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1 A large Cournot game

Corollary 14 states that a large Cournot game studied by Vives [3] can be type

+III; that is, expected total profits can decrease with the precision of both public

and private information. Angeletos and Pavan [1] (henceforth AP) consider the

same large Cournot game and their Corollary 10 states that expected total profits

necessarily increase with the precision of private information, but can decrease with

that of public information. Thus, Corollary 14 is inconsistent with AP’s Corollary 10.

To explain what induces this inconsistency, we adopt AP’s notation in p. 1128

and write the payoff function as follows:

U = (a0 − c1 + a1θ − a3K)k − (a2 + c2)k
2,

where a0, a1, a2, a3, c1, c2 > 0 are constants, k ∈ R is an action, and K ∈ R is its mean

over all the players. This payoff function is the same as (18) when a0 = a2 = c1 = 0,

a1 = 1, a3 = −r, and c2 = 1/2. AP define

α ≡ −(∂2U/∂k∂K)/(∂2U/∂k2) = −a3/(2(a2 + c2)),

which is the same as α in this paper and assumed to be strictly less than 1. In

AP’s proof, they directly calculate the partial derivative of the welfare loss L due
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to incomplete information given by (36) in AP, where their parameter ϕ plays a key

role. They obtain ϕ = α/(2(1− α)), but this includes an error. By correcting it, we

obtain ϕ = α/(1− 2α).

Using the correct value of ϕ, we calculate L and its partial derivatives based upon

(36) in AP. We write σ2
x ≡ 1/τx and σ2

z ≡ 1/(τy + τθ), following AP. Then, we have

L = a21/(a2 + c2)× σ2
xσ

2
z(σ

2
x + (1− α2)σ2

z)/(4(1− α)2(σ2
x + (1− α)σ2

z)
2),

∂L/∂σ2
x = a21/(a2 + c2)× σ4

z(σ
2
x + (1 + α)σ2

z)/(4(σ
2
x + (1− α)σ2

z)
3),

∂L/∂σ2
z = a21/(a2 + c2)× σ4

x(σ
2
x + (1− α)(2α + 1)σ2

z)/(4(1− α)2(σ2
x + (1− α)σ2

z)
3).

Thus, ∂L/∂σ2
x < 0 if and only if σ2

x + (1 + α)σ2
z < 0, which is rewritten as σ2

x/σ
2
z =

(τy + τθ)/τx < −(α + 1), and ∂L/∂σ2
z < 0 if and only if σ2

x + (1− α)(2α + 1)σ2
z < 0,

which is rewritten as σ2
x/σ

2
z = (τy + τθ)/τx < −(1 − α)(2α + 1). That is, expected

total profits decrease with the precision of private information if and only if α < −1

and τx > −(τy+ τx)/(α+1), and decrease with that of public information if and only

if α < −1/2 and τx > −(τy + τθ)/((1 − α)(2α + 1)). This result is consistent with

Corollary 14.

2 A large Bertrand game

We consider a large Bertrand game studied by AP (see also Vives [2]) and revise

their result. Player i produces good i and chooses its price ai. The demand function

is θ − ai + ρ
∫
ajdj, where ρ > 0 and θ is normally distributed. The cost function is

cq2 with c > 0. Then, player i’s profit is(
θ − ai + ρ

∫
ajdj

)
ai−c

(
θ − ai + ρ

∫
ajdj

)2

=

− (c+ 1)a2i + ρ(2c+ 1)ai

∫
ajdj + (2c+ 1)θai

− ρ2c
(∫

ajdj
)2

− 2ρcθ

∫
ajdj − cθ2. (1)

The type of this game is summarized as follows by Corollary 3.

Corollary 15. Suppose that ρ < 2(c + 1)/(2c + 1). This game is type −IV if c >

(−1 +
√
2)/2 and (2c+ 1)/(4c) < ρ < 2(c+ 1)/(2c+ 1) and type +I otherwise.

Proof. Dividing the payoff function by c + 1, we have α = ρ(2c + 1)/(2(c + 1)),

ζ = (2(1 − 2ρ)c + 1)/(2c + 1)), and η = (c(2c + 1)ρ2 − 4c(c + 1)ρ + 2c2 + 3c +
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1)/((c+ 1)(2c+ 1)). The condition α < 1 guarantees the uniqueness of equilibrium,

i.e., ρ = 2(c+ 1)α/(2c+ 1) < 2(c+ 1)/(2c+ 1).

Note that ζ < 0 if and only if ρ > (2c + 1)/(4c). Thus, if ζ < 0, then we must

have (2c+1)/(4c) < 2(c+1)/(2c+1) because ρ < 2(c+1)/(2c+1), which is rewritten

as c > (−1+
√
2)/2. Note also that η > 0 because the discriminant of the numerator

of η as a quadratic function of ρ is −4c2 − 4c < 0.

Therefore, this game is type −IV if c > (−1 +
√
2)/2 and (2c + 1)/(4c) < ρ <

2(c + 1)/(2c + 1). Otherwise, this game is type +I. To see this, suppose that ρ ≤
min{(2c+ 1)/(4c), 2(c+ 1)/(2c+ 1)}. Then, ζ, η > 0 and

(1− α)ζ − 3η/2 = ((2c2 + c)ρ2 − ρ− 2c2 − 3c− 1)/(2(c+ 1)(2c+ 1)) < 0.

In fact, the numerator of the fraction above is strictly negative for all ρ ∈ (0, 2(c +

1)/(2c+1)) because it is so at the endpoints of this interval. Therefore, (1−α)ζ/η <

3/2.

For example, if we set ρ = 4/5 and c = 1, then ζ = −1/20 < 0, η = 19/100 > 0,

and X = 8. Thus, expected total profits decrease with the precision of private

information if and only if τx < (τy + τθ)/8.

AP’s Corollary 11 states that expected total profits necessarily increase with the

precision of both public and private information. This implies that a large Bertrand

game is type +I for all ρ, c > 0, which is inconsistent with the above result.

AP consider the following payoff function in p. 1129:

U = (θ − k + bK)k − c(θ − k + bK)2,

where b, c ∈ R are constants with 0 < b < 1, k is an action, and K ∈ R is its mean

over all the players. This payoff function is the same as (1) by the replacement of b

with ρ.

In AP’s proof, they directly calculate the partial derivative of the welfare loss L
due to incomplete information given by (36) in AP. They then show that ∂L/∂σ2

x > 0,

where σ2
x ≡ 1/τx, but this includes an error. To see this, we calculate L and ∂L/∂σ2

x

based upon (36) in AP assuming that b = 4/5 and c = 1. We write σ2
z ≡ 1/(τy + τθ),

following AP. Then, we have

L = 75σ2
xσ

2
z(19σ

2
x + 16σ2

z)/(32(5σ
2
x + 2σ2

z)
2),

∂L/∂σ2
x = 75σ4

z(8σ
2
z − σ2

x)/(8(5σ
2
x + 2σ2

z)
3).
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Thus, ∂L/∂σ2
x < 0 if and only if 8σ2

z − σ2
x < 0, which is rewritten as 1/σ2

x = τx <

1/(8σ2
z) = (τy + τθ)/8. That is, expected total profits decrease with the precision

of private information if and only if τx < (τy + τθ)/8. This result is consistent with

Corollary 15.

3 Games that are efficient under complete infor-

mation

AP classify games according to the type of inefficiency exhibited by the equilibrium

and find the following. In the first class of games, where the equilibrium is efficient

under both complete and incomplete information, welfare necessarily increases with

both public and private information. In the second class of games, where the equilib-

rium is inefficient only under incomplete information, welfare can decrease with either

public or private information, but not with both. In the third class of games, where

the equilibrium is inefficient even under complete information, welfare can decrease

with both public and private information.

We reconsider the second class of games. A crucial assumption in AP is the

existence of socially optimal strategy profiles. Then, a natural question is whether the

above result on the second class of games remains true even without this assumption.

We give a negative answer to this question. That is, welfare can decrease with both

public and private information in the class of games such that the equilibrium is

efficient under complete information if there is no socially optimal strategy profile

under incomplete information.

To identify this class of games, assume that players directly observe θ. The

equilibrium strategy is to choose βθ/(1 − α). When each player chooses x ∈ R, the
payoff is

−x2+2αx2+2βθx+κx2+λx2+µθx+ νx = −(1− 2α−κ−λ)x2+((2β+µ)θ+ ν)x

plus f(θ), which is maximized at x∗(θ) = ((2β + µ)θ + ν)/(2(1 − 2α − κ − λ)) if

1− 2α− κ− λ > 0.

Therefore, the equilibrium is efficient under complete information if and only if

x∗(θ) = βθ/(1 − α) for all θ ∈ R; that is, µ = −2β(α + κ + λ)/(1 − α), ν = 0, and

1− 2α− κ− λ > 0. Plugging this into ζ and η, we have

ζ = (1− 3α− ακ− κ− 2λ)/(1− α), η = 1− 2α− κ− λ > 0.
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Because η > 0, possible types are +I, +II, +III, and −IV. Only in type +III can

welfare decrease with both public and private information. Note that (1−α)ζ/η > 2

if and only if κ > 1 because (1−α)ζ−2η = (1−α)(κ−1). Thus, this game is type +III

if and only if κ > 1 by Corollary 3. If κ > 1, then the expected payoff is unbounded

above because it equals (κ− 1)var[σi] + (2α + λ)cov[σi, σj] + (2β + µ)cov[θ, σi] plus

a constant.

To summarize, welfare can decrease with both public and private information in

this class of games if there is no socially optimal strategy profile.

4 The finite case vs. the continuum case

Vives [3] was the first to compare the equilibrium and welfare with a finite number

of players and those with a continuum of players, restricting attention to Cournot

games. He shows that the former converges to the latter as the number of players goes

to infinity. In contrast, we consider a finite model possessing the same equilibrium

and welfare as those of a given continuum model, which enables us to study the

welfare effects of information in the continuum model based upon that of the finite

model. In the following, we illustrate the difference between the two approaches in

the case of Cournot games.

In a Cournot game with a continuum of players, player i produces ai units of a

homogeneous product with a cost a2i /2. The inverse demand function is θ+α
∫
ajdj,

where α < 0 is constant and θ is normally distributed. Then, player i’s profit is(
θ + α

∫
ajdj

)
ai − a2i /2, (2)

which is the same as that discussed in Corollary 14.

Vives [3] compares the above game and a Cournot game with n players, where

the inverse demand function is θ + α
∑n

j=1 aj/n and player i’s profit is

(
θ + α

n∑
j=1

aj/n
)
ai − a2i /2. (3)

Vives [3] shows that the equilibrium strategy in this game converges to that with a

continuum of players as n goes to infinity. Note that we obtain (3) by replacing the

integral
∫
ajdj in (2) with the average

∑n
j=1 aj/n.

In contrast, we consider a fictitious game with n players possessing the same
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equilibrium strategy as that with a continuum of players, where player i’s payoff is(
θ + α

n∑
j ̸=1

aj/(n− 1)
)
ai − a2i /2. (4)

Note that we obtain (4) by replacing
∫
ajdj in (2) with

∑
j ̸=i aj/(n − 1), i.e., the

average of the opponents’ actions. Both
∫
ajdj and

∑
j ̸=i aj/(n− 1) are independent

of ai, which results in the same equilibrium strategy.
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