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Abstract

In a dynamic setting, a decision tree, that is, a pair consisting of a state space and
a filtration, has been taken as a primitive for modeling uncertainty. This assumption
implicitly requires the analyst to know not only the uncertainties a decision maker
perceives, but also how she anticipates those uncertainties to be resolved over time.
This is problematic because a decision tree is in the mind of the DM and hence is not
directly observable to the analyst. Without assuming any objective states, we derive
a unique subjective decision tree from preference over suitable choice objects. This
result is a three-stage extension of Dekel, Lipman and Rustichini (2001).
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1 Introduction

1.1 Motivation and Results

Since Savage [10], a state space has been used as the standard tool for modeling uncertainty,
and has been taken as a primitive. This assumption implicitly requires the analyst (or
outside observer) to know all the uncertainties a decision maker (DM) perceives. This is
problematic because states express the DM’s perception of the world and hence are not
directly observable to the analyst. Kreps [5, 6] address the question of whether we can
derive subjective state spaces. Dekel, Lipman and Rustichini [1] (hereafter DLR) refine
Kreps’s idea and derive a unique subjective state space.

∗E-mail: takeoka@ec.ritsumei.ac.jp. I would like to thank Larry Epstein for his illuminating guidance
and invaluable suggestions. I am thankful also to Alfredo Di Tillio, Takashi Hayashi, Kazuya Hyogo, and
Massimo Marinacci for helpful comments. All remaining errors are mine.
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DLR consider preference over menus of lotteries over alternatives. If a DM is uncertain
about her future preference over lotteries, then her ranking of menus should reflect this
uncertainty. Under the hypothesis that the DM’s future preference satisfies the expected
utility axioms, DLR identify a unique set of future preferences from the ranking of menus,
and call it the subjective state space.

In a dynamic setting, the standard tool for modeling uncertainty is a decision tree, that
is a pair consisting of a state space and a filtration. It has been taken as a primitive. This
assumption is more problematic than that in the static setting because the analyst must
know not only all the uncertainties the DM perceives, but also how she perceives those
uncertainties to be resolved over time. We are led to ask whether a decision tree can be
subjective. The derivation of a subjective decision tree is the focus of the paper.

We provide an extension of DLR to a three-stage setting to model a DM who anticipates
subjective uncertainty to be resolved gradually over time. Let Z be a finite set of alter-
natives and ∆(Z) be the set of all lotteries over Z. Let K(·) denote the set of non-empty
compact subsets of a metric space ‘·’. We consider preference � over D ≡ K(K(∆(Z))),
that is, the set of menus of menus of lotteries.

We axiomatize preference having the following representation: there exist a product
state space S1 × S2, a countably additive non-negative measure µ0 over S1, a conditional
probability system µ1 : S1 → ∆(S2), and a state-dependent mixture linear function u :
S2 × ∆(Z) → R such that the functional form U0 : D → R,

U0(x0) =

∫

S1

max
x1∈x0

U1(x1, s1) dµ0(s1), where (1)

U1(x1, s1) =

∫

S2

max
l∈x1

u(l, s2) dµ1(s2|s1),

represents preference.
An interpretation of the representation is as follows: the DM is not sure of her own

future preference over lotteries except that it conforms to the expected utility axioms. This
subjective uncertainty is captured by µ0 and µ1 on S1 × S2. The DM behaves as if she
anticipates subjective signals to arrive gradually over time, and chooses menus so as to
maximize the additive utility across states.

Note that the only relevant part of a signal is the conditional preference that it generates.
The representation U0 with components (S1×S2, µ0, µ1, u) determines a set of sequences of
“ex-post” preferences. Each s1 ∈ S1 determines the conditional preference �s1

on K(∆(Z))
induced by U1(·, s1). Similarly, each s2 ∈ S2 determines the preference �s2

on ∆(Z) induced
by u(·, s2). From the conditional probability system µ1 : S1 → ∆(S2), we can define the
set of all admissible sequences of ex-post preferences (�s1

,�s2
). This set, denoted by S, is

called the subjective state space.
The subjective filtration {Ft}

2
t=0 over S is naturally determined from the time line.

Under a suitable condition, the subjective decision tree (S, {Ft}
2
t=0) is uniquely derived

from preference.
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1.2 An Example: Dinner Choice in the Morning

Now we illustrate how the subjective decision tree can be deduced from preference over
menus of menus. The following is a dynamic version of the example in Kreps [5]. Imagine
the situation where a DM chooses either chicken or fish for dinner this evening. There are
three periods, morning, noon, and evening.

Consider the following four menus of menus:

{{chicken}}, {{fish}}, {{chicken}, {fish}}, {{chicken, fish}}.

If the DM chooses {{chicken}}, there is no room for subsequent choices. In other words,
she has to commit herself to chicken in the morning. For example, this option is interpreted
as reserving a chicken dinner right now. Similarly, {{fish}} can be interpreted as reserving
a fish dinner. If the DM chooses {{chicken}, {fish}}, she does not have to commit herself
right now to either chicken or fish. She can rather postpone her decision until noon. In
terms of flexibility, she may prefer this option to both {{chicken}} and {{fish}}. In terms
of flexibility, the option {{chicken, fish}} may be more preferable to {{chicken}, {fish}}
because the DM can delay a decision until the evening rather than until noon.

Consider two possible rankings:

{{chicken, fish}} ∼ {{chicken}, {fish}} ≻ {{chicken}} ∼ {{fish}}, (2)

{{chicken, fish}} ≻ {{chicken}, {fish}} ∼ {{chicken}} ∼ {{fish}}. (3)

Ranking (2) says that the DM desires flexibility at noon, but she desires no more flexi-
bility afterwards. The strict ranking, {{chicken}, {fish}} ≻ {{chicken}}, can be justified by
the following story: the DM anticipates that one of two subjective signals arrives at noon.
She is aware that she may change her mind according to those signals. After receiving
one signal, she feels chicken is more preferable to fish, while this ranking is reversed after
receiving the other signal. That is, we hypothesize that preference for flexibility at noon
comes from her awareness of this uncertainty. Presumably, ranking (2) reveals a subjective
decision tree as Figure 1.

morning noon evening

Figure 1: Subjective decision tree deduced from ranking (2)

Ranking (3) says that the DM has no preference for flexibility at noon, but she desires
flexibility in the evening. The strict preference, {{chicken, fish}} ≻ {{chicken}, {fish}},
can be interpreted as above. That is, the DM anticipates at least two subjective signals in
the evening and is aware of preference change according to those signals. Ranking (3) will
imply a subjective decision tree as Figure 2.
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morning noon evening

Figure 2: Subjective decision tree deduced from ranking (3)

1.3 Related Literature

Kreps [5, 6] provide an axiomatic foundation for subjective state spaces. By enriching
choice objects to lotteries over alternatives, DLR show uniqueness of the subjective state
space. More precisely, DLR consider preference over P(∆(Z)), where P(·) denotes the set
of all non-empty subsets of a set “·”. They provide a set of axioms that guarantees the
following additive representation:

U(x1) =

∫

S

sup
l∈x1

u(l, s) dµ(s), (4)

where S is a state space, µ is a countably additive non-negative measure on S, and u(·, s) :
∆(Z) → R is a state-dependent mixture linear function. DLR show that the set of ex post
preferences induced from {u(·, s)}s∈S is uniquely determined from preference, and call it
the subjective state space.

Takeoka [12] also provides a three-stage extension of DLR and derives subjective decision
trees. To identify subjective beliefs as well, he assumes some objective states and considers
preference over menus of menus of Anscombe-Aumann acts. Under the hypothesis that
ex post preferences satisfy the subjective expected utility axioms, he models a DM who is
certain about future risk preference, but not sure of future beliefs about objective states.

The difference from our paper is that Takeoka [12] is not a generalization of DLR to a
three-stage setting. Notice that K(K(∆(Z))) can be regarded as a subdomain of the set
of menus of menus of Anscombe-Aumann acts. On this subdomain, his model collapses to
the functional form

U0(x0) = max
x1∈x0

max
l∈x1

u(l),

where subjective uncertainty does not play any role. This is because subjective uncertainty
concerns future beliefs about objective states in his model. A multi-stage generalization
of DLR, provided in this paper, is of independent interest as a foundation for subjective
decision trees.

Rustichini [9] addresses a multi-period extension of DLR. Let C be the set of con-
sumptions and C∞ be the set of infinite consumption streams. He considers P(C∞) as
the set of choice objects. His model does not deliver subjective decision trees because it
is essentially static in the sense that all subjective uncertainties are resolved in the next
period. Modica [7] considers preference over P(P(Z)). This model, however, cannot pin
down representations as in Kreps [5]. Kraus and Sagi [4] consider preferences without the
completeness axiom, and accommodate preference for flexibility in a dynamic setting.
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2 Model

2.1 Domain

Let Z be a finite set of alternatives with #Z = m and ∆(Z) be the set of all Borel
probability measures over Z. 1 The set ∆(Z) is regarded as the (m − 1)-dimensional unit
simplex.

Let K(·) denote the set of all non-empty compact subsets of a metric space ‘·’. We
consider preference over D ≡ K(K(∆(Z))). Elements in D, denoted by x0, y0, · · · , are
interpreted as menus of menus of lotteries. Endow D with the Hausdorff metric. Details
are found in Section A.

We hypothesize that the DM behaves as if she has in mind the following timing of
decisions:

Period 0: choose a menu of menus x0

Period 1−: receive a subjective signal s1

Period 1: choose a menu x1 ∈ x0

Period 2−: receive another subjective signal s2

Period 2: choose a lottery l ∈ x1

Notice that this time line, beyond period 0, is not part of the formal model. Rather,
as shown below, the time line including subjective signals is derived as a representation
theorem.

Since DLR use K(∆(Z)) as the domain, one might wonder whether K(∆(K(∆(Z)))) is
more natural as the dynamic counterpart of DLR. There are two reasons why we adopt
K(K(∆(Z))). First of all, DLR consider lotteries because richness of ∆(Z) makes possible
to show uniqueness of the representation. In our case, K(∆(Z)) already has a rich struc-
ture, and hence we can show uniqueness without additional lotteries. Second, DLR adopt
K(∆(Z)) so as to justify one of their axioms, called Independence. The counterpart of the
axiom can be justified also on K(K(∆(Z))).

2.2 Axioms

Preference in period 0, that is, � on D, should reflect how the DM anticipates subjective
signals to arrive over time. To capture subjective decision trees, we impose the following
six axioms on �. The first five axioms are formally identical to those of DLR, but are
imposed here on K(K(∆(Z))) rather than on K(∆(Z)).

Axiom 1 (Order). � is complete and transitive.

1For any given metric space X , a topology on the set of all Borel probability measures on X , denoted
by ∆(X), is always understood to be the weak convergence topology.
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Axiom 2 (Continuity). For all x0 ∈ D, {z0 ∈ D|x0 � z0} and {z0 ∈ D|z0 � x0} are
closed.

Axiom 3 (Nondegeneracy). There exist x0, x
′
0 ∈ D such that x0 ≻ x′

0.

Define the mixture

λx1 + (1 − λ)x′
1 ≡ {λl + (1 − λ)l′|l ∈ x1, l

′ ∈ x′
1},

for any x1, x
′
1 ∈ K(∆(Z)) and λ ∈ [0, 1], and

λx0 + (1 − λ)x′
0 ≡ {λx1 + (1 − λ)x′

1|x1 ∈ x0, x
′
1 ∈ x′

0},

for any x0, x
′
0 ∈ D and λ ∈ [0, 1].

Axiom 4 (Independence). For all x0, y0, z0 ∈ D and for all λ ∈ (0, 1],

x0 ≻ y0 ⇒ λx0 + (1 − λ)z0 ≻ λy0 + (1 − λ)z0.

Independence can be justified by adapting DLR’s argument twice. First, for any x0, z0 ∈
D and λ ∈ [0, 1], consider the lottery λ◦x0+(1−λ)◦z0, which assigns x0 with probability λ

and z0 with probability (1−λ). vNM independence axiom implies that, for any λ ∈ (0, 1], if
x0 is strictly preferred to y0, then λ◦x0+(1−λ)◦z0 is strictly preferred to λ◦y0+(1−λ)◦z0.

Second, we argue that the DM is indifferent between λ◦x0+(1−λ)◦z0 and λx0+(1−λ)z0.
This indifference says that the DM does not care when the randomization (λ, 1 − λ) is
realized. This is appealing if the DM surely believes that her future preference in period 1,
that is, preference over K(∆(Z)), satisfies Independence in the sense of DLR. As DLR argue,
this assumption is in turn appealing whenever the DM is sure that her future preference
in period 2, that is, preference over ∆(Z), satisfies the expected utility axioms. Thus
Axiom 4 follows from the above two steps together with the hypothesis that the DM’s
future preferences in period 2 satisfy the expected utility axioms.

The next axiom says that a bigger menu of menus is always weakly preferred.

Axiom 5 (Monotonicity). For all x0, y0 ∈ D, x0 ⊂ y0 ⇒ y0 � x0.

A bigger menu of menus allows the DM to leave more options open until period 1.
Hence Monotonicity is consistent with preference for flexibility.

The last axiom has no counterpart in DLR. It is relevant only in a dynamic setting and
states that the DM always prefers to delay a decision.

Axiom 6 (Aversion to Commitment). For all y0 ∈ D and all finite x0 ∈ D,
y0 ∪ {∪x1∈x0

x1} � y0 ∪ x0.

If y0 ∪ {∪x1∈x0
x1} is chosen over y0 ∪ x0, the DM can choose a weakly bigger menu in

period 1. In other words, y0 ∪ {∪x1∈x0
x1} allows her to leave more options until period 2.

Hence Aversion to Commitment is intuitive in terms of preference for flexibility.
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3 Representations

3.1 Additive EU Representation

We briefly describe the additive representation on K(∆(Z)), introduced by DLR. Consider
the functional form U1 : K(∆(Z)) → R defined by

U1(x1) ≡

∫

S2

max
l∈x1

u(l, s2) dµ1(s2), (5)

where S2 is a state space, µ1 is a countably additive non-negative measure over S2, and
u : ∆(Z) × S2 → R is a state-dependent mixture linear function.

Notice that the payoff-relevant information conveyed by a signal is the ex-post risk
preference on ∆(Z) – a signal itself does not matter. Thus we can effectively identify the
subjective uncertainties with the set of “ex-post” preferences as we now describe. Take any
functional form U1 with components (S2, µ1, u) as above. The preference �s2

induced on
∆(Z) conditional on s2 ∈ S2 is

l �s2
l′ ⇔ u(l, s2) ≥ u(l′, s2).

Let S2 be the set of all conditional preferences, that is,

S2 ≡ {�s2
|s2 ∈ S2},

which is called the subjective state space.
Potentially, there are many functional forms (5) representing the same preference on

K(∆(Z)). For example, we can consider a copy S ′
1 of state space S1 and split the weight

µ1 between the two state spaces. Then the functional form with S1 ∪ S ′
1 represents the

same preference. To obtain uniqueness, we pay attention to a functional form such that
%s2

6=%s′
2

if s2 6= s′2.
There is another source for non-uniqueness of the representation. Take a functional form

U1 with components (S2, µ1, u). We can add some irrelevant states to S2 with assuming
that µ1 assigns probability zero to those states. Then the functional form with the new
state space also represents the same preference.

To exclude this trivial non-uniqueness, DLR pay attention to “relevant” states. Given
(S2, µ1, u) with finite S2, say that �s2

∈ S2 is relevant if there exist x1, y1 ∈ K(∆(Z)) with
U1(x1) 6= U1(y1) such that

max
l∈x1

u(l, s′2) = max
l∈y1

u(l, s′2)

for all s′2 ∈ S2 with �s′
2
6=�s2

. 2

2When S2 is infinite, �s2
∈ S2 is said to be relevant if, for all neighborhood N of s2, there exist

x1, y1 ∈ K(∆(Z)) with U1(x1) 6= U1(y1) such that maxl∈x1
u(l, s′

2
) = maxl∈y1

u(l, s′
2
) for all s′

2
∈ S2 \N .
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DLR use this notion to show uniqueness of the subjective state space without additivity
across states. 3 In case of additive representations with finitely supported non-negative
measures, relevance is equivalent to say that s2 belongs to the support of µ1. See Appendix
B for details.

The above argument leads to the next definition.

Definition 3.1. Preference on K(∆(Z)) admits an additive EU representation with a non-
negative measure if (i) the functional form U1 : K(∆(Z)) → R with components (S2, µ1, u)
represents preference, (ii) every state s2 ∈ S2 is relevant, and (iii) �s2

6=�s′
2

if s2 6= s′2.

DLR show that Order, Continuity, Nondegeneracy, Independence and Monotonicity on
preference over K(∆(Z)) are necessary and sufficient for an additive EU representation
with a non-negative measure. Furthermore, they show that the subjective state space S2

is uniquely derived from preference if S2 is finite. When S2 is infinite, uniqueness is up to
the closure of S2.

3.2 Recursive Additive EU Representation

We describe a representation of preference on the domain D ≡ K(K(∆(Z))). Consider the
functional form U0 : D → R defined by

U0(x0) ≡

∫

S1

max
x1∈x0

U1(x1, s1) dµ0(s1), (6)

where

U1(x1, s1) ≡

∫

S2

max
l∈x1

u(l, s2) dµ1(s2|s1),

S1 × S2 is a state space, µ0 is a countably additive non-negative measure on S1, µ1 : S1 →
∆(S2) is a conditional probability system, and u : S2 × ∆(Z) → R is a state-dependent
mixture linear function.

An interpretation of the functional form is as follows: the DM behaves as if she has in
mind the time line described in Section 2.1, and anticipates to receive subjective signals
gradually over time. Subjective uncertainty concerns future risk preferences, that is, she is
not sure of future preference over lotteries. The DM expects that, at decision nodes (period
1 and period 2), she makes decisions so as to maximize the signal-dependent additive utility
function, U1(·, s1) or u(·, s2).

One might wonder why u is independent of S1. Alternatively, u : S1 × S2 × ∆(Z) → R

seems more general. The above formulation is without loss of generality. Indeed, if u

depends also on s1, we can always redefine S2 by the new state space S∗
2 ≡ S1 × S2. Then,

u : S∗
2 ×∆(Z) → R is independent of S1, and µ1 is naturally identified with a function from

S1 into ∆(S∗
2).

3See the definition of weak EU representations in DLR (p. 903).
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For each s1 ∈ S1, the conditional preference �s1
induced on K(∆(Z)) is defined by

U1(·, s1). Let S1 be the set of all conditional preferences, that is,

S1 ≡ {�s1
|s1 ∈ S1}.

Though relevance of �s1
can be defined as in the previous section, we use an alternative

notion. Say that µ0 on S1 has full support if µ0(G) > 0 for all open subsets G of S1. If
s1 ∈ S1 does not belong to the support of µ0, s1 is not relevant. Thus the full support
condition is weaker than the condition that every s1 ∈ S1 is relevant. As shown in the next
section, the full support condition is enough to show uniqueness if supports of µ0 and of
all µ1(s1) are finite.

The following is a counterpart of Definition 3.1 in a three-period setting:

Definition 3.2. Preference � on D admits a recursive additive EU representation if (i)
functional form (6) with components (S1 × S2, µ0, µ1, u) represents preference, (ii) µ0 has
full support, (iii) �s1

6=�s′
1

if s1 6= s′1, and (iv) for all s1 ∈ S1, �s1
has an additive EU

representation (S2(s1), µ1(s1), u(s1)).

Now we are ready to state the main theorem.

Theorem 3.1. The following statements are equivalent:

(a) Preference � on D satisfies Order, Continuity, Nondegeneracy, Independence, Mono-

tonicity, and Aversion to Commitment.

(b) Preference � on D admits a recursive additive EU representation.

A proof can be found in Section C.1.

4 Uniqueness

The significance of a signal is the conditional preference generated by the signal. The DM
should care about conditional preferences rather than signals themselves. Thus the subjec-
tive decision tree is effectively identified with the set of sequences of ex post preferences.
We show uniqueness of subjective decision trees under a suitable condition.

For any recursive additive EU representation (S1 × S2, µ0, µ1, u), recall that �s1
and

�s2
denote conditional preferences induced by s1 ∈ S1 and by s2 ∈ S2, respectively. For

any probability measure ν, let supp(ν) denote the support of ν. Let

S1 ≡ {�s1
|s1 ∈ S1},

S2(s1) ≡ {�s2
|s2 ∈ supp(µ1(s1))} for each s1 ∈ S1, and

S2 ≡
⋃

s1∈S1

S2(s1).
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The set S1 consists of all ex post preferences over menus, induced by the first signals. In
other words, S1 captures the subjective contingencies the DM expects to be resolved by
period 1. Next, S2(s1) is the set of possible preferences over lotteries when the DM observes
s1. This set captures the remaining subjective contingencies the DM expects to face after
seeing the signal s1. Finally, S2 is the set of all subjective contingencies the DM anticipates
to face at the beginning of period 2.

Now define the subjective state space, denoted by S, as the set of all admissible sequences
of ex-post preferences, that is,

S ≡ {(�s1
,�s2

) ∈ S1 × S2| �s2
∈ S2(s1) for some s1 ∈ S1}. (7)

The subjective filtration {Ft}
2
t=0 over S is determined according to the time line. That

is,

F0 ≡ {S},

F1 ≡
{

{(�1,�2)|(�1,�2) ∈ S}
∣

∣

∣
�1∈ S1

}

, and (8)

F2 ≡
{

{(�1,�2)}
∣

∣

∣
(�1,�2) ∈ S

}

.

The pair (S, {Ft}
2
t=0) is called the subjective decision tree. The next theorem states that

the subjective decision tree is uniquely derived from preference under the finite support
condition.

Theorem 4.1. If two recursive additive EU representations, (Si
1 × Si

2, µ
i
0, µ

i
1, u

i), i = 1, 2,
represent the same preference � on D, and if Si

1 and Si
2 are finite for i = 1, 2, then

(S1, {F1
t}

2
t=0) = (S2, {F2

t}
2
t=0).

Theorem 4.1 is a direct consequence of the next proposition. A proof of the proposition
can be found in Section C.2.

Proposition 4.1. If two recursive additive EU representations, (Si
1 × Si

2, µ
i
0, µ

i
1, u

i), i =
1, 2, represent the same preference � on D, and if Si

1 and Si
2 are finite for i = 1, 2, then:

(i) S
1
2 = S

2
2; and

(ii) S
1
1 = S

2
1.

Part (i) says that the sets of possible future risk preferences the DM anticipates in
period 2 are identical between the two representations. Part (ii) says that the sets of
possible future preferences over menus coincide between the two representations.

Theorem 4.1 follows from Proposition 4.1 together with the uniqueness result of DLR.
Under the condition of the theorem, Proposition 4.1 ensures that � on D uniquely de-
termines the set of ex post preferences �s1

, that is, S
1
1 = S

2
1. Moreover, DLR show that

every �s1
having an additive EU representation determines a unique set of the ex post

10



preferences �s2
. Thus, by construction of the subjective decision tree, that is, (7) and (8),

the two subjective decision trees coincide as desired.
Uniqueness is shown under the finite support condition. This is because part (ii) of

Definition 3.2 is weaker than to say that every state s1 ∈ S1 is relevant. Under the finite
support condition, those two conditions are equivalent, and we can show uniqueness of the
subjective decision tree.

5 Concluding Remarks

In this paper, we have extended DLR to a three-stage setting, and derived the pair
(S, {Ft}

2
t=0), that is, the subjective state space and the subjective filtration, from pref-

erence over menus of menus of lotteries. This result shows that foundations do exist for
subjective decision trees in a three period setting. We have shown uniqueness of subjective
decision trees under the finite support condition.

One might wonder if a T -stage model, that is, preference over menus of menus of ...
menus of lotteries is considered. The three-stage setting is the minimal extension of DLR
that allows one to address foundations for subjective decision trees. Therefore, though T -
stage generalization might be axiomatized, we would view it more as a technical extension
than as a conceptual one. We do not have a general representation result to offer at this
time, and leave it for a future research.

A Hausdorff metric

Let

d(l, x1) ≡ min
l′∈x1

d(l, l′), and e(x′1, x1) ≡ max
l′∈x′

1

d(l′, x1),

where d is a metric on ∆(Z). For each x1, y1 ∈ K(∆(Z)), define

dh(x1, y1) ≡ max[e(x1, y1), e(y1, x1)].

We call dh the Hausdorff metric. It is known also that K(∆(Z)) is a compact metric space under
the Hausdorff metric dh.

Similarly, K(K(∆(Z))) can be endowed with the Hausdorff metric. LetD(x1, x0) ≡ minx′

1
∈x0

dh(x1, x
′
1)

and E(x′0, x0) ≡ maxx′

1
∈x′

0
D(x′1, x0). For each x0, y0 ∈ D, let

dH(x0, y0) ≡ max[E(x0, y0), E(y0, x0)].

Since K(∆(Z)) is metric and compact under the Hausdorff metric dh, so is K(K(∆(Z))) under
dH .
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B Full Support and Relevance

Consider components (S2, µ1, u) of the functional form (5). Let

S∗
2 ≡

{

u ∈ R
m

∣

∣

∣

∣

∣

m
∑

i=1

ui = 0,
m

∑

i=1

|ui| = 1

}

.

This set is regarded as the set of all non-trivial expected utilities on ∆(Z). Each s2 ∈ S2 is
identified with a point in S∗

2 . Let ϕ : S2 → S∗
2 be this identification mapping.

Proposition B.1. Suppose either µ1 has a finite support, or ϕ is continuous. Then s2 ∈ S2 is

relevant if and only if s2 belongs to the support of µ1.

Proof. (if part) Take any s̄2 in the support of µ1. We want to show that ū ≡ ϕ(s̄2) is relevant
with respect to U1(·, µ1). Let x1 ∈ K(∆(Z)) be a menu such that, for all u ∈ S2, u has a unique
maximizer on x1. Let l̄ ∈ x1 be the maximizer for ū. Take any ε > 0 and ε-ball Bε(ū) in R

m.
Since S \Bε(ū) is compact,

v ≡ min
u∈S\Bε(u)

∣

∣

∣

∣

max
l∈x1

u(l) − u(l̄)

∣

∣

∣

∣

is a positive number. Let K be a positive number satisfying ‖u‖ ≤ K for all u ∈ Bε(ū). There
exists a small δ > 0 such that

|u(l) − u(l̄)| ≤ K‖l − l̄‖ < v,

for all l ∈ Bδ(l̄). Then, for all u ∈ S \Bε(ū) and l ∈ Bδ(l̄),

max
l∈x1

u(l) ≥ u(l̄) + v > u(l).

Since l̄ is a unique maximizer for ū, there exists a sufficiently small α > 0 such that any l ∈ x1\{l̄}
with ū(l̄) − ū(l) < α satisfies l ∈ Bδ(l̄). Now define y1 ≡ x1 ∩ {l ∈ ∆(Z)|ū(l) ≤ ū(l̄) − α}.
Since maxl′∈x1

u(l′) > u(l) for all l ∈ x1 \ y1 and u ∈ S \ Bε(ū), we have maxx1
u = maxy1

u
for all u ∈ S \ Bε(ū). On the other hand, any u in a small neighborhood V of ū satisfies
maxx1

u > maxy1
u.

If the support of µ1 is finite, µ1(s̄2) is positive. Since maxx1
u(l, s̄2) > maxy1

u(l, s̄2), the
representation implies U1(x1, µ1) > U1(y1, µ1). Thus ū is relevant.

If ϕ is continuous, the inverse image of V is a neighborhood of s̄2. Since s̄2 belongs to
the support of µ1, this neighborhood has positive measure. Thus the representation implies
U1(x1, µ1) > U1(y1, µ1), and hence ū is relevant.

(only-if part) For all x1, y1, if maxx1
u(l, s2) = maxy1

u(l, s2) for all s2 ∈ supp(µ1), then
U1(x1, µ1) = U1(y1, µ1). Hence any ϕ(s2) with s2 /∈ supp(µ1) is not relevant.
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C Proofs

C.1 Proof of Theorem 3.1

C.1.1 Outline of the Proof

Necessity is routine. We show sufficiency, that is, (a) ⇒ (b). As in DLR, subjective signals in
period 2 are identified with vNM indices over ∆(Z); that is,

S2 ≡

{

u ∈ R
m

∣

∣

∣

∣

∣

m
∑

i=1

ui = 0,

m
∑

i=1

|ui| = 1

}

.

This identification is natural because the DM only cares about ex-post preferences conditional
on signals rather than the signals themselves. Similarly, since subjective signals in period 1 are
identified with beliefs over S2, we can specify S1 ≡ ∆(S2).

A key step in the DLR’s additive EU representation is characterization of a compact and
convex menu via its support function. Similarly, we identify a menu of menus x0 via its support
function σx0

: S1 → R defined by

σx0
(µ) ≡ max

x1∈x0

∫

S2

max
l∈x1

u(l)dµ(u).

Let co(·) be the closed convex hull operation. Let CO(x0) be the set of all menus co(y1), where
y1 is a compact subset of x1 and x1 varies over co(x0). We show that: (i) x0 ∼ CO(x0) and (ii)

σCO(x0) = σCO(y0) ⇔ CO(x0) = CO(y0).

The remaining part is to find a unique non-negative measure µ0 over S1 such that

U0(CO(x0)) ≡

∫

S1

σCO(x0)(µ) dµ0(µ)

represents preference over CO(x0)s. We adapt the argument in DLR.

C.1.2 Sufficiency

(i) We show that there exists the required functional form representing preference. As a prelimi-
nary result, we first provide a useful implication of Monotonicity and Aversion to Commitment.
Say that x0 covers y0 if, for any y1 ∈ y0, there exists x1 ∈ x0 such that y1 ⊂ x1.

Lemma C.1. If x0 covers y0, then x0 � y0.

Proof. Suppose otherwise. Then there exist x0 and y0 such that x0 covers y0 but y0 ≻ x0. From
Continuity and Lemma 0 (p. 1421) of Gul and Pesendorfer [3], there exists a finite subset y∗0 ⊂ y0

such that y∗0 ≻ x0. Denote y∗0 by {yi
1|i = 1, · · · , I}.

Since x0 covers y∗0, for any yi
1 ∈ y∗0, there exists xi

1 ∈ x0 such that yi
1 ⊂ xi

1. Let zi
0 ≡ {xi

1\y
i
1, y

i
1}.

Since y∗0 ⊂ ∪I
i=1z

i
0, Monotonicity implies ∪I

i=1z
i
0 � y∗0. By Aversion to Commitment,

{x1
1} ∪ (∪I

i=2z
i
0) � {x1

1 \ y
1
1 , y

1
1} ∪ (∪I

i=2z
i
0) = ∪I

i=1z
i
0.

By repeating the same argument finite times, x∗0 ≡ {xi
1|i = 1, · · · , I} � ∪I

i=1z
i
0. Since x∗0 ⊂ x0,

Monotonicity implies x0 � x∗0. Therefore, x0 � y∗0 . This is a contradiction.
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As Lemma 1 (p. 922) of DLR, Order, Continuity and Independence imply x0 ∼ co(x0). We
can restrict our attention to the sub-domain, D1 ≡ {x0 ∈ D|x0 = co(x0)}. Then, D1 is a compact
and convex space.

For any x0 ∈ D, let

co1(x0) ≡ {co(x1) ∈ K(∆(Z))|x1 ∈ x0}.

That is, co1(x0) is the set of all convex hulls co(x1) as x1 varies over x0. Notice that co1(x0) and
co(x0) are distinct objects.

Lemma C.2.

(i) For all x0 ∈ D, co1(x0) ∈ D.

(ii) If x0 ∈ D is convex, co1(x0) is convex.

(iii) The mapping, co1 : D → D, is Hausdorff continuous.

(iv) For all x0 ∈ D, x0 ∼ co1(x0).

Proof. (i) Consider the convex hull operator co(·) : K(∆(Z)) → K(∆(Z)). First of all, since
x1 ∈ K(∆(Z)) is a compact subset of (m−1)-dimensional Euclidean space, co(x1) is also compact.
Hence, this operator is well-defined.

In order to show the claim, it suffices to show that co(·) : K(∆(Z)) → K(∆(Z)) is Hausdorff
continuous. Since ∆(Z) is identified with the unit simplex in R

m, the weak convergence topology
on ∆(Z) is equivalent to the Euclidean metric on R

m. Recall the following notation in Section A:

d(l, x′1) ≡ min
l′∈x′

1

d(l, l′), and e(x1, x
′
1) ≡ max

l∈x1

d(l, x′1).

Step 1: For any convex menu x′1, d(·, x
′
1) is a convex function.

Take any l1, l2 ∈ ∆(Z) and λ ∈ [0, 1]. Let l̄i ≡ argminl′∈x′

1

d(li, l
′), i = 1, 2. Then, taking into

account that d is the Euclidean norm,

λd(l1, x
′
1) + (1 − λ)d(l2, x

′
1) = d(λl1, λl̄1) + d((1 − λ)l2, (1 − λ)l̄2)

≥ d(λl1 + (1 − λ)l2λl̄1 + (1 − λ)l̄2)

≥ min
l′∈x′

1

d(λl1 + (1 − λ)l2, l
′)

= d(λl1 + (1 − λ)l2, x
′
1).

Thus d(·, x′1) is a convex function whenever x′1 is convex.

It follows from the next step that the convex hull operator is Hausdorff continuous.

Step 2: For all x1, y1 ∈ K(∆(Z)),

dh(co(x1), co(y1)) ≤ dh(x1, y1). (9)
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By definition, for any l ∈ x1,

d(l, co(y1)) ≤ e(x1, co(y1)). (10)

Since d(·, co(y1)) is a convex function by Step 1, (10) holds for any l ∈ co(x1). Thus,

e(co(x1), co(y1)) ≤ e(x1, co(y1)).

Moreover, since y1 ⊂ co(y1), e(x1, co(y1)) ≤ e(x1, y1). Hence, we have

e(co(x1), co(y1)) ≤ e(x1, y1). (11)

By the symmetric argument, (11) holds when x1 and y1 are reversed. Hence (9) holds.

(ii) From Dunford and Schwartz [2, Lemma 4 (iii) and (iv), p.415], co(·) : K(∆(Z)) → K(∆(Z))
is mixture linear, that is, for all x1, y1 ∈ K(∆(Z)) and λ ∈ [0, 1],

co(λx1 + (1 − λ)y1) = λco(x1) + (1 − λ)co(y1).

Since a mixture linear operator preserves convexity, co1(x0) is convex as long as x0 is convex.

(iii) Let xn
0 → x0 with xn

0 , x0 ∈ K(K(∆(Z))). We want to show co1(x
n
0 ) → co1(x0). By

definition,

dH(co1(x
n
0 ), co1(x0)) = max

[

max
x1∈xn

0

min
y1∈x0

dh(co(x1), co(y1)), max
y1∈x0

min
x1∈xn

0

dh(co(x1), co(y1))

]

.

Condition (9) implies

dH(co1(x
n
0 ), co1(x0)) ≤ max

[

max
x1∈xn

0

min
y1∈x0

dh(x1, y1), max
y1∈x0

min
x1∈xn

0

dh(x1, y1)

]

. (12)

By assumption, the right hand side of (12) converges to zero. Hence, co1(x
n
0 ) → co1(x0).

(iv) Since x1 ⊂ co(x1), Lemma C.1 implies co1(x0) � x0. We will show x0 � co1(x0).

Step 1: If x0 ∈ D is finite and if each element xi
1 ∈ x0 is also finite, then there exits λ ∈ (0, 1)

such that co(co1(x0)) ⊂ λco(x0) + (1 − λ)co(co1(x0)).

Take x1 ∈ co(co1(x0)). Since co1(x0) is finite, x1 can be written as a convex combination of
elements of co1(x0). That is, x1 =

∑

i αico(xi
1), where xi

1 ∈ x0 and αi > 0 with
∑

i αi = 1. When
xi

1 is finite, we can show as in Lemma 1 (p. 922) of DLR that, for all λi sufficiently small, co(xi
1) =

λix
i
1 + (1−λi)co(xi

1). Since x0 is finite, by taking a small λ > 0, co(xi
1) = λxi

1 + (1−λ)co(xi
1) for

all i. Then,

x1 =
∑

i

αi(λx
i
1 + (1 − λ)co(xi

1))

= λ
∑

i

αix
i
1 + (1 − λ)

∑

i

αico(xi
1).
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Since
∑

i αix
i
1 ∈ co(x0) and

∑

i αico(xi
1) ∈ co(co1(x0)), x1 ∈ λco(x0) + (1 − λ)co(co1(x0)).

Step 2: For any finite x0 ∈ D such that each element xi
1 ∈ x0 is also finite, x0 � co1(x0).

Suppose co1(x0) ≻ x0. Since co(co1(x0)) ∼ co1(x0) and co(x0) ∼ x0, co(co1(x0)) ≻ co(x0).
Independence implies, for any λ ∈ (0, 1],

λco(co1(x0)) + (1 − λ)co(co1(x0)) ≻ λco(x0) + (1 − λ)co(co1(x0)). (13)

On the other hand, Monotonicity and Step 1 imply that, for some λ ∈ (0, 1),

λco(x0) + (1 − λ)co(co1(x0)) � co(co1(x0)).

Since λco(co1(x0)) + (1 − λ)co(co1(x0)) = co(co1(x0)), this ranking contradicts (13).

Step 3: For any x0 ∈ D, x0 � co1(x0).

Take any x0 ∈ D. By the property of Hausdorff metric, there exists a sequence {xn
0}

∞
n=1

such that (1) xn
0 → x0, (2) xn

0 is finite, and (3) each element of xn
0 is also finite. From Step 2,

xn
0 � co1(x

n
0 ). Part (iii) and Continuity imply x0 � co1(x0).

For all x0 ∈ D, let

I(x1) ≡ {y1 ∈ K(∆(Z)) | y1 ⊂ x1}.

Let I(x0) ≡ ∪x1∈x0
I(x1). Thus, I(x0) is the set of all menus y1, where y1 is included in some

menu in x0.

Lemma C.3.

(i) For all x0 ∈ D, I(x0) ∈ D.

(ii) If x0 is convex, I(x0) is also convex.

(iii) The mapping, I : D → D, is Hausdorff continuous.

(iv) For all x0 ∈ D, x0 ∼ I(x0).

Proof. (i) Since I(x0) ⊂ K(∆(Z)), it suffices to show that I(x0) is closed. Let xn
1 → x1 with

xn
1 ∈ I(x0). Then there is a sequence {yn

1 } in x0 satisfying xn
1 ⊂ yn

1 . Since x0 is compact,
without loss of generality we can assume yn

1 converges to some point y1 ∈ x0. Suppose there
exists l ∈ x1 \ y1. Since y1 is compact, there is an open neighborhood of l, denoted by U(l), such
that U(l) ∩ y1 = ∅. For all sufficiently large n, there is ln ∈ U(l) ∩ xn

1 because xn
1 → x1. Since

xn
1 ⊂ yn

1 , ln ∈ yn
1 . This contradicts the fact that yn

1 → y1. Thus x1 ⊂ y1, which implies x1 ∈ I(x0),
and hence I(x0) is closed.

(ii) Take x′1, x1 ∈ I(x0). Then there exist y′1, y1 ∈ x0 such that x′1 ⊂ y′1 and x1 ⊂ y1. Since x0

is convex, αy′1 + (1 − α)y1 ∈ x0 for any α ∈ [0, 1]. Clearly, αx′1 + (1 − α)x1 ⊂ αy′1 + (1 − α)y1.
Hence, αx′1 + (1 − α)x1 ∈ I(x0).
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(iii) First of all, the mapping I(·) is well-defined by part (i). Let xn
0 → x0. We have a sequence

{I(xn
0 )}∞n=0. Since D is a compact metric space, without loss of generality, assume I(xn

0 ) → y0 for
some y0 ∈ D. We want to show I(x0) = y0.

Step 1: y0 ⊂ I(x0).

Take any y1 ∈ y0. There is z1 ∈ y0 such that y1 ⊂ z1. Since I(xn
0 ) → y0, we can find a

sequence zn
1 → z1 with zn

1 ∈ I(xn
0 ). Thus, there is a sequence xn

1 ∈ xn
0 with zn

1 ⊂ xn
1 . Since the

sequence {xn
1} is in K(∆(Z)), we can assume xn

1 → x1 for some x1 ∈ K(∆(Z)). Since xn
0 → x0

and xn
1 → x1 with xn

1 ∈ xn
0 , we have x1 ∈ x0. Thus, y1 ∈ I(x0) because y1 ⊂ z1 ⊂ x1.

Step 2: I(x0) ⊂ y0.

Take any z1 ∈ I(x0). There exists x1 ∈ x0 such that z1 ⊂ x1. Since xn
0 → x0, there exists a

sequence xn
1 ∈ xn

0 with xn
1 → x1. From a property of the Hausdorff metric, there exists a sequence

zm
1 → z1 such that zm

1 is a finite subset of z1. Take the open 1/m-neighborhood of z1, denoted by
B(z1, 1/m). We can assume without loss of generality that zm

1 ∈ B(z1, 1/m) for all m ≥ 1. Since
zm
1 is a finite subset of x1, there exists a finite subset ynm

1 ⊂ xnm

1 such that ynm

1 ∈ B(z1, 1/m).
Since K(H) is compact, the subsequence {ynm

1 }∞m=0 converges to z1. Since I(xnm

0 ) → y0 and
ynm

1 → z1 with ynm

1 ∈ I(xnm

0 ), we have z1 ∈ y0.

(iv) Since x0 ⊂ I(x0), Monotonicity implies I(x0) � x0. Since x0 covers I(x0), Lemma C.1
implies x0 � I(x0). Thus, x0 ∼ I(x0).

From Lemma C.2 (iv) and C.3 (iv), we can pay attention the sub-domain

D2 ≡ {x0 ∈ D1|x0 = CO(x0)}.

where CO(x0) = co1(I(co1(x0))). From Lemma C.2 (ii), (iii), C.3 (ii) and (iii), CO(·) is a
Hausdorff continuous operator from D1 into itself. Thus, D2 is compact. By definition, x1 ∈ x0 ∈
D2 is convex. Moreover, if y1 is convex and if y1 ⊂ x1 ∈ x0, then y1 ∈ x0.

Order, Continuity, Nondegeneracy and Independence ensure a non-constant mixture linear
representation U : D1 → R because D1 is a mixture space.

Let

S2 ≡

{

u ∈ R
m

∣

∣

∣

∣

∣

m
∑

i=1

ui = 0,

m
∑

i=1

|ui| = 1

}

.

Let C(S2) be the set of all real-valued continuous functions on S2 with the sup-norm. Let Kc(∆(Z))
be the set of all compact and convex subsets of ∆(Z). Notice that Kc(∆(Z)) is compact and
convex. For all x1 ∈ Kc(∆(Z)) and u ∈ S2, define

ζx1
(u) ≡ max

l∈x1

u(l).

Lemma 3, 4, and 8 of DLR show that the function ζ : Kc(∆(Z)) → C(S2) is injective, mixture
linear, and continuous.
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Let S1 ≡ ∆(S2) with the weak convergence topology. Let C(S1) be the set of all real-valued
continuous functions on S1. For all x1 ∈ Kc(∆(Z)) and µ ∈ S1, let

U1(x1, µ) ≡

∫

S1

ζx1
(u) dµ(u) =

∫

S1

max
l∈x1

u(l) dµ(u).

For all x0 ∈ D2 and µ ∈ S1, let

σx0
(µ) ≡ max

x1∈x0

U1(x1, µ).

Now we have the function σ : D2 → C(S1).

Lemma C.4.

(i) σ is injective, that is, σx0
= σy0

⇒ x0 = y0.

(ii) For all x0, y0 ∈ D2, λσx0
+ (1 − λ)σy0

= σCO(λx0+(1−λ)y0).

(iii) σ is continuous.

Proof. (i) Let x0 6= y0. Since the symmetric argument works, assume that x0 6⊂ y0. Then there
exists x̄1 ∈ x0 \ y0. Since ζ is injective, ζx̄1

∈ ζ(x0) \ ζ(y0), where ζ(x0) and ζ(y0) are the images
of x0 and of y0 under ζ, respectively.

Step 1: ζ(y0) ∩ (C+(S2) + {ζx̄1
}) = ∅, where C+(S2) ⊂ C(S2) is the set of all non-negative

continuous functions on S2.

Suppose otherwise. Then there exists ζy1
∈ ζ(y0) such that ζy1

(u) ≥ ζx̄1
(u) for all u ∈ S2

and ζy1
(u) > ζx̄1

(u) for some u ∈ S2. Hence, x̄1 ⊂ y1. By definition of D2, x̄1 ∈ y0. This is a
contradiction.

Step 2: There exist a linear functional Λ on C(S2) and a constant c ∈ R such that Λ(ζx̄1
) > c >

Λ(ζy1
) for all ζy1

∈ ζ(y0).

Since ζ is continuous and mixture linear, ζ(y0) is compact and convex. Notice that C+(S2) +
{ζx̄1

} is a closed subset of C(S2). Moreover, from Step 1, these subsets are disjoint. By the sepa-
ration hyperplane theorem (See Schaefer [11, p.65, Theorem 9.2 (Second Separation Theorem)]),
there exist a linear functional Λ on C(S2) and a constant c ∈ R strictly separating these sets. Since
the constant function equal to zero belongs to C+(S2), Λ(ζx̄1

) > c > Λ(ζy1
) for all ζy1

∈ ζ(y0).

Step 3: Λ is positive, that is, Λ(f+) ≥ 0 if f+ ∈ C+(S2).

From Step 2, Λ(f+) > Λ(ζy1
− ζx̄1

) for all f+ ∈ C+(S2) and ζy1
∈ ζ(y0). This means that Λ is

bounded from below on C+(S2). Take a lower bound α ∈ R. Then Λ(f+) ≥ α for all f+ ∈ C+(S2).
Suppose that Λ is not positive. There exists f̄+ ∈ C+(S2) with Λ(f̄+) < 0. Since θf̄+ ∈ C+(S2)
for all θ > 0, Λ(θf̄+) = θΛ(f̄+) diverges to −∞ as θ tends to ∞. This contradicts the fact that
Λ(f+) ≥ α for all f+ ∈ C+(S2).
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The Riesz Representation theorem (See Rudin [8, p40, Theorem 2.14]) ensures the existence
of a positive measure ν on S2 satisfying

Λ(f) =

∫

S2

f(u) dν(u) for all f ∈ C(S2).

Let µ̄ ∈ ∆(S2) be the normalization of ν. Since Λ(ζx̄1
) > c > Λ(ζy1

) for all ζy1
∈ ζ(y0), we have

∫

S2

ζx̄1
(u) dµ̄(u) > c ≥ max

y1∈y0

∫

S2

ζy1
(u) dµ̄(u).

Thus,

σx0
(µ̄) = max

x1∈x0

U1(x1, µ̄) > max
y1∈y0

U1(y1, µ̄) = σy0
(µ̄).

Since σx0
6= σy0

, σ is injective.

(ii) For each µ ∈ S1, let x∗1 and y∗1 satisfy U1(x
∗
1, µ) = maxx1∈x0

U1(x1, µ) and U1(y
∗
1 , µ) =

maxy1∈y0
U1(y1, µ). Since λx∗1 + (1− λ)y∗1 ∈ λx0 + (1− λ)y0, mixture linearity of U1(·, µ) implies,

λσx0
(µ) + (1 − λ)σy0

(µ) = λU1(x
∗
1, µ) + (1 − λ)U1(y

∗
1, µ)

= U1(λx
∗
1 + (1 − λ)y∗1 , µ)

= max
z1∈λx0+(1−λ)y0

U1(z1, µ)

= max
z1∈CO(λx0+(1−λ)y0)

U1(z1, µ)

= σCO(λx0+(1−λ)y0)(µ).

(iii) It suffices to show that, for all x0, y0 ∈ D2,

dsupnorm(σx0
, σy0

) ≤ dHausdorff(x0, y0).

For any fixed µ ∈ S1,

|σx0
(µ) − σy0

(µ)| =

∣

∣

∣

∣

max
x1∈x0

∫

s2

ζx1
(u) dµ(u) − max

y1∈y0

∫

s2

ζy1
(u) dµ(u)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

s2

ζx∗

1
(u) dµ(u) −

∫

s2

ζy∗

1
(u) dµ(u)

∣

∣

∣

∣

,

where x∗1 ∈ x0 and y∗1 ∈ y0 are maximizers. Without loss of generality, assume
∫

s2

ζx∗

1
(u) dµ(u) ≥

∫

s2

ζy∗

1
(u) dµ(u). (14)

Let ȳ1 be a minimizer of the following problem:

min
y1∈z0

dsupnorm(ζy1
, ζx∗

1
),

z0 ≡

{

y1 ∈ Kc(∆(Z))

∣

∣

∣

∣

∫

S2

ζy1
(u) dµ(u) ≤

∫

S2

ζy∗

1
(u) dµ(u)

}

.
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Since z0 is compact, ȳ1 indeed exists. Notice that y0 ⊂ z0 by definition of y∗1 . Notice also that
(14) implies

∫

S2

ζȳ1
(u) dµ(u) =

∫

S2

ζy∗

1
(u) dµ(u).

Taking into account Lemma 8 (p.927) of DLR,

|σx0
(µ) − σy0

(µ)| =

∣

∣

∣

∣

∫

s2

ζx∗

1
(u) dµ(u) −

∫

s2

ζȳ1
(u) dµ(u)

∣

∣

∣

∣

≤

∫

∣

∣ζx∗

1
(u) − ζȳ1

(u)
∣

∣ dµ(u)

≤ dsupnorm(ζx∗

1
, ζȳ1

)

≤ min
y1∈y0

dsupnorm(ζx∗

1
, ζy1

)

= min
y1∈y0

dHausdorff(x∗1, y1)

≤ dHausdorff(x0, y0).

Since this inequality holds for all µ ∈ S1, we have

dsupnorm(σx0
, σy0

) ≡ sup
µ∈S1

|σx0
(µ) − σy0

(µ)| ≤ dHausdorff(x0, y0).

Let C ⊂ C(S1) be the range of σ.

Lemma C.5.

(i) C is convex.

(ii) The constant function equal to zero, that is, f(µ) = 0 for any µ ∈ S1, is in C.

(iii) There exists c > 0 such that the constant function equal to c, that is, f(µ) = c for any

µ ∈ S1, is in C.

(iv) The supremum of any two points f, f ′ ∈ C is also in C. That is, max[f(µ), f ′(µ)] is also in

C.

Proof. (i) Take any f, f ′ ∈ C and λ ∈ [0, 1]. There are x0, x
′
0 ∈ D2 satisfying f = σx0

and
f ′ = σx′

0
. From Lemma C.4 (ii),

λf + (1 − λ)f ′ = λσx0
+ (1 − λ)σx′

0
= σCO(λx0+(1−λ)x′

0
) ∈ C.

Hence, C is convex.
(ii) Let x0 ≡ {{(1/m, · · · , 1/m)}} ∈ D2. Since u((1/m, · · · , 1/m)) = 0 for all u ∈ S2,

σx0
(µ) = 0 for all µ ∈ S1.
(iii) Let c be a sufficiently small positive number. Let x1 be the intersection of ∆(Z) and

the closed c-ball at (1/m, · · · , 1/m). Let x0 ≡ CO({x1}). Since maxl∈x1
u(l) = c for all u ∈ S2,

σx0
(µ) = c for all µ ∈ S1.
(iv) Take any f, f ′ ∈ C. There exist x0, x

′
0 ∈ D2 such that f = σx0

and f ′ = σx′

0
. Let

x′′0 ≡ CO(co(x0 ∪ x
′
0)) ∈ D2 and f ′′ ≡ σx′′

0
∈ C. Then, f ′′(µ) = max[σx0

(µ), σx′

0
(µ)].
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From Lemma C.4 (i), σ : D2 → C is bijective. Define W : C → R by W (f) ≡ U(σ−1(f)).
From Lemma C.5 (ii) and (iii), W (0) = 0 and W (c) = c, where 0 and c are identified with the
constant function equal to zero and with the constant function equal to c, respectively. Since U
and σ are continuous, so is W under the sup-norm. By adapting DLR’s argument, we can verify
that W is linear in the following sense: for any α, β ∈ R+, if f, f ′, αf + βf ′ ∈ C, then

W (αf + βf ′) = αW (f) + βW (f ′).

We will extend the function W : C → R to C(S1) step by step. First, restrict W on C+ ≡
{f ∈ C|f ≥ 0}. For any r ≥ 0, let rC+ ≡ {rf |f ∈ C+}. Let H ≡ ∪r≥0rC+ and

H∗ ≡ H −H = {f1 − f2 ∈ C(S1)|f1, f2 ∈ H}.

For any f ∈ H \ 0, there is r > 0 satisfying (1/r)f ∈ C+. Define W (f) ≡ rW ((1/r)f). Then,
W : H → R is well-defined, monotonic, and linear. For any f ∈ H∗, there are f1, f2 ∈ H satisfying
f = f1 − f2. Define W (f) ≡W (f1) −W (f2). Then, W : H∗ → R is well-defined and linear.

Lemma C.6. H∗ is dense in C(S1).

Proof. From the Stone-Weierstrass theorem, it is enough to show that (i) H∗ is a vector sublattice,
(ii) for any distinct points µ, µ′ ∈ S1, there exists f ∈ H∗ such that f(µ) > f(µ′), and (iii) H∗

contains the constant functions equal to one. By the exactly same argument as Lemma 11 (p.928)
in DLR, condition (i) holds. Condition (iii) directly follows from Lemma C.5 (iii) and the definition
of H.

To show condition (ii), take distinct points µ, µ′ ∈ S1. By the separating hyperplane theorem,
there exists a linear functional Γ on S1 and a constant c ∈ R such that Γ(µ) > c > Γ(µ′). Without
loss of generality, we can assume c = 0. Since C(S2) is a weak* dense subset of the dual space of
S1 (Dunford and Schwartz [2, Corollary 6, p. 425]), there exists f ∈ C(S2) such that

∫

S2

f dµ > 0 >

∫

S2

f dµ′.

We can assume ‖f‖ is sufficiently small. From Lemma 11 (p. 928) of DLR, there exist x1, y1 ∈
Kc(∆(Z)) such that

∫

S2

(ζx1
− ζy1

) dµ > 0 >

∫

S2

(ζx1
− ζy1

) dµ′.

Hence,

∫

S2

ζx1
dµ >

∫

S2

ζy1
dµ, and

∫

S2

ζy1
dµ′ >

∫

S2

ζx1
dµ′. (15)

If
∫

S2

ζx1
dµ =

∫

S2

ζy1
dµ′,
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redefine x1 as the menu {l ∈ ∆(Z) | d(l, x1) ≤ ε} for some small ε > 0. Then,

∫

S2

ζx1
dµ >

∫

S2

ζy1
dµ′. (16)

Moreover, as long as ε > 0 is small enough, (15) still holds after this modification. Let x0 ≡
CO(co({x1, y1})). Taking (15) and (16) together,

σx0
(µ) =

∫

S2

ζx1
dµ >

∫

S2

ζy1
dµ′ = σx0

(µ′).

Since σx0
∈ H∗, condition (ii) holds.

By the same argument as in Lemma 12 (p. 929) of DLR, it can be shown that there is a
constant K > 0 such that W (f) ≤ K||f || for any f ∈ H∗, because D2 is compact. By the Hahn-
Banach theorem, we can extend W to W : C(S1) → R in a linear, continuous and increasing way.
Uniqueness of this extension follows from Lemma C.6.

Since W is a positive linear functional on C(S1), the Riesz representation theorem (Dunford
and Schwartz [2, p.265, Theorem 3]) ensures that there exits a unique countably additive non-
negative measure µ0 on S1 satisfying

W (f) =

∫

S1

f(µ) dµ0(µ),

for all f ∈ C(S1). Especially, µ0 can be taken to be a probability measure. Thus, for any x0 ∈ D2,

U(x0) = W (σx0
) =

∫

S1

σx0
(µ) dµ0(µ) =

∫

S1

max
x1∈x0

∫

S2

max
l∈x1

u(l) dµ(u) dµ0(µ). (17)

For any probability measure ν, let supp(ν) denote the support of ν. Redefine S1 ≡ supp(µ0)
and Define µ1 : S1 → ∆(S2) as the identity mapping, that is, µ1(µ) = µ. Define u∗ : ∆(Z)×S2 →
R by u∗(l, u) = u(l). Then, ({St}

2
t=1, {µt}

1
t=0, u

∗) is the required functional form representing �.
(ii) By definition, µ0 has full support.
(iii) We will show that, if U1(·, µ) and U1(·, µ

′) represent the identical preference, then µ = µ′.
For all u ∈ S2 and x1 ∈ K(∆(Z)), define

ζx1
(u) ≡ max

l∈x1

u(l).

Then,

U1(x1, µ) =

∫

ζx1
(u) dµ(u), and U1(x1, µ

′) =

∫

ζx1
(u) dµ′(u). (18)

For all l ∈ ∆(Z),

U1({l}, µ) =

∫

u(l) dµ(u) = ū(l),
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where ū is the mean vNM-index with respect to µ. Precisely, for all i = 1, · · · ,m,

ūi ≡

∫

ui dµ(u).

By definition, ū ∈ S2. Similarly, ū′ ∈ S2 is defined as the mean vNM index with respect to µ′.
Since ū and ū′ represent the identical preference over ∆(Z), ū = ū′.

Since U1(·, µ) and U1(·, µ
′) are mixture linear functions over K(∆(Z)) representing the identical

preference, there exist α > 0 and β ∈ R such that U1(·, µ
′) = αU1(·, µ) + β. For any lottery l,

U1({l}, µ
′) = αU1({l}, µ) + β

ū′(l) = αū(l) + β.

Since ū = ū′, we must have α = 1 and β = 0, and hence U1(·, µ) = U1(·, µ
′). From (18), for all x1,

∫

ζx1
(u) dµ(u) =

∫

ζx1
(u) dµ′(u). (19)

Take any x1, y1 ∈ K(∆(Z)) and α, β ≥ 0. Equation (19) holds even when ζx1
is replaced with

αζx1
−βζy1

. From Lemma 11 of DLR, the set of all such functions is a dense subset of the set of all
real-valued continuous functions on S2. Hence, equation (19) holds for any real-valued continuous
function instead of ζx1

. The Riesz representation theorem (Dunford and Schwartz [2, Theorem 3,
p. 265]) implies µ = µ′.

(iv) For any µ ∈ S1, let S2(µ) ≡ supp(µ) and u∗ : ∆(Z) × S2(µ) → R be the restriction of u∗

on ∆(Z) × S2(µ). Then, U1(·, µ) with components (S2(µ), µ, u∗) represents �µ. By definition, µ
has full support. Since S2 = {u ∈ Rm|

∑m
i=1 ui = 0,

∑m
i=1 |ui| = 1}, u∗(·, u) and u∗(·, u′) represent

distinct vNM preferences whenever u 6= u′. That is, �u 6=�u′ . Finally, Proposition B.1 ensures
that every u ∈ S2(µ) is relevant because the identification mapping ϕ is the identity mapping in
this case and hence is continuous.

C.2 Proof of Proposition 4.1

(i) Suppose S
1
2 6= S

2
2. Assume there exists �s̄2

∈ S
1
2 \ S

2
2.

4 We can find a set of positive numbers v̄
and {vs2

}s2∈S2

2

so that

x1 ≡
{

l ∈ ∆(Z)|u1(l, s̄2) ≤ v̄
}

∩
(

∩s2∈S2

2

{

l ∈ ∆(Z)|u2(l, s2) ≤ vs2

}

)

is a non-empty, compact and convex menu such that each lower contour set coincides with a
non-trivial part of the boundary of x1.

For ε > 0, let

y1 ≡ {l ∈ ∆(Z)|u1(l, s̄2) ≤ v̄ − ε} ∩
(

∩s2∈S2

2

{

l ∈ ∆(Z)|u2(l, s2) ≤ vs2

}

)

.

Since �s̄2
/∈ S

2
2, there exists a sufficiently small ε > 0,

∫

S2

2

max
l∈x1

u2(l, s2)dµ
2
1(s2|s1) =

∫

S2

2

max
l∈y1

u2(l, s2)dµ
2
1(s2|s1),

4The symmetric argument works when there exists �s̄2
∈ S

2

2
\ S

1

2
.
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for any s1 ∈ S2
1 . Hence the representation U2

0 implies {x1} ∼ {y1}.
On the other hand, since y1 ⊂ x1,

∫

S1

2

max
l∈x1

u1(l, s2)dµ
1
1(s2|s1) ≥

∫

S1

2

max
l∈y1

u1(l, s2)dµ
1
1(s2|s1), (20)

for any s1 ∈ S1
1 . Since �s̄2

∈ S
1
2, there exists at least one s1 ∈ S1

1 such that (20) holds with strict
inequality. The representation U1

0 implies {x1} ≻ {y1}. This is a contradiction.
(ii) Let

S∗
2 ≡

{

u ∈ R
m

∣

∣

∣

∣

∣

m
∑

i=1

ui = 0,
m

∑

i=1

|ui| = 1

}

.

This is a normalization of vNM-indices on ∆(Z). From Definition 3.2 (iii), for any s2 ∈ Si
2, there

exists a unique u ∈ S∗
2 such that both ui(·, s2) and u generate the same vNM preference over

∆(Z). There exist αi
s2
> 0 and βi

s2
∈ R such that ui(·, s2) = αi

s2
u(·) + βi

s2
. We can define the

injective mapping ϕi : Si
2 → S∗

2 by the above relation for i = 1, 2.
For any x1 and s1 ∈ Si

1,

U i
1(x1, s1) =

∑

Si

2

max
l∈x1

ui(l, s2)µ
i
1(s2|s1) =

∑

Si

2

max
l∈x1

(αi
s2
u(l) + βi

s2
)µi

1(s2|s1)

=
∑

Si

2

max
l∈x1

αi
s2
u(l)µi

1(s2|s1) +
∑

Si

2

βi
s2
µi

1(s2|s1)

=
∑

Si

2

max
l∈x1

u(l)αi
s2
µi

1(s2|s1) +
∑

Si

2

βi
s2
µi

1(s2|s1)

=
∑

S∗

2

max
l∈x1

u(l)µi(u|s1) +
∑

Si

2

βi
s2
µi

1(s2|s1),

where µi(u|s1) is the non-negative measure on S∗
2 induced by ϕi : (Si

2, α
i
(·)µ

i
1(·|s1)) → S∗

2 . Let

µ∗is1
(u) ≡ µi(u|s1)/µ

i(S∗
2 |s1) and

U1(x1, µ
∗i
s1

) ≡
∑

S∗

2

max
l∈x1

u(l)µ∗is1
(u).

Since U i
1(x1, s1) ≥ U i

1(y1, s1) if and only if U1(x1, µ
∗i
s1

) ≥ U1(y1, µ
∗i
s1

), both U i
1(·, s1) and U1(·, µ

∗i
s1

)
induce the same preference on K(∆(Z)).

Define the injective mapping ψi : Si
1 → ∆(S∗

2) by ψi(s1) ≡ µ∗is1
. Then,

U i
0(x0) =

∑

Si

1

max
x1∈x0

U i
1(x1, s1)µ

i
0(s1)

=
∑

Si

1

max
x1∈x0

U1(x1, µ
∗i
s1

)µi(S∗
2 |s1)µ

i
0(s1) +

∑

Si

1

∑

Si

2

βi
s2
µi

1(s2|s1)µ
i
0(s1)

=
∑

∆(S∗

2
)

max
x1∈x0

U1(x1, µ)µ̄i
0(µ) +

∑

Si

1

∑

Si

2

βi
s2
µi

1(s2|s1)µ
i
0(s1),
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where µ̄i
0 is the non-negative measure induced by the mapping ψi : (Si

1, µ
i(S∗

2 |·)µ
i
0(·)) → ∆(S∗

2).
Let µ∗i0 ≡ µ̄i

0/µ̄
i
0(S

∗
1) ∈ ∆(∆(S∗

2)) and

U∗i
0 (x0) ≡

∑

∆(S∗

2
)

max
x1∈x0

U1(x1, µ)µ∗i0 (µ).

Then both U i
0(x0) and U∗i

0 (x0) represent � and have the same set of ex-post preferences, that is,
S

i
1 = S1(U

∗i
0 ) for i = 1, 2. Therefore, the proof completes if S1(U

∗1
0 ) = S1(U

∗2
0 ).

To show the above claim, we prepare the next lemma:

Lemma C.7. Take any µi
0 ∈ ∆(∆(S∗

2)), i = 1, 2. If

U i
0(x0) ≡

∫

∆(S∗

2
)
max
x1∈x0

U1(x1, µ) dµi
0(µ), i = 1, 2, (21)

where

U1(x1, µ) ≡

∫

S∗

2

max
l∈x

u(l) dµ(u),

represent the identical preference on D, then µ1
0 = µ2

0.

Proof. For all µ ∈ ∆(S∗
2) and x0 ∈ D, let

σx0
(µ) ≡ max

x1∈x0

U1(x1, µ).

Then

U i
0(x0) =

∫

σx0
(µ) dµi

0(µ), i = 1, 2. (22)

For all l ∈ ∆(Z),

U i
0({{l}}) =

∫ ∫

u(l) dµ(u) dµi
0(µ) = ūi(l),

where ūi is the mean vNM-index with respect to µi
0. Precisely, for all j = 1, · · · ,m,

ūj ≡

∫ ∫

uj dµ(u) dµi
0(µ).

By definition, ūi ∈ S∗
2 . Since ū1 and ū2 represent the identical preference over ∆(Z), ū1 = ū2.

Since U1
0 and U2

0 are mixture linear functions over D representing the same preference, there
exist α > 0 and β ∈ R such that U2

0 = αU1
0 + β. For any lottery l,

U2
0 ({{l}}) = αU1

0 ({{l}}) + β

ū2(l) = αū1(l) + β.

We must have α = 1 and β = 0, and hence U1
0 = U2

0 . From (22), for all x0,
∫

σx0
(µ) dµ1

0(µ) =

∫

σx0
(µ) dµ2

0(µ). (23)
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Take any x0, y0 ∈ D and α, β ≥ 0. Equation (23) holds even when σx0
is replaced with ασx0

−βσy0
.

From Lemma C.6, the set of all such functions is a dense subset of the set of all real-valued
continuous functions on ∆(S∗

2). Hence equation (23) still holds even if σx0
is replaced with any

real-valued continuous function. The Riesz representation theorem (Dunford and Schwartz [2,
Theorem 3, p. 265]) implies µ1

0 = µ2
0.

Since U i
0 and U∗i

0 represent the same preference � for i = 1, 2, so do U∗1
0 and U∗2

0 . Since U∗i
0 has

the form of (21), it follows from Lemma C.7 that µ∗10 = µ∗20 . Especially supp(µ∗10 ) = supp(µ∗20 ).
Since each µ ∈ ∆(S∗

2) induces preference on K(∆(Z)) by U1(·, µ), we have S1(U
∗1
0 ) = S1(U

∗2
0 ).

This completes the proof.
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