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Abstract

A public authority provides agents with public information, but each agent also

acquires his own private information, and they play a linear quadratic Gaussian game.

More provision of public information induces less acquisition of private information,

yet this effect attenuates as the elasticity of marginal cost of information acquisition

increases. The main result of this paper characterizes the optimal disclosure of public

information in terms of an arbitrary quadratic welfare function, where the elasticity of

marginal cost plays an essential role. To this end, we obtain a necessary and sufficient

condition for welfare to increase with public information. We find that the welfare

effect of public information is determined by a linear combination of the two extreme

cases with zero and infinite elasticities of marginal cost.
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1 Introduction

Decision making under uncertainty depends upon information, but information choice is

also an important aspect of decision making. What information agents acquire depends

upon what information they have beforehand. Thus, by providing agents with public infor-

mation, a public authority can have an influence on agents’ information acquisition and the

resulting outcome. It has at least three effects. First, more provision of public information

induces less acquisition of private information, which is referred to as the crowding-out

effect. Next, agents take more correlated actions because they share more information.

Finally, agents’ cost of information acquisition decreases.

To understand the total effect on welfare, we consider the following three-period model

of information acquisition studied by Colombo et al. (2014), which generalizes the seminal

works of Vives (1988) and Li et al. (1987) on information acquisition in linear quadratic

Gaussian games.1 In period 0, a public authority chooses the precision of public informa-

tion. In period 1, each agent chooses the precision of private information given that of

public information, where the cost function is an isoelastic function of the precision of pri-

vate information. In period 2, each agent observes private and public signals and chooses

an action in a linear quadratic Gaussian game studied by Angeletos and Pavan (2007).

Our measure of welfare is the expected value of an arbitrary quadratic function of ac-

tions minus total cost of information acquisition. The total expected net payoff considered

by Colombo et al. (2014) is a special case. We represent welfare as a linear combination

of the variance of a common term in an equilibrium strategy and that of an idiosyncratic

term, which follows Ui and Yoshizawa (2015) who study the case of exogenous private

information. These variances are referred as the common variance and the idiosyncratic

variance of actions, respectively. The common variance equals the covariance of actions.

Thus, it increases with public information because more precise information causes more

correlated actions. In contrast, the idiosyncratic variance equals the difference between the

variance and covariance of actions. Thus, it decreases with public information because a

higher correlation of actions brings the covariance and variance closer.

In our main result, we characterize the optimal precision of public information. In so

doing, we give a necessary and sufficient condition for welfare to increase with public in-

1See Vives (2008) for more details. Recent studies on information acquisition in linear quadratic Gaussian

games have focused on a beauty contest game of Morris and Shin (2002), including Colombo and Femminis

(2008), Wong (2008), Hellwig and Veldkamp (2009), Myatt and Wallace (2012), and Ui (2014).
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formation. Key parameters in our condition are not only the coefficients of the common

variance and the idiosyncratic variance but also the elasticity of marginal cost of informa-

tion acquisition. The elasticity of marginal cost determines the strength of the crowding-

out effect. The crowding-out effect is the largest when the elasticity is zero (i.e. a linear

cost function) and decreases with the elasticity. In the limit as the elasticity goes to infin-

ity, the crowding-out effect disappears, where agents do not change the precision of their

private information even if a public authority increases the precision of public information.

We find that the welfare effect of public information is determined by a linear combination

of the two extreme cases with zero and infinite elasticities of marginal cost.

Given the elasticity of marginal cost, suppose that the coefficients of the common and

idiosyncratic variances in welfare are positive. If the coefficient of the common variance

is relatively large, welfare necessarily increases with public information, so the optimal

precision of public information is the highest precision. If the coefficient of the common

variance is relatively small, welfare decreases with public information if the precision is

low and increases if the precision is high, so the optimal precision of public information is

either the lowest or the highest precision. On the other hand, if the coefficients of the com-

mon and idiosyncratic variances in welfare are negative, the optimal precision of public

information is either the lowest precision or a strictly positive finite value.

This paper builds on the model of Colombo et al. (2014), who incorporate informa-

tion acquisition considered by Vives (1988) and Li et al. (1987) into the linear quadratic

Gaussian game of Angeletos and Pavan (2007). Adopting the total expected net payoff

as a measure of welfare, Colombo et al. (2014) compare the social value of public infor-

mation with endogenous private information and that with exogenous private information.

They give a sufficient condition guaranteeing that the former is positive whenever the lat-

ter is positive based upon a comparison between the equilibrium strategy and the socially

optimal strategy profile, which follows Angeletos and Pavan (2007).

In contrast to Colombo et al. (2014), we adopt a general quadratic welfare function and

give a complete characterization of the social value of public information with endoge-

nous private information using the coefficients of the common and idiosyncratic variances

in welfare and the elasticity of marginal cost. Ui and Yoshizawa (2015) study the case

of exogenous private information using the same coefficients. These coefficients play an

essential role in both cases of endogenous and exogenous private information, the latter of

which can be understood as the extreme case with the infinite elasticity of marginal cost.
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This paper is organized as follows. Section 2 introduces the model and Section 3 cal-

culates welfare in the equilibrium. We give a necessary and sufficient condition for welfare

to increase with public information in Section 4 and characterize the optimal precision of

public information in Section 5. Section 6 is devoted to an application to a Cournot game.

2 The model

There are a continuum of agents indexed by i ∈ [0,1] and a public authority. A public

authority knows the state θ and provides agents with public information about θ, but each

agent also acquires his own private information. We consider the following three-period

setting. In period 0, a public authority chooses the precision of public information. In

period 1, each agent chooses the precision of private information given that of public in-

formation. In period 2, each agent observes private and public signals and chooses an

action in a Bayesian game.2

Agent i’s private signal is xi = θ + εi and a public signal is y = θ + ε0, where εi, ε0,

and θ are independently and normally distributed with

E[θ] = θ̄, E[εi] = E[ε0] = 0, var[θ] = τ−1
θ , var[εi] = τ−1

i , var[ε0] = τ−1
y .

We refer to τi and τy as the precision of private information and that of public information,

respectively. A public authority chooses τy in period 0 with no cost. Agent i chooses τi in

period 1 with a cost C(τi) = cτρ+1
i /(ρ + 1), where c > 0 is a constant and ρ ≥ 0 is the

elasticity of marginal cost.

In a Bayesian game, agent i’s action is a real number ai ∈ R. We write a = (ai)i∈[0,1]

and a−i = (a j ) j,i. Agent i’s payoff function is

ui (a, θ) = − a2
i + 2αai

∫ 1

0
a j dj + 2βθai + h(a−i, θ), (1)

where α, β ∈ R are constants and h(a−i, θ) is a measurable function. Note that agent i’s

best response is determined by α and β. This game exhibits strategic complementarity

if α > 0 and strategic substitutability if α < 0. We assume α < 1, by which a unique

symmetric Bayesian Nash equilibrium exists when τi = τj for all i , j (see Lemma 1). We

also assume β > 0 without loss of generality.

2The earliest papers on information acquisition in linear quadratic Gaussian games are Li et al. (1987)

and Vives (1988), who study Cournot games.
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A welfare function is

v(a, θ) −
∫

C(τj )dj, (2)

where v(a, θ) is a symmetric and quadratic function of a and θ; that is,

v(a, θ) = c1

∫ 1

0
a2

j dj + c2

(∫ 1

0
a j dj

)2

+ c3θ

∫ 1

0
a j dj + c4

∫ 1

0
a j dj + c5. (3)

A public authority chooses τy to maximize the expected welfare in period 0.

In the model of Colombo et al. (2014), each agent’s payoff function is quadratic in a

and θ, i.e.,

h(a−i, θ) = κ
∫ 1

0
a2

j dj + λ
(∫ 1

0
a j dj

)2

+ µθ

∫ 1

0
a j dj + ν

∫ 1

0
a j dj + f (θ),

and a public authority’s payoff function is the total net payoff of agents, i.e.,∫
(ui (a, θ) − C(τi)) di.

In this case, a welfare function is written as (2) with (3) given by

c1 = κ − 1, c2 = 2α + λ, c3 = 2β + µ, c4 = ν.

3 The expected welfare

Colombo et al. (2014) show that if α < 1 then there exists a unique symmetric equilibrium

of the game in periods 1 and 2 given τy. In this section, we obtain the expected welfare

in period 0 using the equilibrium strategy in periods 1 and 2 and represent it as a linear

combination of the common variance and the idiosyncratic variance.

Period 2

Angeletos and Pavan (2007) study the game in period 2 with τi = τj for all i , j and show

the following result.3

Lemma 1. Assume that α < 1. Then, there exists a unique symmetric equilibrium of

the Bayesian game in period 2 with τi = τx for all i. Agent i’s strategy is σi (xi, y) =

bx (xi − θ̄) + by (y − θ̄) + βθ̄/(1 − α), where

bx =
β

(1 − α)τx + τy + τθ
· τx , by =

β

(1 − α)τx + τy + τθ
·
τy

1 − α .

3This result is also implied by Radner (1962, Theorem 5). See Ui and Yoshizawa (2013).
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An equilibrium strategy is linear in private and public signals. The ratio of their coef-

ficients is bx/by = (1 − α)τx/τy. Thus, if α is close to one or τx/τy is small, the relative

weight of a public signal is large, and if α is small or τx/τy is large, that of a public signal

is large.

For later use, we obtain the expected welfare when agents follow the above equilibrium

strategy. To this end, it is useful to rewrite the equilibrium strategy as

σi (xi, y) =bx (θ + εi − θ̄) + by (θ + ε0 − θ̄) + βθ̄/(1 − α)

=bxεi +
(
byε0 + (bx + by)θ

)
+

(
β/(1 − α) − (bx + by)

)
θ̄,

where bxεi is an idiosyncratic random term and byε0+(bx+by)θ is a common random term.

Ui and Yoshizawa (2015) refers to the variances of these terms, var[bxεi] and var[byε0 +

(bx+by)θ], as the idiosyncratic variance and the common variance of actions, respectively.

Because εi, ε0, and θ are independent, it holds that

var[byε0 + (bx + by)θ] = cov[σi,σ j], var[bxεi] = var[σi] − cov[σi,σ j].

That is, the common variance equals the covariance of actions and the idiosyncratic vari-

ance equals the difference between the variance and covariance of actions.4 We write the

common variance and the idiosyncratic variance as functions of τx and τy,

CV (τx , τy) = cov[σi,σ j], IV (τx , τy) = var[σi] − cov[σi,σ j],

respectively.

The next lemma due to Ui and Yoshizawa (2015) represents the expected welfare as a

linear combination of the common variance and the idiosyncratic variance minus the cost

of information acquisition. Their coefficients play an essential role in our characterization

of the optimal disclosure of public information.

Lemma 2. The ex ante expected welfare in the unique symmetric equilibrium equals

W (τx , τy) = E[w((σi)i∈[0,1], θ) − C(τx)] = ζ IV (τx , τy) + ηCV (τx , τy) − C(τx) + k, (4)

where ζ = c1+ c3/β, η = c1+ c2+ (1−α)c3/β, and k is a constant independent of (τx , τy).

4Bergemann and Morris (2013) consider the variance of the average action
∫

a jdj and that of the id-

iosyncratic difference ai −
∫

a jdj and refer to them as volatility and dispersion, respectively. The common

variance equals the volatility and the idiosyncratic variance equals the dispersion. See Ui and Yoshizawa

(2015) for more details.
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Period 1

The next lemma due to Colombo et al. (2014) gives the first order condition for the equi-

librium precision in period 1.

Lemma 3. When all the opponents follow the unique symmetric equilibrium strategy of

the Bayesian game in period 2 with τj = τx for all j , i, agent i’s marginal benefit of

choosing τi in period 1 evaluated at τi = τx is

d
dτi

E[ui (a, θ)]
�����τi=τx = −b2

x
∂ var[xi]
∂ τx

=
β2(

(1 − α)τx + τy + τθ
)2 .

Thus, the first order condition for the precision in a symmetric equilibrium is

β2(
(1 − α)τx + τy + τθ

)2 = C′(τx). (5)

Note that the marginal benefit is strictly decreasing in τx and τy, whereas the marginal

cost is increasing in τx (see Figure 1). The equilibrium precision is the unique value of τx

solving (5) if C′(0) ≤ β2/(τy + τθ )2 and it is zero if C′(0) > β2/(τy + τθ )2. We denote the

equilibrium precision by ϕ(τy) as a function of τy. Then, the expected welfare in period 0

is W (ϕ(τy), τy).

For example, suppose that C(τx) = cτx , i.e., ρ = 0. Then,

ϕ(τy) =

(
β/
√

c − τy − τθ
)
/(1 − α) if c < β2/(τy + τθ )2,

0 if c ≥ β2/(τy + τθ )2.
(6)

Only in the linear case, we can obtain ϕ(τy) in a closed form. Colombo and Femminis

(2008) study this case in the context of beauty contest games of Morris and Shin (2002).

Li et al. (1987) and Vives (1988) obtain a similar formula in Cournot games.

By (5), an increase in the precision of public information results in a decrease in the

precision of private information as shown by Colombo et al. (2014); that is, ϕ′(τy) < 0. We

refer to this effect as the crowding-out effect of public information on private information.5

Figure 1 illustrates the equilibrium precision and the crowding-out effect, where the

horizontal axis is the τx-axis (the precision of private information). The equilibrium pre-

cision is the intersection of the downward sloping marginal benefit curve and the upward

sloping marginal cost curve. An increase in the precision of public information shifts the

5This effect is also found in Colombo and Femminis (2008), Wong (2008), Hellwig and Veldkamp (2009),

and Myatt and Wallace (2012).
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Figure 1: The marginal benefit curve and the marginal cost curve. An increase in τy shifts

the marginal benefit curve down, by which the equilibrium precision decreases.

marginal benefit curve down, by which the equilibrium precision decreases. As Figure 1

shows, the crowding-out effect measured by |ϕ′(τy) | is the largest when the elasticity of

marginal cost ρ is zero, i.e., the cost function is linear. Moreover, the crowding-out ef-

fect becomes small as the elasticity of marginal cost ρ increases. The next lemma formally

states this observation, which will help us to understand our characterization of the optimal

disclosure of public information.

Lemma 4. Let ϕρ(τy) be the equilibrium precision when the elasticity of marginal cost is

ρ. If ϕρ1 (τy) = ϕρ2 (τy) > 0 and ρ1 > ρ2 ≥ 0, then 0 > ϕ′ρ2
(τy) > ϕ′ρ1

(τy).

Proof. We can prove this lemma by direct calculation using the fact that ϕ′ = (dϕ−1/dτx)−1

and that ϕ−1(τx) = −(1 − α)τx + β/
√

C′(τx) − τθ by (5). □

4 The welfare effects of public information

When agents follow the equilibrium strategy given the precision of public information τy,

the expected welfare is W (ϕ(τy), τy). To obtain the optimal precision of public informa-

tion, we study under what condition W (ϕ(τy), τy) is increasing in τy.

Colombo et al. (2014) study a related issue, but their analysis differs from ours in the

following way. Colombo et al. (2014) ask under what condition ∂W (ϕ(τy), τy)/∂τy > 0

implies dW (ϕ(τy), τy)/dτy > 0. In contrast, we study a necessary and sufficient condition

for dW (ϕ(τy), τy)/dτy > 0.
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We start with a benchmark case, where the precision of private information does not

change even if that of public information changes. In other words, there is no crowding-out

effect. As we will see later, this case corresponds to the limit of the general case as ρ→ ∞.

Proposition 1. Suppose that ρ > 0. For τx = ϕ(τy),

∂W (τx , τy)
∂τy

≷ 0 ⇔ ∆∞(τx) ≷ 0,

where

∆∞(τx) ≡ η

1 − α

(
1 +

β

2 (1 − α) τx
√

C′(τx)

)
− ζ = −

∂W (τx , τy)
∂τy

/
∂IV (τx , τy)
∂τy

. (7)

Proof. By (4),

∂W (τx , τy)
∂τy

=
β2

(
−(1 − α)τx (2(1 − α)ζ − 3η) + η

(
τθ + τy

))
(1 − α)2

(
(1 − α)τx + τy + τθ

)
3

. (8)

By (5), τy = ϕ−1(τx) = −(1− α)τx + β/
√

C′(τx) − τθ . By plugging this into (8), we obtain

∂W (τx , τy)
∂τy

= ∆∞(τx) × 2τx (C′(τx))2/3/β,

which implies that
∂IV (τx , τy)
∂τy

= −2τx (C′(τx))2/3/β.

Thus, (7) holds. □

Proposition 1 says that welfare increases with public information if the coefficient of

the common variance η is relatively large, but welfare decreases with public information

if the coefficient of the idiosyncratic variance ζ is relatively large.

The intuition is as follows. The common variance increases with public information

because it equals the covariance of actions and more precise public information causes

more correlated actions. In contrast, the idiosyncratic variance decreases with public in-

formation because it equals the difference between the variance and covariance of actions

and a higher correlation of actions brings the covariance and variance closer. Therefore, the

welfare effect of public information is determined by the relative weights of the common

variance and the idiosyncratic variance.

By (7), ∆∞(τx) has the following meaning. When the precision of public information

increases so that the idiosyncratic variance decreases by one, then welfare increases by

∆∞(τx), which is analogous to the marginal rate of transformation in producer theory.
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Thus, we call ∆∞(τx) the martial rate of transformation of welfare for the idiosyncratic

variance.

Next, we consider another benchmark case, where the cost is linear, i.e., ρ = 0. In this

case, the crowding-out effect is the largest.

Proposition 2. Suppose that ρ = 0. Then, C(ϕ(τy)) = IV (ϕ(τy), τy) and (4) is reduced to

W (ϕ(τy), τy) = (ζ − 1)IV (ϕ(τy), τy) + ηCV (ϕ(τy), τy) + k . (9)

If τy < β/
√

c − τθ ,
dW (ϕ(τy), τy)

dτy
≷ 0 ⇔ ∆0 ≷ 0,

where

∆0 ≡
η

1 − α − (ζ − 1) = −
dW (ϕ(τy), τy)

dτy
/

dIV (ϕ(τy), τy)
dτy

. (10)

If τy > β/
√

c − τθ ,
dW (ϕ(τy), τy)

dτy
≷ 0 ⇔ η ≷ 0.

Proof. The first order condition (5) implies C(ϕ(τy)) = IV (ϕ(τy), τy) and

dIV (ϕ(τy), τy)
dτy

= C′(ϕ(τy))ϕ′(τy).

Plugging (6) into (9) and differentiate it with respect to τy, we obtain

dW (ϕ(τy), τy)
dτy

=


−∆0 × C′(ϕ(τy))ϕ′(τy) if τy < β/

√
c − τθ ,

η × β2/((1 − α)(τy + τθ ))2 if τy > β/
√

c − τθ ,

which completes the proof. □

The notable property in the linear case is that the total cost of information acquisition

equals the idiosyncratic variance. Thus, welfare is represented as a linear combination of

the common variance and the idiosyncratic variance, but the coefficient of the idiosyncratic

variance is ζ − 1 rather than ζ .

Proposition 2 says that welfare increases with public information if the coefficient of

the common variance η is relatively large, but welfare decreases with public information

if the coefficient of the idiosyncratic variance ζ − 1 is relatively large. The intuition is

essentially the same as that in the case of no crowding-out effect.

We also call ∆0 the martial rate of transformation of welfare for the idiosyncratic vari-

ance on the basis of (10): welfare increases by ∆0 when the precision of public information

increases so that the idiosyncratic variance decreases by one.

Finally, we consider the general case with ρ > 0.
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Proposition 3. Suppose that ρ > 0. Then,
dW (ϕ(τy), τy)

dτy
≷ 0 ⇔

∆0 + ρ∆∞(ϕ(τy))
1 + ρ

≷ 0.

Moreover,
∆0 + ρ∆∞(ϕ(τy))

1 + ρ
= −

dW (ϕ(τy), τy)
dτy

/
dIV (ϕ(τy), τy)

dτy
.

Proof. By plugging ϕ−1(τx) into (4), we obtain

W (τx , ϕ−1(τx)) =
η

(
β2/τz − (1 − α)τxC′(τx) − β

√
C′(τx)

)
+ ζ (1 − α)2τxC′(τx)

(1 − α)2 − C(τx),

dW (τx , ϕ−1(τx))
dτx

= −C′(τx)∆0 − τxC′′(τx)∆∞(τx),

dIV (τx , ϕ−1(τx))
dτx

= C′(τx) + τxC′′(τx).

This implies the proposition because

dW (ϕ(τy), τy)
dτy

=
∂W
∂τx
ϕ′(τy) +

∂W
∂τy
= ϕ′(τy)

(
∂W
∂τx
+
∂W
∂τy
· 1
ϕ′(τy)

)
= ϕ′(τy)

dW (τx , ϕ−1(τx))
dτx

,

dIV (ϕ(τy), τy)
dτy

= ϕ′(τy)
dIV (τx , ϕ−1(τx))

dτx
,

ϕ′(τy) < 0, and ρ = τxC′′(τx)/C′(τx). □

Proposition 3 says that the sign of marginal welfare is given by that of a weighted mean

of ∆0 and ∆∞; that is, (∆0+ ρ∆∞)/(1+ ρ). Moreover, (∆0+ ρ∆∞)/(1+ ρ) equals the martial

rate of transformation of welfare for the idiosyncratic variance. Thus, the martial rate of

transformation of welfare equals the weighted average of that with no crowding-out effect

and that with the largest crowding-out effect, where the relative weight is determined by

the elasticity of marginal cost. The two extreme cases can be interpreted as the limits of

the general case as ρ→ 0 and ρ→ ∞.

5 The optimal disclosure of public information

The next proposition characterizes the optimal precision of public information.

Proposition 4. Suppose that ρ ≥ 0 and (ζ,η) , (0,0). Define

f (ζ, ρ) ≡ 2(1 − α)
(
(ρ + 1)ζ − 1

)
3ρ + 2

,

τ∗z ≡
(3ρ + 2)( f (ζ, ρ) − η)

2η
· *, 2ρ(1 − α)ρ β2

c
(
(1 − α)((1 + ρ)ζ − 1)/η − (1 + ρ)

)2
+-

1/(ρ+2)

.

Then, the following holds.
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(i) If η ≥ max{ f (ζ, ρ),0}, then dW (ϕ(τy), τy)/dτy > 0 for all τy. Thus,

sup
τy

W (ϕ(τy), τy) = W (0,∞).

(ii) If 0 < η < f (ζ, ρ), then dW (ϕ(τy), τy)/dτy < 0 if τy < τ∗z−τθ and dW (ϕ(τy), τy)/dτy >

0 if τy > τ∗z − τθ . Thus,

sup
τy

W (ϕ(τy), τy) =


W (0,∞) if τθ ≥ τ∗z ,

max{W (0,∞),W (ϕ(0),0)} if τθ < τ∗z .

(iii) If η ≤ min{ f (ζ, ρ),0}, then dW (ϕ(τy), τy)/dτy < 0 for all τy. Thus,

sup
τy

W (ϕ(τy), τy) = W (ϕ(0),0).

(iv) If 0 > η > f (ζ, ρ), then dW (ϕ(τy), τy)/dτy > 0 if τy < τ∗z−τθ and dW (ϕ(τy), τy)/dτy <

0 if τy > τ∗z − τθ . Thus,

sup
τy

W (ϕ(τy), τy) =


W (ϕ(0),0) if τθ ≥ τ∗z ,

W (ϕ(τ∗z − τθ ), τ∗z − τθ ) if τθ < τ∗z .

Proof. Proposition 2 directly implies the case with ρ = 0. We prove the case with ρ > 0

using Proposition 3.

Suppose that η = 0. In this case, ∆0+ ρ∆∞(ϕ(τy)) is constant, and the above is implied

by Proposition 3.

Suppose that η , 0. If ∆0 + ρ∆∞(τx) = 0, then

τx
√

C′(τx) = c1/2τ
(ρ+2)/2
x =

βρ

2 (1 − α)
(
(1 − α) ((1 + ρ)ζ − 1)/η − (1 + ρ)

) .
Let τ∗x be the unique solution. Then, τ∗z = ϕ

−1(τ∗x ) + τθ . Note that if there exists τy with

∆0 + ρ∆∞(ϕ(τy)) = 0, then τ∗z > 0 must follow.

It holds that τ∗z ≤ 0 if and only if either η ≥ max{ f (ζ, ρ),0} or η ≤ min{ f (ζ, ρ),0}. In

this case, ∆0 + ρ∆∞(ϕ(τy)) has the same sign for all τy. Thus, (i) and (iii) are implied by

Proposition 3.

It holds that τ∗z > 0 if and only if either 0 < η < f (ζ, ρ) or 0 > η > f (ζ, ρ). In this

case, ∆0 + ρ∆∞(τx) changes its sign at τy = τ∗z − τθ . Thus, (ii) and (iv) are implied by

Proposition 3. □
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(i) welafare is increasing

(iii) welfare is decreasing

Figure 2: The four cases on the ζ-η plane.

(a) Case (i) (b) Case (ii)

(c) Case (iii) (d) Case (iv)

Figure 3: The welfare effects of public information in the four cases.
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welfare is increasing

welfare is decreasing

Figure 4: Public information is beneficial (harmful) for any cost function.

There are four cases. Each case is illustrated in the ζ-η plane in Figure 2, where the

upward sloping line is a graph of η = f (ζ, ρ). In the region (i) with η ≥ max{ f (ζ, ρ),0},
welfare necessarily increases with public information (see Figure 3a), so the optimal preci-

sion of public information is the highest precision. In the region (ii) with 0 < η < f (ζ, ρ),

welfare decreases with public information if the precision is low and increases if the pre-

cision is high (see Figure 3b), so the optimal precision of public information is either the

lowest or the highest precision. In the region (iii) with η ≤ min{ f (ζ, ρ),0}, welfare neces-

sarily decreases with public information (see Figure 3c), so the optimal precision of public

information is the lowest precision. In the region (iv) with 0 > η > f (ζ, ρ), welfare in-

creases with public information if the precision is low and decreases if the precision is high

(see Figure 3d), so the optimal precision of public information is a strictly positive finite

value.

The welfare effects of public information depend upon the cost function, but in some

cases, welfare necessarily increases with public information for any cost functions. By

Proposition 4, welfare necessarily increases with public information for any cost function

if and only if η ≥ max{ f (ζ, ρ),0} for all ρ. Similarly, welfare necessarily decreases with

public information for any cost function if and only if η ≤ min{ f (ζ, ρ),0} for all ρ. Both

cases are illustrated on the ζ-η plane in Figure 4 and formally stated in the next corollary.
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Corollary 5. dW (ϕ(τy), τy)/dτy > 0 for all ρ and τy if and only if

η ≥



0 if ζ < 0,

lim
ρ→∞

f (ζ, ρ) = 2(1 − α)ζ/3 if 0 ≤ ζ < 2(1 − α),

f (ζ,0) = (1 − α)(ζ − 1) if ζ > 2(1 − α).

dW (ϕ(τy), τy)/dτy < 0 for all ρ and τy if and only if

η ≤


f (ζ,0) = (1 − α)(ζ − 1) if ζ < 1,

0 if ζ ≥ 1.

6 An application

Using Proposition 4, we study the optimal disclosure of public information in a Cournot

game (Vives, 1988) that maximizes the expected net profit. Player i produces ai units

of a homogeneous product. The inverse demand function is θ − δ
∫

a j dj, where δ > 0

is constant and θ is normally distributed, and the cost function is a2
i /2. Then, player i’s

payoff function is (
θ − δ

∫
a j dj

)
ai − a2

i /2.

By normalizing the cost function appropriately, we can apply Proposition 4 and obtain the

optimal precision of public information as follows.

Corollary 6. Consider a Cournot game. The following holds.

(i) Suppose that ρ = 0 or δ ≤ (ρ + 2)/(2ρ) with ρ > 0. Then, the expected net profit

increases with public information and the optimal precision of public information is

τ∗y = ∞.

(ii) Suppose that δ > (ρ + 2)/(2ρ) with ρ > 0. Then, the expected net profit decreases

with public information if τy < τ∗z − τθ and increases if τy > τ∗z − τθ .

• If δ < (ρ + 2)/(ρ) or τθ is sufficiently large, the optimal precision of public

information is τ∗y = ∞.

• If δ > (ρ + 2)/(ρ) and τθ is sufficiently small, the optimal precision of public

information is τ∗y = 0.
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(i)

(ii)

the optimal precision is zero

Figure 5: The optimal precision in a large Cournot game.

The above two cases are illustrated on the ρ-δ plane in Figure 5. In the region (i) with

ρ = 0 or δ ≤ (ρ+2)/(2ρ), where δ or ρ is small, welfare necessarily increases with public

information. In particular, this is true for all δ if ρ = 0; that is, the cost is linear. In this

case, the crowding-out effect of public information is the largest. Thus, an increase in the

precision of public information reduces the incentives for acquisition of private information

and delivers substantial cost savings enough to compensate any decrease in the expected

profit.

In the region (ii) with δ > (ρ+ 2)/(2ρ), where δ and ρ are large, welfare can decrease

with public information. In particular, if δ > (ρ + 2)/(ρ) and τ∗θ is sufficiently small,

no provision of public information is optimal. When ρ is large, the crowding-out effect

is small and thus an increase in the precision of public information does not deliver cost

savings enough to compensate a decrease in the expected profit. When δ is large (i.e.,

the price elasticity of demand is small), the game exhibits strong strategic substitutability,

which induces a large weight on a private signal in the equilibrium strategy and thus a large

weight on the idiosyncratic variance in welfare.
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