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Abstract. We apply some root finding algorithms to characterize the

zeros of Riemann’s zeta. We also give an intriguing interpretation of the

Riemann Hypothesis in terms of one dimensional dynamical systems.

1 Riemann’s zeta and primes

For s = σ + it ∈ C, one can easily see that the series

ζ(s) = 1 +
1

2s
+

1

3s
· · · =

∞∏
n=1

(
1− 1

psn

)−1

converges if σ > 1, where pn is the nth prime number. Indeed, ζ(s) is

analytic on {Re s = σ > 1} and by analytic continuation we consider it a

meromorphic function ζ : C → C̄ with only one pole at s = 1, which is

simple.

The Riemann Hypothesis. The most famous conjecture on Riemann’s

zeta function is: ζ has non-real(non-trivial) zeros only on the critical line

Re s = σ = 1/2 (the Riemann Hypothesis). If this conjecture is affirmative,

we will have a nice result on the distribution of prime numbers;

pn+1 − pn = O(p1/2n log pn).

This is better than any known results, for example;

pn+1 − pn = O(p0.525+ϵ
n )
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for any ϵ > 0. To show the hypothesis, it is known that we only have to care

the zeros on the critical stripe S = {s ∈ C : 0 < Re s < 1}. In particular,

wider zero-free regions imply better estimates of distribution of primes.

For example, it is known that there exists a constant A > 0 such that{
s = σ + it ∈ S : σ ≥ 1− A

(log(|t|+ 1))2/3(log log(|t|+ 1))1/3

}
is zero-free.

2 Newton’s method

There are some root finding algorithms, but the most famous one would be

Newton’s method. From now on, we work with complex variable z = x+yi

instead of conventional s for ζ.

For a meromorphic function f : C → C̄, we define its Newton’s map Nf

by

Nf(z) = z − f(z)

f ′(z)
,

which is again meromorphic. One can easily check that f(α) = 0 iff

Nf(α) = α. The idea of Newton’s method is: Start with an initial value z0

sufficiently close to α. Then the sequence {zn} defined by zn+1 = Nf(zn)

converges (rapidly) to α.

More precisely, we have the following property:

If α is a simple zero of f , then Nf(α) = α and N ′
f(α) = 0. Thus

Nf(z)− α = O((z − α)2) (z → α).

If α is a multiple zero, then Nf(α) = α and |N ′
f(α)| < 1. Thus

|Nf(z)− α| ≤ C|z − α| (z → α)

for some 0 < C < 1.

Hence the precision of zn as an approximate value of α is exponentially or

linearly increasing according to the multiplicity of α.

Newton’s method as a dynamical systems. What makes this method

more intriguing is the theory of iteration of holomorphic function developed
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by Fatou and Julia in early 1920s. For given z0 ∈ C, convergence of zn =

Nn
f (z0) (where N

n
f is nth iteration of Nf) is not guaranteed in general. To

investigate the behaver of such sequence, we consider the global dynamical

systems

C̄
Nf−→ C̄

Nf−→ C̄
Nf−→ · · ·

given by iteration of Newton’s map. (As we will see, we need a spacial care

for poles of Nf .) For example, set f(z) := z3 − 1. Then the iteration of its

Newton’s map gives the following picture (Figure 1):

Figure 1: Dynamics of Nf for f(z) = z3 − 1.
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Blue, yellow, and green regions are the set of initial values z0 such

that the orbit zn = Nn
f (z0) converges to 1, −1+

√
3i

2 , and −1−
√
3i

2 respectively.

Shades distinguish the number of iteration to trap the orbit in small disks

around roots. The boundary of these regions has complicated structure

known as fractal. It is the Julia set of Nf , where the dynamics shows

chaotic behavior. In particular, orbits from the Julia set stay within the

Julia set and never converge to the roots.

Newton’s method for meromorphic functions. If f is a rational func-

tion, then so is Nf thus it has no essential singularity. For a meromorphic

function f , its Newton’s map has an essential singularity at infinity. Since

Nf(∞) is indeterminate, we must stop the iteration when the orbit lands

on a pole of Nf . In this particular setting, we define its Fatou set F (Nf)

by:

z0 ∈ F (Nf)

⇐⇒ ∃U a nbd of z0 s.t.
{
Nn

f |U
}
n≥0

is defined and a normal family

The Julia set J(Nf) is the complement C− F (Nf).

3 Applying the method to zeta.

Now let us apply Newton’s method to Riemann’s zeta. For the meromor-

phic function ζ : C → C̄, we set

ν(z) := Nζ(z) = z − ζ(z)

ζ ′(z)
.

We also apply the method to the functions

η(z) := (z − 1)ζ(z)

and

ξ(z) =
1

2
z(1− z)πz/2Γ(z/2)ζ(z),

where ξ(z) a classical zeta-related function with symmetry ξ(z) = ξ(1−z).

Since η(z) and ξ(z) are entire functions, we may expect better dynamics

for

µ(z) := z − η(z)

η′(z)
and λ(z) := z − ξ(z)

ξ′(z)
.
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Now let us go to the gallery!

Pictures for ν. The first picture is on the dynamics of ν. The coloring

indicates the number of iteration to trap the orbits in attracting fixed

points:

0 = orange< yellow< green< blue< purple< red = maximum.

Probably points colored in red are close to the Julia set.

Figure 2: The orange dots are arrayed on −2N and the critical line. The picture in the

bottom is a magnification near the origin. Probably the sequence of orange dots near

{Im z = 4.5} are preimages of −2N.
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Pictures for µ Next we show the pictures of the dynamics of µ. The Julia

set of µ seems much simpler.

Figure 3: The Julia set of µ(z). The pictures in the second row are colored to distinguish

the fixed points to converge. The pictures on the right shows the details of a prospective

pole of µ(z) (“A head of chicken”).

Figure 4: Head of another chicken in different colorings.
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Figure 5: Chickens for µ(z). Heads appear constantly in this range, though the zeros get

denser as their imaginary parts increase.

Pictures for λ. Finally we go to λ. One can easily check that the Newton’s

map λ has a symmetry with respect to the point z = 1/2. The dynamics

seems the simplest, but the calculation for λ is the heaviest.
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Figure 6: Julia sets for λ(z). The dynamics seems very simple: Probably each layer has

conformally the same dynamics as z 7→ z2 on the unit disk.

Figure 7: Julia set for λ(z) (large scaled).
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4 Holomorphic index and the Riemann Hypothesis

Let g : C → Ĉ be a meromorphic function. Suppose α ∈ C satisfies

g(α) = α (i.e., a fixed point of g) with g′(α) = κ = κα. Then the Taylor

expansion about α gives a representation of the local action of g near α as

follows:

g(z)− α = κ(z − α) +O(|z − α|2)

This implies that g is locally approximated by an affine action z − α 7→
κ(z − α). We say κ is the multiplier of α.

We say the fixed point α is

• attracting if |κ| < 1,

• repelling if |κ| < 1, and

• indifferent if |κ| = 1.

We define the holomorphic index of α by

ι = ι(g, α) :=
1

2πi

∫
C

dz

z − f(z)
,

where C is a small circle around α with counterclockwise direction. It is

not difficult to check

κ ̸= 1 =⇒ ι(g, α) =
1

1− κ
—— (∗).

Thus α with κ = κα ̸= 1 is

• attracting ⇐⇒ |κ| < 1 ⇐⇒ Re ι > 1
2 ,

• repelling ⇐⇒ |κ| > 1 ⇐⇒ Re ι < 1
2

• indifferent ⇐⇒ |κ| = 1 ⇐⇒ Re ι = 1
2 —— (∗∗)

Example: Newton’s method. For λ(z) = z − ξ(z)/ξ′(z), ζ(α) = 0

implies that λ(α) = α and λ′(α) = (m − 1)/m < 1, where m ∈ N is the

multiplicity of α.

Let C be a simple closed path in C. Now we have

1

2πi

∫
C

dz

z − λ(z)
=

1

2πi

∫
C

ξ′(z)dz

ξ(z)
=

1

2πi

∫
C

d log ξ(z).
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By the argument principle, this integral is the number of zeros inside C

counting with multiplicity. (Recall that ξ is entire, thus no pole.) In fact,

if α1, . . . , αp are such zeros with multiplicity m1, . . . ,mp, one can check by

(∗) that

1

2πi

∫
C

dz

z − λ(z)
=

p∑
j=1

ι(λ, αp) =

p∑
j=1

1

1− mp−1
mp

=

p∑
j=1

mp.

The Riemann Hypothesis. Let us give an interpretation of the Riemann

Hypothesis in terms of holomorphic index. Set

Λ(z) := z − ξ(z)

zξ′(z)
.

Then ξ(α) = 0 implies that Λ(α) = α and by (∗),

Λ′(α) = 1− 1

α
(̸= 1) ⇐⇒ ι = ι(Λ, α) = α.

Now we have an interpretation of the Riemann Hypothesis in complex-

dynamics context. By (∗∗),

The Riemann Hypothesis 1. Any fixed point of Λ function

is indifferent.

By the functional equation ξ(z) = ξ(1−z), if α is a fixed point of Λ then so

is 1−α. If α is attracting, then Re ι(Λ, α) = α < 1/2 implies that 1−α is

repelling. This implies that any attracting fixed point has a corresponding

repelling fixed point. Thus we can also put the interpretation above as:

The Riemann Hypothesis 2. There is no attracting fixed

point of Λ function.

If the Hypothesis is true, any non-trivial zero of ζ (or ξ) is of the form

α = 1/2 + γi (γ ∈ R). On the other hand, it must be an indifferent fixed

point of Λ with multiplier e2πiθ (θ ∈ R). The value γ and θ are related by

γ =
1

2 tan πθ
⇐⇒ θ =

1

π
arctan

1

2γ
.

Here is a question for people who know the linearization problem of fixed

point:

Linearization problem. Can θ be a rational number? Is Λ

linearizable at α? That is, can Λ has an invariant Siegel disk?
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