recall that $a_{i} / \tau_{n}^{-1}=O(1)$ uniformly in i from Assumption H. Hence we obtain (23) from from Assumptions V and U2.
(25): When $a_{i} \geq 0$ and $b_{i} \geq 0, B_{2 i}(\theta)$ is not 0 only when $-a_{i} \leq v_{i} \leq-a_{i}+b_{i}$. Then we have

$$
B_{2 i}(\theta)=-2\left(v_{i}+a_{i}-b_{i}\right)
$$

and

$$
-2 \int_{-a_{i}}^{-a_{i}+b_{i}}\left(v_{i}+a_{i}-b_{i}\right) f_{v_{i}}\left(v_{i} \mid \mathcal{E}\right) d v_{i}=b_{i}^{2} f_{v_{i}}(0 \mid \mathcal{E})+o_{p}\left(b_{i}^{2}\right)
$$

uniformly in i from Assumption V and U 2 . We can deal with the other cases in the same way.
(27): When $a_{i}>0$, we have

$$
\operatorname{sign}\left(v_{i}^{*}\right)-\operatorname{sign}\left(v_{i}\right)=2 I\left(-a_{i}<v_{i}<0\right)
$$

and

$$
2\left(F_{v_{i}}(0 \mid \mathcal{E})-F_{v_{i}}\left(-a_{i} \mid \mathcal{E}\right)\right)=2 a_{i} f_{v_{i}}(0 \mid \mathcal{E})+o_{p}\left(a_{i}\right)
$$

uniformly in i from Assumptions V and U2. We can deal with the other case in the same way.
(33), (34):

It is not easy to establish (33) and (34).
(33): Recall that

$$
v_{i}^{* *}=v_{i}+\delta_{i}^{* *} \quad \text { and } \quad \delta_{i}^{* *}=O(h) .
$$

When $\delta_{i}^{* *}>0$, we have

$$
\operatorname{sign}\left(v_{i}^{* *}\right)-\operatorname{sign}\left(v_{i}\right)=2 I\left(-\delta_{i}^{* *}<v_{i}<0\right)
$$

and

$$
\begin{aligned}
& 2 h^{-2}\left(F_{v_{i}}(0 \mid \mathcal{E})-F_{v_{i}}\left(-\delta_{i}^{* *} \mid \mathcal{E}\right)\right) \\
& \quad=2 h^{-2} \delta_{i}^{* *} f_{v_{i}}(0 \mid \mathcal{E})-h^{-2}\left(\delta_{i}^{* *}\right)^{2} f_{v_{i}}^{\prime}(0 \mid \mathcal{E})+O\left(\left|f_{v_{i}}^{\prime}(0 \mid \mathcal{E})-f_{v_{i}}^{\prime}\left(\bar{\delta}_{i}^{* *} \mid \mathcal{E}\right)\right|\right)
\end{aligned}
$$

where $\bar{\delta}_{i}^{* *}$ is between 0 and $\delta_{i}^{* *}$.
Assumption V and (35) imply that

$$
\begin{aligned}
& \left|f_{v_{i}}^{\prime}(0 \mid \mathcal{E})-f_{v_{i}}^{\prime}\left(\bar{\delta}_{i}^{* *} \mid \mathcal{E}\right)\right| \\
& \quad \leq C\left(\sup _{\left|m_{u}-m\right| \leq C h}\left|f_{u_{i}}^{\prime}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)-f_{u_{i}}^{\prime}\left(m \mid \mathcal{E}_{i-m_{0}}^{i}\right)\right|+o(1)\right)
\end{aligned}
$$

uniformly in i. Since

$$
\lim _{h \rightarrow 0} \mathrm{E}\left\{\sup _{\left|m_{u}-m\right| \leq C h}\left|f_{u_{i}}^{\prime}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)-f_{u_{i}}^{\prime}\left(m \mid \mathcal{E}_{i-m_{0}}^{i}\right)\right|\right\}=0,
$$

we get from [22] (for example, see Proposition 1 of this paper) that

$$
\tau_{n}^{-2} \sum_{i=1}^{n} K_{i}\left|f_{v_{i}}^{\prime}(0 \mid \mathcal{E})-f_{v_{i}}^{\prime}\left(\bar{\delta}_{i}^{* *} \mid \mathcal{E}\right)\right|=o_{p}(1)
$$

(34): First write

$$
\begin{aligned}
f_{v_{i}}(0 \mid \mathcal{E}) & =f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)\left(\frac{\partial v}{\partial u}\left(X_{i}, m_{u}\right)\right)^{-1} \\
& =f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)\left(w\left(x_{0}\right)+\left(X_{i}-x_{0}\right) w^{\prime}\left(x_{0}\right)+o\left(\left|X_{i}-x_{0}\right|\right)\right),
\end{aligned}
$$

where $w(x)$ is clearly defined in the above equation. Using the above notation, we have

$$
\begin{align*}
& \frac{2 h^{-2}}{\tau_{n}^{2}} \sum_{i=1}^{n} K_{i} \delta_{i}^{* *} f_{v_{i}}(0 \mid \mathcal{E}) \\
& =\frac{2 h^{-2}}{\tau_{n}^{2}} \sum_{i=1}^{n} K_{i}\left\{\frac{X_{i}-x_{0}}{h} h g^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(\frac{X_{i}-x_{0}}{h}\right)^{2} h^{2} g^{\prime \prime}\left(\bar{X}_{i}\right)\right\} \\
& \quad \times f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)\left(w\left(x_{0}\right)+\left(X_{i}-x_{0}\right) w^{\prime}\left(x_{0}\right)+o\left(\left|X_{i}-x_{0}\right|\right)\right) \\
& = \tag{37}\\
& \quad 2 \tau_{n}^{-2} \sum_{i=1}^{n} K_{i} f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)\left\{\left(\frac{X_{i}-x_{0}}{h}\right)^{2} g^{\prime}\left(x_{0}\right) w^{\prime}\left(x_{0}\right)\right. \\
& \left.\quad+\frac{1}{2}\left(\frac{X_{i}-x_{0}}{h}\right)^{2} g^{\prime \prime}\left(x_{0}\right) w\left(x_{0}\right)+o\left(h^{2}\right)\right\} \\
& \quad+\frac{2 h^{-1}}{\tau_{n}^{2}} \sum_{i=1}^{n} K_{i} \frac{X_{i}-x_{0}}{h} f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right) g^{\prime}\left(x_{0}\right) w\left(x_{0}\right)+o_{p}(1) .
\end{align*}
$$

We can handle the first term of (37) by using Proposition 1.
Finally we consider the second term of (37). Write

$$
\begin{align*}
& \frac{h^{-1}}{\tau_{n}^{2}} \sum_{i=1}^{n} K_{i} \frac{X_{i}-x_{0}}{h} f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right) \\
& \quad=\frac{\tau_{n}^{-1}}{\left(n h^{6}\right)^{1 / 4}} \sum_{i=1}^{n} K_{i} \frac{X_{i}-x_{0}}{h}\left\{\left(f_{u_{i}}\left(m_{u} \mid \mathcal{E}_{i-m_{0}}^{i}\right)-f_{u}\left(m_{u}\right)\right)+f_{u}\left(m_{u}\right)\right\} . \tag{38}
\end{align*}
$$

We can use Theorem 2.1 of [23] to show $\tau_{n}^{-1} \sum_{i=1}^{n}\left\{\left(X_{i}-x_{0}\right) / h\right\} K_{i}=$ $O_{p}(1)$. We can deal with the first term inside the braces of (38) by using a result similar to the second element of Proposition 1.

