Riemann's zeta function, Newton's method, and holomorphic index #### Tomoki Kawahira Nagoya University, Nagoya, JAPAN URL: http://math.nagoya-u.ac.jp/~kawahira **Abstract.** We apply some root finding algorithms to characterize the zeros of Riemann's zeta. We also give an intriguing interpretation of the Riemann Hypothesis in terms of one dimensional dynamical systems. #### Riemann's zeta and primes 1 For $s = \sigma + it \in \mathbb{C}$, one can easily see that the series $$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} \cdots = \prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n^s}\right)^{-1}$$ converges if $\sigma > 1$, where p_n is the nth prime number. Indeed, $\zeta(s)$ is analytic on $\{\text{Re } s = \sigma > 1\}$ and by analytic continuation we consider it a meromorphic function $\zeta:\mathbb{C}\to\bar{\mathbb{C}}$ with only one pole at s=1, which is simple. The Riemann Hypothesis. The most famous conjecture on Riemann's zeta function is: ζ has non-real(non-trivial) zeros only on the critical line $\operatorname{Re} s = \sigma = 1/2$ (the Riemann Hypothesis). If this conjecture is affirmative, we will have a nice result on the distribution of prime numbers; $$p_{n+1} - p_n = O(p_n^{1/2} \log p_n).$$ This is better than any known results, for example; $$p_{n+1} - p_n = O(p_n^{0.525 + \epsilon})$$ $p_{n+1}-p_n=O(p_n^{0.525+\epsilon})$ 第 43 回函数論サマーセミナー, 2008 年 8 月 24 日—26 日 (ver. 20121124 . Typo を訂正) for any $\epsilon > 0$. To show the hypothesis, it is known that we only have to care the zeros on the critical stripe $S = \{s \in \mathbb{C} : 0 < \text{Re } s < 1\}$. In particular, wider zero-free regions imply better estimates of distribution of primes. For example, it is known that there exists a constant A > 0 such that $$\left\{ s = \sigma + it \in \mathcal{S} : \sigma \ge 1 - \frac{A}{(\log(|t|+1))^{2/3}(\log\log(|t|+1))^{1/3}} \right\}$$ is zero-free. ## 2 Newton's method There are some root finding algorithms, but the most famous one would be Newton's method. From now on, we work with complex variable z = x + yi instead of conventional s for ζ . For a meromorphic function $f: \mathbb{C} \to \bar{\mathbb{C}}$, we define its Newton's map N_f by $$N_f(z) = z - \frac{f(z)}{f'(z)},$$ which is again meromorphic. One can easily check that $f(\alpha) = 0$ iff $N_f(\alpha) = \alpha$. The idea of Newton's method is: Start with an initial value z_0 sufficiently close to α . Then the sequence $\{z_n\}$ defined by $z_{n+1} = N_f(z_n)$ converges (rapidly) to α . More precisely, we have the following property: If α is a simple zero of f, then $N_f(\alpha) = \alpha$ and $N'_f(\alpha) = 0$. Thus $$N_f(z) - \alpha = O((z - \alpha)^2) \quad (z \to \alpha).$$ If α is a multiple zero, then $N_f(\alpha) = \alpha$ and $|N'_f(\alpha)| < 1$. Thus $$|N_f(z) - \alpha| \le C|z - \alpha| \quad (z \to \alpha)$$ for some 0 < C < 1. Hence the precision of z_n as an approximate value of α is exponentially or linearly increasing according to the multiplicity of α . Newton's method as a dynamical systems. What makes this method more intriguing is the theory of iteration of holomorphic function developed by Fatou and Julia in early 1920s. For given $z_0 \in \mathbb{C}$, convergence of $z_n = N_f^n(z_0)$ (where N_f^n is nth iteration of N_f) is not guaranteed in general. To investigate the behaver of such sequence, we consider the global dynamical systems $$\bar{\mathbb{C}} \xrightarrow{N_f} \bar{\mathbb{C}} \xrightarrow{N_f} \bar{\mathbb{C}} \xrightarrow{N_f} \cdots$$ given by iteration of Newton's map. (As we will see, we need a spacial care for poles of N_f .) For example, set $f(z) := z^3 - 1$. Then the iteration of its Newton's map gives the following picture (Figure 1): Figure 1: Dynamics of N_f for $f(z) = z^3 - 1$. Blue, yellow, and green regions are the set of initial values z_0 such that the orbit $z_n = N_f^n(z_0)$ converges to $1, \frac{-1+\sqrt{3}i}{2}$, and $\frac{-1-\sqrt{3}i}{2}$ respectively. Shades distinguish the number of iteration to trap the orbit in small disks around roots. The boundary of these regions has complicated structure known as *fractal*. It is the *Julia set* of N_f , where the dynamics shows chaotic behavior. In particular, orbits from the Julia set stay within the Julia set and never converge to the roots. Newton's method for meromorphic functions. If f is a rational function, then so is N_f thus it has no essential singularity. For a meromorphic function f, its Newton's map has an essential singularity at infinity. Since $N_f(\infty)$ is indeterminate, we must stop the iteration when the orbit lands on a pole of N_f . In this particular setting, we define its $Fatou\ set\ F(N_f)$ by: $$z_0 \in F(N_f)$$ $\iff \exists U \text{ a nbd of } z_0 \text{ s.t. } \left\{ N_f^n | U \right\}_{n \geq 0} \text{ is defined and a normal family}$ The Julia set $J(N_f)$ is the complement $\mathbb{C} - F(N_f)$. # 3 Applying the method to zeta. Now let us apply Newton's method to Riemann's zeta. For the meromorphic function $\zeta: \mathbb{C} \to \bar{\mathbb{C}}$, we set $$\nu(z) := N_{\zeta}(z) = z - \frac{\zeta(z)}{\zeta'(z)}.$$ We also apply the method to the functions $$\eta(z) := (z-1)\zeta(z)$$ and $$\xi(z) = \frac{1}{2}z(1-z)\pi^{z/2}\Gamma(z/2)\zeta(z),$$ where $\xi(z)$ a classical zeta-related function with symmetry $\xi(z) = \xi(1-z)$. Since $\eta(z)$ and $\xi(z)$ are entire functions, we may expect better dynamics for $$\mu(z) := z - \frac{\eta(z)}{\eta'(z)}$$ and $\lambda(z) := z - \frac{\xi(z)}{\xi'(z)}$. Now let us go to the gallery! **Pictures for** ν . The first picture is on the dynamics of ν . The coloring indicates the number of iteration to trap the orbits in attracting fixed points: 0 = orange < yellow < green < blue < purple < red = maximum. Probably points colored in red are close to the Julia set. Figure 2: The orange dots are arrayed on $-2\mathbb{N}$ and the critical line. The picture in the bottom is a magnification near the origin. Probably the sequence of orange dots near $\{\operatorname{Im} z = 4.5\}$ are preimages of $-2\mathbb{N}$. **Pictures for** μ Next we show the pictures of the dynamics of μ . The Julia set of μ seems much simpler. Figure 3: The Julia set of $\mu(z)$. The pictures in the second row are colored to distinguish the fixed points to converge. The pictures on the right shows the details of a prospective pole of $\mu(z)$ ("A head of chicken"). Figure 4: Head of another chicken in different colorings. Figure 5: Chickens for $\mu(z)$. Heads appear constantly in this range, though the zeros get denser as their imaginary parts increase. **Pictures for** λ . Finally we go to λ . One can easily check that the Newton's map λ has a symmetry with respect to the point z = 1/2. The dynamics seems the simplest, but the calculation for λ is the heaviest. Figure 6: Julia sets for $\lambda(z)$. The dynamics seems very simple: Probably each layer has conformally the same dynamics as $z \mapsto z^2$ on the unit disk. Figure 7: Julia set for $\lambda(z)$ (large scaled). # 4 Holomorphic index and the Riemann Hypothesis Let $g: \mathbb{C} \to \hat{\mathbb{C}}$ be a meromorphic function. Suppose $\alpha \in \mathbb{C}$ satisfies $g(\alpha) = \alpha$ (i.e., a fixed point of g) with $g'(\alpha) = \kappa = \kappa_{\alpha}$. Then the Taylor expansion about α gives a representation of the local action of g near α as follows: $$g(z) - \alpha = \kappa(z - \alpha) + O(|z - \alpha|^2)$$ This implies that g is locally approximated by an affine action $z - \alpha \mapsto \kappa(z - \alpha)$. We say κ is the *multiplier* of α . We say the fixed point α is - attracting if $|\kappa| < 1$, - repelling if $|\kappa| < 1$, and - indifferent if $|\kappa| = 1$. We define the holomorphic index of α by $$\iota = \iota(g, \alpha) := \frac{1}{2\pi i} \int_C \frac{dz}{z - f(z)},$$ where C is a small circle around α with counterclockwise direction. It is not difficult to check $$\kappa \neq 1 \implies \iota(g,\alpha) = \frac{1}{1-\kappa} \quad ---- (*).$$ Thus α with $\kappa = \kappa_{\alpha} \neq 1$ is - attracting $\iff |\kappa| < 1 \iff \operatorname{Re} \iota > \frac{1}{2}$, - repelling $\iff |\kappa| > 1 \iff \operatorname{Re} \iota < \frac{1}{2}$ - indifferent $\iff |\kappa| = 1 \iff \operatorname{Re} \iota = \frac{1}{2} \quad ---- (**)$ **Example: Newton's method.** For $\lambda(z) = z - \xi(z)/\xi'(z)$, $\zeta(\alpha) = 0$ implies that $\lambda(\alpha) = \alpha$ and $\lambda'(\alpha) = (m-1)/m < 1$, where $m \in \mathbb{N}$ is the multiplicity of α . Let C be a simple closed path in \mathbb{C} . Now we have $$\frac{1}{2\pi i} \int_C \frac{dz}{z - \lambda(z)} = \frac{1}{2\pi i} \int_C \frac{\xi'(z)dz}{\xi(z)} = \frac{1}{2\pi i} \int_C d\log \xi(z).$$ By the argument principle, this integral is the number of zeros inside C counting with multiplicity. (Recall that ξ is entire, thus no pole.) In fact, if $\alpha_1, \ldots, \alpha_p$ are such zeros with multiplicity m_1, \ldots, m_p , one can check by (*) that $$\frac{1}{2\pi i} \int_C \frac{dz}{z - \lambda(z)} = \sum_{j=1}^p \iota(\lambda, \alpha_p) = \sum_{j=1}^p \frac{1}{1 - \frac{m_p - 1}{m_p}} = \sum_{j=1}^p m_p.$$ The Riemann Hypothesis. Let us give an interpretation of the Riemann Hypothesis in terms of holomorphic index. Set $$\Lambda(z) := z - \frac{\xi(z)}{z\xi'(z)}.$$ Then $\xi(\alpha) = 0$ implies that $\Lambda(\alpha) = \alpha$ and by (*), $$\Lambda'(\alpha) = 1 - \frac{1}{\alpha} \ (\neq 1) \iff \iota = \iota(\Lambda, \alpha) = \alpha.$$ Now we have an interpretation of the Riemann Hypothesis in complexdynamics context. By (**), The Riemann Hypothesis 1. Any fixed point of Λ function is indifferent. By the functional equation $\xi(z) = \xi(1-z)$, if α is a fixed point of Λ then so is $1-\alpha$. If α is attracting, then Re $\iota(\Lambda,\alpha) = \alpha < 1/2$ implies that $1-\alpha$ is repelling. This implies that any attracting fixed point has a corresponding repelling fixed point. Thus we can also put the interpretation above as: The Riemann Hypothesis 2. There is no attracting fixed point of Λ function. If the Hypothesis is true, any non-trivial zero of ζ (or ξ) is of the form $\alpha = 1/2 + \gamma i$ ($\gamma \in \mathbb{R}$). On the other hand, it must be an indifferent fixed point of Λ with multiplier $e^{2\pi i\theta}$ ($\theta \in \mathbb{R}$). The value γ and θ are related by $$\gamma = \frac{1}{2 \tan \pi \theta} \iff \theta = \frac{1}{\pi} \arctan \frac{1}{2\gamma}.$$ Here is a question for people who know the linearization problem of fixed point: **Linearization problem.** Can θ be a rational number? Is Λ linearizable at α ? That is, can Λ has an invariant Siegel disk? ### 5 References #### Books about Riemann's zeta function: - [1] H.M. Edwards. Riemann's Zeta Function. Academic Press, 1974. - [2] A. Ivić. The Riemann Zeta-Function. Wiley. 1985. #### Books about complex dynamics: - [3] A.F. Beardon. Iteration of Rational Functions. Springer-Verlag, 1991. - [4] L. Carleson and T. Gamelin. *Complex Dynamics*. Springer-Verlag, 1993. - [5] X-H. Hua and C-C. Yang. *Dynamics of Transcendental Functions*. Gordon and Breach Science Publishers, 1998. - [6] J. Milnor. Dynamics in one complex variable: Introductory lectures. vieweg, 1999. #### A survey on dynamics of meromorphic functions: [7] W. Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc., 26(1999), 151–188. # For the theory of root finding algorithms; [8] P. Henrici. Elements of Numerical Analysis. Wiley, 1964.