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Abstract

Noor and Takeoka [23] model time preference as a current self that incurs a cog-
nitive cost of empathizing with her future selves. Their model unifies disparate well-
known experimental findings. They provide behavioral foundations by exploiting the
idea that higher stakes provide an incentive for the exertion of higher cognitive effort,
which leads to changes in the agent’s impatience with respect to the scale of out-
comes. The present paper introduces the capacity of limited cognitive resources into
the model and investigates its behavioral implications. We show that the behavioral
content of limited cognitive resources lies in violations of time-separability.

1 Introduction

Evidence suggests that subjects in experiments are less impatient when dealing with larger
rewards.1 Noor and Takeoka [23] (henceforth NT) hypothesize that impatience may arise
from a cognitive process where a larger reward incentivizes higher cognitive effort that
gives rise to less impatience. Their model builds on three introspective observations. First,
our knowledge of our future selves is not of the same quality as our knowledge of our
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current self. In fact, our ability to appreciate the well-being of, say, our retired future self
requires a process that is analogous to the process by which we appreciate the well-being of
other people: we empathize by imagining ourselves in the other’s shoes. Second, imagining
ourselves as a future self is cognitively costly. Third, there exists a desire to connect with
our future selves, whether out of some sense of moral responsibility or a sense of community
with future selves coming from a shared identity.

Their model is a multiple selves model where the current self optimally allocates costly
empathy across future selves. They take a (static) preference ≿ over the set X consisting
of finite horizon streams of lotteries over consumption as primitives. The main result of
their paper provides behavioral foundations for the Costly Empathy (CE) representation,
which is described by an instantaneous consumption utility u and an increasing and convex
cognitive cost function φt for each t such that ≿ is represented by the function U : X→ R+

defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X, (1)

where Dx = arg max
D∈[0,1]T

{
∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t))}. (2)

To interpret, consider a consumption stream x = (x0, .., xT ). The period 0 self evaluates the
value of the stream x via the discounted utility formula (1) where the discount function Dx

depends on the stream. We interpret the discount functionDx(t) ∈ [0, 1] as the current self’s
empathy for self t’s instantaneous consumption, with higher values of Dx(t) expressing a
higher degree of connection with the future self. The discount function is a cognitive choice
in this model, with the following elements:

• Empathy is a cognitively difficult task, involving the cost of imagining oneself in the
other’s shoes. The cost of any discount functionD is assumed to be additive,

∑
t≥1 φt(D(t)),

where each φt is an increasing and convex cost function. Moreover, φt is increasing in t so
that empathy costs are increasing with temporal distance.

• In the cognitive stage the agent’s choice of discount function maximizes the objective
function given in (2), that is, it maximizes the utility derived from the connection with
future selves (discounted future utility) less cognitive costs of empathy.

A tractable special case of the CE model studied by NT is the Homogeneous CE model,
which is defined by a family {φt} of convex CRRA cost functions.

In the present paper, we extend the Homogeneous CE model to allow for limited cogni-
tive capacity, in which case the cognitive optimization problem (2) is subject to the capacity
constraint: ∑

t≥1

φt(D(t)) ≤ K.

That is, the agent cannot produce empathy D that costs more than K. We analyze
and provide behavioral foundations for this model, called the Constrained Costly Empathy
(CCE) representation. The main behavioral difference from the CE model is that this
model violates time-separability. Intuitively, the agent may need to trade-off empathy
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across different selves, rather than separately optimize empathy for each self as in the CE
model. Consequently, the weight placed on time t by the optimal discount function may
depend on the rewards available in periods t′ ̸= t.

As an intermediate result for the CCE representation, we also investigate a more general
representation, called the General CCE representation, where the cost function φt, t ≥ 1,
is increasing and convex (and not necessarily CRRA) but the cognitive capacity Kx can
vary with the consumption stream x being evaluated. We provide behavioral foundations
for this class of representations as well.

This paper is a companion to NT, who add to the theoretical literature on magnitude-
dependent discount functions (Noor [22], Baucells and Heukamp [3], Wakai [31], Epstein and
Hynes [8]) and the multiple selves model (Strotz [28], Ainslie [1], Laibson [16], O’Donoghue
and Rabin [26]).2 We list below the contributions relative to NT and related literature:

1. NT show that the CE model can unifying various behavioral findings such as the
magnitude effect, preference reversal (the common difference effect), concentration bias, etc
and can also explain anomalies for the Life-cycle Hypothesis. They also note the related
evidence on the role of cognitive abilities for time preference (Dohmen et al [6]). This
paper shows that by allowing for cognitive capacity constraints, the model can also explain
evidence pertaining to time non-separability, suggesting therefore that there may exist a
relationship among the disparate anomalies.

2. The multiple selves model has been considered in psychology and economics and its
key application in economics is for the study of self-control problems through the hyperbolic
discounting model and its variants (Strotz [28], Ainslie [1], Laibson [16], O’Donoghue and
Rabin [26]). It is recognized in the literature this model does not include an expression of
the notion of “self-control”, which entails effort to reduce the impact of urges on choice.
Fudenberg and Levine [11] extend the multiple selves model by introducing a separate
executive self that derives utility from the utility of a sequence of myopic short lived selves,
and can change the preferences of the short lived selves at a utility cost. This intervention
is interpreted as exertion of self-control. NT point out that the CE model also can be
interpreted as a multiple selves model that exhibits self-control: by incurring the cost of
empathizing with future selves, the current self is able to behave more patiently. The
present paper adds to the self-control interpretation by hypothesizing a hard limit in one’s
capacity for self-control.

3. There are several models that incorporate subjective optimization, such as those
of optimal expectations (Brunnermeier and Parker [5]), optimal contemplation (Ergin and
Sarver [9]) and optimal attention (Ellis [7], Gabaix [12]). To our knowledge, constrained
subjective optimization is considered only in a few papers in the literature of willpower,
where the decision maker is assumed to resist to temptation within the constraint of limited

2While most models take the discount function as a given feature of preference, Becker and Mulligan
[4] provide a model of endogenous impatience, where the discount function can be altered by investment
in education, etc. NT also provide a model of endogenous discounting but since the investment decision
in Becker and Mulligan [4] draws from the agent’s physical budget constraint rather a cognitive budget
constraint, their model does not overlap with NT’s. See NT for more discussion.
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willpower. Ozdenoren, Salant, and Silverman [27] consider the cake-eating problem with a
fixed initial stock of willpower, which is depleted over time with exercising self-control. In a
discrete setting, Masatlioglu, Nakajima, and Ozdenoren [20] axiomatize a limited willpower
model by using the pair of ex ante preference over menus and ex post choice from menus.
These papers presume that self-control is not costly. Liang et al [17] consider a menus of
lotteries setting and incorporate the cost of self-control. They show that the content of
limited will-power in that setting lies in the violation of the vNM Independence axiom for
menus of lotteries. The key finding in the present paper is that binding cognitive constraints
express themselves behaviorally as violations of time-separability.

The remainder of the paper proceeds as follows. We overview the related literature in
Section 1.1. Section 2 describes our basic framework and the CCE representation. Section
3 provides a behavioral foundation for the representation, and Section 4 investigates how
the representation changes according to the changes of parameters of the model. Section 5
relates the model to empirical findings. Section 6 investigates the General CCE representa-
tion. All proofs are relegated to the appendices. Noor and Takeoka [25], a supplementary
appendix to this paper, provide an extension of the General CCE representation which
allows for negative payoffs in order to accommoda the decision maker cares about gains
and losses from some reference point.

2 Constrained CE Model

2.1 Primitives

There are T +1 < ∞ periods, starting with period 0. The space C of outcomes is assumed
to be C = R+. Let ∆ denote the set of simple lotteries over C, with generic elements
p, q, ... We will refer to p as consumption. Consider the space of consumption streams
X = ∆T+1, endowed with the product topology. A typical element in X is denoted by
x = (x0, x1, · · · , xT ). The primitive of our model is a preference ≿ over X.

Let ∆0 ⊂ X denote the set of streams x = (p, 0, · · · , 0) that offer consumption p
immediately and 0 in every subsequent period. Abusing notation, we often use p to denote
both a lottery p ∈ ∆ and a stream (p, 0, · · · , 0) ∈ ∆0. Thus, 0 also denotes the stream
(0, · · · , 0). An element of ∆ that is a mixture between two consumption alternatives p, q ∈
∆ is denoted α ◦ p + (1 − α) ◦ q for any α ∈ [0, 1]. The same mixture is also regarded as
α ◦ p+ (1− α) ◦ q ∈ ∆0.

As a benchmark, we define:

Definition 1 (Discounted Utility Representation) A Discounted Utility (DU) repre-
sentation for a preference over X is given by

U(x) = u(x0) +
∑
t>1

D(t)u(xt), x ∈ X,
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where D(t) is weakly decreasing in t and satisfies Dr(t) = 1 and u is continuous and
mixture-linear and satisfies u(0) = 0.

A notable feature of the DU model is that the discount function evaluates time indepen-
dently of the stream of rewards being evaluated. The CCE model relaxes such magnitude-
independent discounting.

2.2 Functional Form

Say that a tuple (u, {φt}t≥1, K) is regular if
(i) u : ∆ → R+ is continuous and mixture linear with increasing vNM utility index u :
C → R+ satisfying (a) u(0) = 0 and (b) unboundedness: u(C) = R+.
(ii) for each t ≥ 1, the cost function φt : [0, 1] → R+ takes the form

φt(d) = at · dm,

where m > 1, and at > 0 is increasing in t.
(iii) 0 < K ≤ a1.

Condition (i) requires that the utility from consumption should have familiar properties.
Condition (i)(a) is a normalization of u. Condition (i)(b) is needed to ensure the existence
of a present equivalent of any stream x ∈ X (see Section 3.1). Condition (ii) requires {φt}
to be a family of convex CRRA cost functions that represent the cost of cognitive effort
of appreciating future consumption. The degree of appreciation of consumption at time t
is given by the period t discount factor d ∈ [0, 1]. The idea that farther consumption is
harder to appreciate is expressed by the fact that at is increasing with t. This condition
ensures that

φt(d) ≤ φt+1(d) for all d ∈ [0, 1] and 0 < t < T.

Condition (iii) introduces the stock K of cognitive resources. Note that the cost of fully
appreciating period 1 consumption is φ1(1) = a1. The condition requires that the stock
K is exhausted if the agent tries to fully appreciate period 1 consumption: K ≤ a1. By
condition (ii), it follows that it is exhausted also if the agent tries to fully appreciate
consumption in any future period, that is, K ≤ at for all t. Therefore, a full appreciation
of two or more periods of consumption simultaneously is not feasible, although it may be
possible to fully appreciate period 1 consumption if K = a1 (and other t s.t. at = a1).

Definition 2 (Constrained CE Representation) A Constrained Costly Empathy (CCE)
representation is a regular tuple (u, {φt}, K) such that ≿ is represented by the function
U : X→ R+ defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,
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where Dx = arg max
D∈[0,1]T

{
∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t))},

subject to
∑
t≥1

φt(D(t)) ≤ K. (3)

The homogeneous CE model, introduced by Noor and Takeoka [23], corresponds to
K = ∞, which is ruled out by condition (iii) in the CCE model. The cognitive optimization
problem has a unique solution given the strict convexity of the cost function.

The optimal discount function Dx is chosen subject to two constraints. The first is the
capacity constraint :

{D ∈ [0, 1]T : φ(D) ≤ K},

where φ(D) =
∑

t≥1 φt(D(t)). That is, it must cost at most K. The second constraint,

D(t) ≤ 1,

is called the boundary constraint.
We now clarify a role of condition (iii), that is, K ≤ a1, of the regular tuple. This

condition has two implications. First, it determines the maximum achievable period t
discount factor, denoted by dt. If all the cognitive abilities are spent for period t discount
factor, the capacity constraint implies φt(D(t)) = atD(t)m = K. This equation determines
the maximum achievable discount factor dt. That is,

dt :=

(
K

at

) 1
m

≤ 1. (4)

Since at is increasing in t, dt is decreasing in t.
Second, the condition makes the model more tractable because meeting the capacity

constraint becomes sufficient to meet the boundary constraint: when the capacity con-
straint is satisfied, the discount function satisfies, for any given t,

φt(Dx(t)) ≤ φ(Dx) ≤ K ≤ a1 ≤ at = φt(1),

which implies Dx(t) ≤ 1. The tractability comes from the fact that, both in constructing
the model and in its applications, one can effectively ignore the boundary constraint.

Regarding the interpretation of the capacity constraint K, the CCE model should be
viewed as one where there exists a cap K on how much of cognitive resources are used for
each stream in her menu. This is different from a model where the agent has a limited pool,
and on facing a menu of streams, decides how to optimally allocate these resources across
future selves, giving rise to a menu-dependent (as opposed to stream-dependent) discount
function. See the concluding section for some elaboration.
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2.3 Reduced Form Representation

We explore some properties of the model here. Assume that≿ admits a CCE representation.
As noted earlier, because of strict convexity of the cost function, the cognitive optimization
problem has a unique solution. It is instructive to analyze how this optimal discount
function changes along rays of streams. Given the additive separability of the cost function,
it is useful to consider the special stream referred to as the dated reward : a stream that
pays some consumption p ∈ ∆ at time t and 0 otherwise, denoted pt ∈ X. Since p is a
lottery, it can be α-mixed with consumption 0 to yield a lottery α◦p+(1−α)◦0, in which
case we imagine that it is “scaled down” by a factor of α. For α ≤ 1, denote by

αpt

the dated reward that pays α ◦ p + (1 − α) ◦ 0 in period t. For α > 1, we use the same
notation for any q that satisfies q = 1

α
◦ p+ (1− 1

α
) ◦ 0, that is, αpt is a “scaled up” version

of p when α > 1.
When evaluating αpt, for all values of α for which the capacity constraint is slack the

first order condition is given by:

u(α ◦ p) = φ′
t(D(t)),

and consequently the optimal discount function is given by:

Dαpt(t) =

(
u(α ◦ p)
mat

) 1
m−1

:= γ(t)u(α ◦ p)
1

m−1 ,

where γ(t) = (mat)
− 1

m−1 . In particular, Dαpt is increasing in u(α ◦ p). Intuitively, as the
prospect of obtaining utility at t improves, the agent has more incentive to exert effort to
overcome selfishness, which leads to a higher D. Her discount function therefore exhibits
magnitude-decreasing impatience for some range of rewards.

We just saw that Dαpt is increasing in α as long as the capacity constraint is lax. There
exists some threshold αpt where the capacity constraint binds and the discount function
ceases to increase in α, since the agent cannot allocate any more empathy. Therefore
beyond a threshold, the discount function exhibits magnitude-independent impatience.

More generally, Dx satisfies the FOC of Lagrangian:

L =
∑
t≥1

(D(t)u(xt)− φt(D(t))) + λ(K −
∑
t≥1

φt(D(t))),

where λ ≥ 0 is a Lagrange multiplier. By the FOC wrt D(t), we have

Dx(t) =

(
u(xt)

(1 + λ)mat

) 1
m−1

.
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If the capacity constraint is slack, λ = 0, and hence,

Dx(t) =

(
u(xt)

mat

) 1
m−1

= γ(t)u(xt)
1

m−1 ,

in which case Dx(t) depends only on u(xt). If the capacity constraint is binding, Dx satisfies

∑
t≥1

φt

((
u(xt)

(1 + λ)mat

) 1
m−1

)
= K.

By substituting back λ to Dx(t), we have

Dx(t) =
K

1
mγ(t)u(xt)

1
m−1{∑

τ≥1 γ(τ)u(xτ )
m

m−1

} 1
m

,

which is time-non-separable, that is, Dx(t) depends on the whole stream x, not just payoff
at time t. For large α > 1, the capacity constraint binds for αx, and the optimal discount
function Dαx stops growing with α.

Say that a stream x is magnitude sensitive if the capacity constraint is slack at the
optimal Dx and not magnitude sensitive if it is binding. In the model, a stream x is
magnitude sensitive if and only if scaling down leads to a magnitude effect: Dαx < Dx for
any α < 1. It is not magnitude sensitive otherwise. We use this observation in the sequel
to identify magnitude-sensitive streams behaviorally.

A very useful feature of the model is that it admits a clean way of distinguishing
magnitude sensitive and other streams in terms of the representation. For any stream x,
U(x) − u(x0) is the discounted future utility achieved from x, which is interpreted as the
continuation payoff or the future payoff from period 1 onward. In the CCE representation, a
stream x is magnitude sensitive iff its future payoff U(x)−u(x0) is less than some threshold.3

This is expressed in the next proposition.

Write γ(t) := (mat)
− 1

m−1 . Since at is increasing, γ(·) is a weakly decreasing function.

Proposition 1 If ≿ admits a CCE representation (u, {atD(t)m}Tt=1, K), then

U(x) =

 u(x0) +
∑

t≥1 γ(t)u(xt)
m

m−1 if U(x)− u(x0) ≤ mK

u(x0) + (mK)
1
m

{∑
t≥1 γ(t)u(xt)

m
m−1

}m−1
m

if U(x)− u(x0) > mK
.

This result reveals that when the magnitude of future payoffs are “small”, the utility
function is additively separable, and future utility from lotteries is a power transformation

3This property is reminiscent of Becker and Mulligan [4], that derive an observation about complemen-
tarity between time preference and future utilities. In our model, up to the threshold, impatience decreases
in future payoffs, it achieves the minimum impatience at the threshold, and becomes invariant beyond that.
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of immediate utility. Since u(p) is an expected utility, risk preferences are unchanged over
t. However, the parameter m will affect intertemporal substitution. For large magnitude
of future payoffs, we find that the utility function is no longer additively separable. Future
utility is evaluated using a concave aggregator.

One more remark is that the CCE representation on large streams can be interpreted
as a maxmin-type (more precisely, maxmax-type) representation à la Gilboa and Schmei-
dler [13]. For large streams, (3) is binding, that is, φ(D) = K. Then, (2) reduces to

Dx = argmax
D

{D · u(x)−K} = argmax
D

D · u(x)

subject to D ∈ DK := {D ∈ [0, 1]T : φ(D) = K}. The CCE representation on the large
streams can be written as

U(x) = Dx · u(x) = max
D∈DK

D · u(x), (5)

that is, given each stream, the agent optimally chooses a discount function so as to maximize
discounted utilities within the capacity constraint.4

It follows from (10) that a CCE representation satisfies convexity for large streams,
while it is not necessarily the case for small streams. Nevertheless, we can show that a
CCE representation must be star-shaped, αU(x) ≥ U(αx), which is a property weaker than
convexity. Since our model violates convexity, it goes beyond models of convex preferences
in the literature (such as Maccheroni et al [19]). See Noor and Takeoka [25] for more details.

3 Foundations

Denote by pt ∈ X the stream that pays p ∈ ∆ at time t and 0 in all other periods. Such a
stream is called a dated reward.

For any stream x, we refer to cx ∈ C as its present equivalent if it satisfies:

cx ∼ x.

Present equivalents will be used instrumentally below.

3.1 Basic Axioms

The following axiom is the same as in NT.

Axiom 1 (Regularity) (a) (Order). ≿ is complete and transitive.
(b) (Continuity). For all x ∈ X, {y ∈ X : y ≿ x} and {y ∈ X : x ≿ y} are closed.

4To explain consumption smoothing in an intertemporal decision making, Wakai [31] studies an agent
who minimizes discounted utilities over a set of discount functions.
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(c) (Impatience). For any p ∈ ∆ and t < t′,

(p)t ≿ (p)t
′
.

(d) (C-Monotonicity): for all c, c′ ∈ C,

c ≥ c′ ⇐⇒ c ≿ c′.

(e) (Monotonicity) For any x, y ∈ X,

(xt, 0, .., 0) ≿ (yt, 0, .., 0) for all t =⇒ x ≿ y.

Moreover, if (xt, 0, .., 0) ≻ (yt, 0, .., 0) for some t, then x ≻ y.

(f) (Risk Preference). For any p, p′, p′′ ∈ ∆ and α ∈ (0, 1],

p ≻ p′ =⇒ α ◦ p+ (1− α) ◦ p′′ ≻ α ◦ p′ + (1− α) ◦ p′′.

(g) (Present Equivalents). For any stream x there exist c ∈ C s.t.

c ≿ x.

Order and Continuity are standard. Impatience states that consumption is better when
received sooner than later. C-Monotonicity states that more consumption is better than
less. While C-Monotonicity applies only to immediate consumption, Monotonicity is a
property on arbitrary streams: it requires that point-wise preferred streams are preferred.
Present Equivalents states that for any stream, there are immediate consumption levels
that are better than x. Given Order and Continuity, this ensures that each stream x has
a present equivalent cx ∈ C. Notably, each x has a unique present equivalent cx (by C-
Monotonicity, x ∼ cx > cy ∼ y implies cx ≻ cy and therefore x ≻ y). Risk Preference
imposes vNM Independence only on immediate consumption.

NT also formulate the behavioral meaning of time separability in this setup. For no-
tational convenience, for all streams x, y ∈ X and all t, let x{t}y denote the stream that
pays according to x at t and according to y otherwise. They define

Axiom 2 (Separability) For all x ∈ X and all t,

1

2
◦ cx{t}0 +

1

2
◦ c0{t}x ∼ 1

2
◦ cx +

1

2
◦ c0.

We refer the reader to NT for an explanation of the indifference condition in the defini-
tion. As indicated in Section 2.3 and as we will see formally below, a key property of the
CCE model is that it violates Separability.
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3.2 Identifying Magnitude-Decreasing Impatience

To identify whether an agent exhibits magnitude-decreasing impatience (that is, greater
patience towards larger rewards), we follow the lottery approach considered by NT.5 For
any p ∈ ∆ and α ∈ [0, 1] define the mixture α ◦ p := α ◦ p+ (1− α) ◦ 0. In particular, for
c ∈ C, we write this lottery as α ◦ c in order to distinguish α ◦ c ∈ ∆ with a deterministic
consumption αc ∈ C. For any stream x = (x0, ...., xT ) define

αx := (α ◦ x0, ...., α ◦ xT ).

Intuitively, the stream αx uniformly “scales down” the desirability of x in every period
by increasing the chance that it yields 0. Abusing notation, write α ◦ p for the stream
(α ◦ p, 0, ....0). Consider a stream x and its present equivalent,

cx ∼ x.

Note that the agent’s evaluation of immediate consumption cx does not rely on impatience
whereas that of a stream x does. Then if impatience does not change in response to scaling
down x by α, then it must be that:

α ◦ cx ∼ αx,

since the scaling down affects the evaluation of consumption equally for the immediate
reward and the stream. The behavioral content of magnitude-independent impatience is
therefore:

Axiom 3 (Homotheticity) For any x ∈ X and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ∼ αx.

Indeed, NT prove that a preference over X satisfies Regularity, Separability and Homo-
theticity if and only if it admits a DU representation.

If Homotheticity is the behavioral meaning of magnitude-independent impatience, then
magnitude-dependence of impatience can be defined in terms of its violations. Indeed, if
the agent is more patient towards larger rewards, then she would exhibit:

cx ∼ x =⇒ α ◦ cx ≿ αx for all α ∈ (0, 1].

Intuitively, if scaling down the probability of receiving x by α makes the stream less de-
sirable, then an increase in impatience would lead the stream to lose value faster than the
immediate reward α ◦ cx (for which impatience is irrelevant). Consequently, the following
behavioral condition captures the such magnitude-decreasing impatience:

5Ideally, a temporal property like impatience should be behaviorally defined without reference to risk
preferences. NT also study an alternative approach based on the marginal rate of intertemporal substitution
(MRS). We take the lottery approach here since it communicates the main ideas more easily. We expect
that the ideas are straightforward to translate into the MRS approach.
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Axiom 4 (Weak Homotheticity) For any x ∈ X and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ≿ αx.

Say that a stream x ∈ X is ℓ-Magnitude Sensitive if the agent’s impatience strictly
reduces whenever the stream is made less desirable.

Definition 3 (ℓ-Magnitude-Sensitivity) A stream x ∈ X is ℓ-Magnitude Sensitive if

cx ∼ x =⇒ α ◦ cx ≻ αx for all α ∈ (0, 1).

The set of all ℓ-Magnitude Sensitive streams is denoted by Xℓ ⊂ X.

By vNM Independence, it is clear that immediate rewards are not ℓ-Magnitude Sensi-
tive. That is, ∆0 ∩Xℓ = ∅.

3.3 Structure on Xℓ

The characterization of the CCE model involves placing structure on Xℓ.
As noted earlier (see Section 2.3), the cognitive capacity constraint can lead to a vio-

lation of Separability when it binds. In order to highlight this key feature, it is natural to
impose Separability on the set of streams for which the constraint does not bind. That set
is precisely Xℓ, the set of streams that are ℓ-magnitude sensitive. Therefore we impose:

Axiom 5 (Xℓ-Separability) For all x ∈ Xℓ and all t,

1

2
◦ cx{t}0 +

1

2
◦ c0{t}x ∼ 1

2
◦ cx +

1

2
◦ c0.

The next restriction is familiar from NT. While they require the condition to hold
globally for all x ∈ X in order to characterize the homogeneous CE representation, we
require it only to hold on Xℓ:

Axiom 6 (Xℓ-Homogeneity) For any x, y ∈ Xℓ s.t. x0 ∼ y0 ∼ 0, their present equiva-
lents cx ∼ x and cy ∼ y, and any α, β ∈ (0, 1),

β ◦ cx ∼ αx =⇒ β ◦ cy ∼ αy.

Xℓ-Homogeneity places structure on homotheticity violations. It imposes the substan-
tive simplification that if scaling down x by α is as good as scaling down its present-
equivalent cx by β, then β depends on α but not the stream. It is easy to see that, given
vNM Independence, this axiom imposes homotheticity on Xℓ, since for any x, y ∈ Xℓ s.t.
x0 ∼ y0 ∼ 0, it must be that x ∼ y =⇒ αx ∼ αy.

For any x ∈ X, recall that 0{0}x denotes the stream that pays 0 in period 0 and pays
according to x from period 1 onward. That is, 0{0}x = (0, x1, · · · , xT ). Intuitively, 0{0}x
is interpreted as the future payoffs obtained from x.
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Axiom 7 (Xℓ-Monotonicity) For all x ∈ X \∆0, the following hold.
(i) if x /∈ Xℓ, then y ∈ Xℓ for some y ∈ X \∆0 with 0{0}x ≿ 0{0}y.
(ii) if x ∈ Xℓ, then y ∈ Xℓ for all y ∈ X \∆0 with 0{0}x ≿ 0{0}y.

This axiom requires that the magnitude sensitivity of a stream x should be associated
with the consumption it delivers from period 1 onward (0{0}x). In particular, it should
be associated with the “future utility” of the steam. Specifically, Xℓ-Monotonicity (i)
requires that if x is not magnitude sensitive, then there must exist a stream y with lower
future utility that is magnitude-sensitive. Xℓ-Monotonicity (ii) requires in addition that
if x exhibits the magnitude sensitivity then so must every stream having smaller future
utility.

This axiom shares a similar idea to Becker and Mulligan [4], who derive an observation
about complementarity between time preference and future utilities. In their model, for
example, when the wealth of the physical budget constraint expands, the agent invests
more resources into the future consumption as well as the future oriented capital, which
leads to decreasing impatience for large future utilities.

3.4 Representation Results

Our main result is:

Theorem 1 A preference ≿ on X satisfies Regularity, Weak Homotheticity, Xℓ-Separability,
Xℓ-Homogeneity, and Xℓ-Monotonicity if and only if it admits a CCE representation.

NT prove that a preference on X satisfies Regularity, Weak Homotheticity, Separa-
bility, Xℓ-Homogeneity, and Xℓ-Regularity if and only if it admits a homogeneous CE
representation.6 The difference from Theorem 1 is that in NT’s result, (i) Separability is
assumed on the whole domain rather than on Xℓ, and (ii) Xℓ-Regularity is weaker than
Xℓ-Monotonicity.

Before providing a proof sketch, we note that the CCE model has strong uniqueness
properties, inherited from the separability of the representation on the subdomain Xℓ and
because u(0) = 0 is featured in the representation.

Theorem 2 If there are two CCE representations (ui, {φi
t}, K i), i = 1, 2 of the same

preference ≿, then there exists α > 0 such that (i) u2 = αu1, (ii) φ2
t = αφ1

t , and (iii)
K2 = αK1.

The theorem ensures that, not only the cost function, but also the cognitive capacity
K is uniquely derived from preference.

6Xℓ-Regularity is even weaker than Strong Xℓ-Regularity, introduced in Section 6 to characterize the
General CCE representation. See Section 6.3 for more details.
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3.5 Proof Outline

A proof sketch of sufficiency is as follows. As an intermediate result, we first establish a
general representation (the General CCE representation), introduced in Section 6: There
exists a basic tuple (u, {φt}, Kx) such that ≿ is represented by the function U : X→ R+

defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D∈[0,1]T

∑
t≥1

(D(t)u(x)− φt(D(t))) subject to
∑
t≥1

φt(D(t)) ≤ Kx.

Here, the cost function φt, t ≥ 1, is increasing and convex (not necessarily CRRA) and
the cognitive resource is a function K : X → R++ ∪ {∞} with several properties. An
axiomatization of this general representation is investigated in Section 6. See the proof
outline in Section 6.5 for more details.

The cognitive resource Kx can be computed via integrals of functions derived from
behavior, but it is difficult to find an elegant axiom that would imply that Kx is a con-
stant function. An observation is that Kx exactly coincides with the total empathy costs∑

t≥1 φt(Dx(t)) when the capacity constraint is binding. Note that x is magnitude-sensitive
if and only if Dx(t) is strictly increasing in x, which is in turn equivalent to the capacity
constraint being slack at x. Therefore, the capacity constraint hits at the boundary of Xℓ.
To show Kx is constant, we will claim that Kx = Ky for all streams x, y on the boundary
of Xℓ.

Here, Xℓ-Homogeneity plays a key role. Given the General CCE representation, Xℓ-
Homogeneity restricts the cost function to be a homogeneous function, which implies that
the cost function has a CRRA form. Moreover, as noted earlier in the context of the
reduced form of the model (Proposition 1), a very convenient property of CRRA costs is
that the total empathy costs

∑
t≥1 φt(Dx(t)) associated with a magnitude-sensitive stream x

is proportional to its future payoff U(x)−u(x0). In particular, when the capacity constraint
is binding at x, we have

Kx =
∑
t≥1

φt(Dx(t)) ∝ U(x)− u(x0).

Since the capacity constraint is binding at the boundary of Xℓ, it is enough to show that
U(x)− u(x0) = U(y)− u(y0) for all streams x, y on the boundary of Xℓ.

Indeed, Xℓ-Monotonicity plays the key role in identifying the boundary of Xℓ. This
axiom implies that the magnitude sensitivity of streams is associated with their future
payoffs: if a stream gives a smaller future payoff, it tends to be magnitude sensitive. Since
the current consumption does not matter for defining Xℓ by Time-0 Irrelevance, Xℓ is
characterized as a lower contour set of ≿ among all streams with x0 = 0. In particular, the
boundary of Xℓ corresponds to an indifference curve of ≿ among those streams. Therefore,
U(x)− u(x0) = U(y)− u(y0) for all x, y on the boundary of Xℓ, as desired.

14



4 Limiting Cases

In this section, we investigate how the CCE representation changes according to changes
of parameters ((at)t≥1,m,K). We see that some models in the literature can be obtained
as limiting cases of the CCE representation.

As pointed out in (4), the maximum achievable period t discount factor is defined by

dt = (K/at)
1
m ≤ 1. From this condition, at may be removed from the model as at = K/d

m

t

for all t ≥ 1. By substituting it into the cost function, we have

φt(d) = K

(
d

dt

)m

. (6)

Moreover, the capacity constraint is reduced to∑
t≥1

(
D(t)

dt

)m

≤ 1.

Thus, K is independent of the capacity constraint and can be interpreted as a cost param-
eter. We can take ((dt)t≥1,m,K) as the set of parameters of the CCE representation.

4.1 DU Model

Although the DU model is not nested to the CCE representation, we show that it obtains
as a limiting case:

Proposition 2 Assume that U : X → R+ is a CCE representation (u, {φt}, K). Then,
for all streams x, the optimal discount factor Dx(t) satisfies

Dx(t) → dt

as m → ∞ and at = K/d
m

t → ∞ while holding K fixed.

Since φt(d) = K
(

d
dt

)m
, it converges to zero on the effective domain except for dt.

Moreover, all discount functions except for (dt)
T
t=1 become feasible in the capacity constraint

as m → ∞. Thus, an optimal discount function for any stream can get arbitrarily close to
(dt)

T
t=1.

4.2 Myopic Model

Next, we consider under what conditions on parameters the agent becomes more impatient.
Consider higher cognitive costs (at → ∞ or dt → 0) or lower cognitive capacity for empathy
(K → 0). Since at = K/d

m

t , we can consider the case where at → ∞ and dt → 0

while holding K fixed. As stated above, φt(d) = K
(

d
dt

)m
, and the capacity constraint
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is independent of K. Proposition 1 implies that for a small stream, its optimal discount
factor in period t satisfies

Du(xt)(t) =

(
d
m

t u(xt)

mK

) 1
m−1

. (7)

As dt → 0, Du(xt)(t) → 0. Since Dx(0) = 1, this limit case corresponds to a completely
myopic agent.

For large streams, it is easy to see from Proposition 1 that the representation can be
written as

U(x) = u(x0) +

{∑
t≥1

(dtu(xt))
m

m−1

}m−1
m

. (8)

Again, the agent becomes completely myopic as dt → 0.
If K → 0 and dt → 0 while holding at fixed, Proposition 1 implies that all streams

become large streams. From (8), the agent becomes myopic as dt → 0.
Finally, consider the case where at → ∞ andK → ∞ with keeping a1 ≥ K. Proposition

1 implies that all streams become small streams. From (7), we see that the agent becomes
myopic as at = K/d

m

t → ∞.

4.3 Max-max-type Model

If K → 0 and at → 0 while keeping K ≤ a1 and holding dt fixed, the CCE model reduces
to the case where cost functions vanish to zero and only the capacity constraint remains
the same, that is,

U(x) = Dx · u(x), where Dx = argmaxD · u(x), (9)

subject to D =

{
D ∈ [0, 1]T :

∑
t≥1

(
D(t)

dt

)m

≤ 1

}
,

or U(x) = maxD∈D D · u(x). This is also clear from Proposition 1 because all streams
become large if K → 0. Proposition 1 also implies that (9) can be written more explicitly
as (8).

5 Accommodating Evidence

Dohmen et al [6] show that people with lower cognitive abilities are more impatient. In
our model, higher cognitive costs φ or lower cognitive capacity for empathy K correspond
to greater impatience. See Section 4.2 for related comparative statics.

The CCE model has several behavioral implications similar to the CE model of NT.
For example, both models can accommodate the magnitude effect, preference reversal (the
common difference effect), and the concentration bias.
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The main difference between the CE and the CCE representations is that the former
is time separable, while the latter is time separable only on the set of magnitude-sensitive
streams. To illustrate this feature, suppose there are only three time periods and that
consumption in the final period 2 is fixed at c2. Consider a prospect of consuming c1 in
period 1 and let the present equivalent p(c1; c2) denote the amount received today that
would make him indifferent to it:

(p(c1; c2), 0, c2) ∼ (0, c1, c2).

We show how the present equivalent for c1 can depend on the value of u(c2).

Proposition 3 If (0, c1, c2) is small (resp large), then p(c1; c2) is constant (resp. decreas-
ing) in u(c2).

Proof. If (0, c1, c2) is small, then we are in the additively separable part of the model
and so p(c1; c2) is constant for small changes in c2. Suppose (0, c1, c2) is large. Using the
non-additive part of the representation, we get that

u(p) = (mK)
1
m

((
γ(1)u(c1)

m
m−1 + γ(2)u(c2)

m
m−1

)m−1
m − γ(2)

m−1
m u(c2)

)
.

Letting a = γ(1)u(c1)
m

m−1 > 0 and b = γ(2)u(c2)
m

m−1 > 0, we see that

u(p) = (mK)
1
m

(
(a+ b)

m−1
m − b

m−1
m

)
,

which is decreasing and convex in b. In particular, p is decreasing in u(c2).

The intuition is simply that if the agent’s empathy constraint is binding, then higher
values of c2 causes a reallocation of the limited empathy away from self 1 and towards self
2, making her care less about (more impatient towards) receiving c1. We are not aware
of any direct evidence of such an effect, but we note next that it is consistent with the
experimental finding of “preference for spread” documented in Loewenstein and Prelec
[18]. In particular, there can exist u(c) < u(c′) (such that (0, c′, c′) is a large stream) and

(c, 0, 0) ≺ (0, c′, 0).

(c, 0, c′) ≻ (0, c′, c′).

Increasing final period consumption from 0 to c′ caused the agent to become more impatient,
as in the above proposition. The preference pattern suggests a preference for spread of the
type discussed in Loewenstein and Prelec [18] since the agent appears to reverse her initial
preference for c′ tomorrow over c today in order to spread out good consumption.7

7It does not exactly match Loewenstein and Prelec [18], who ask how subjects would spread opportuni-
ties to have dinner at a fancy french restaurant F rather than at home H and finds that a majority exhibit
(F,H,H) ≺ (H,F,H) and (F,H, F ) ≻ (H,F, F ). Each of these preferences require D > 1, which can be
interpreted as anticipation. While we can allow this in our model, we do not do so for reasons specified in
Section 2.2.
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6 General Model

6.1 Functional Form

Say that a tuple (u, {φt}, K) is basic if

(i) u : ∆ → R+ is continuous and mixture linear with (a) u(0) = 0 and (b) u(∆) = R+,

(ii) φt : [0, 1] → R+ ∪ {∞} is an increasing convex function that is

(a) strictly increasing, strictly convex and differentiable on {d : 0 < φt(d) < ∞},
and

(b) satisfies φt(0) = 0, φ′
t(0) = 0 and φt ≤ φt+1 for all t < T ,

(iii) K : X \∆0 → R++ ∪ {∞} is either Kx = ∞ for all x or a continuous function with
the following properties:

(a) For all x, y and λ > 0,

u(xt)

u(yt)
= λ for all t =⇒ Kx = Ky,

(b) Kpt = φt(dt) for all p ∈ ∆ and t ≥ 1, where dt is a supremum of the effective
domain eff(φt) := {dt ∈ [0, 1] : φt(dt) < ∞},

(c) if Kx < ∞, Kx ≤ KxS0 for all S ⊂ {1, · · · , T} with xt ≻ 0 for some t ∈ S.

Compared to the regular tuple defined in Section 2.2, the cognitive cost function φt

here is a more general convex function, and moreover, it is possible that φt(d) = 0 for
all d in some interval [0, dt]. Intuitively, there can be a base-line degree of selflessness
(corresponding to a discount function dt) that the agent can access costlessly, that is,
φt(dt) = 0 for each t.

In condition (iii) of the regular tuple, the capacity constraint is some constant number
K > 0. The capacity constraint K as given above is more general in that it can now change
with the stream. Property (iii)(a) states that Kx depends only on utility streams (u(xt))t≥1

and is homogeneous of degree 0. This can be viewed as saying that Kx depends only on
the normalized distribution consumption across time. Property (iii)(b) states that the
empathy constraints for dated rewards attain the cost for the maximum level of discount
factor at each period. Property (iii)(c) requires that a stream x is associated with weakly
less capacity than any of its component rewards.8

8For example, if x = (x0, x1, x2) and x−2 = (x0, x1, 0), property (iii)(c) requires that Kx ≤ Kx−2 . This
is justified with the following story: There exists some background pool of capacity for empathy across
future selves. The current self faces with more time trade-offs in x than in x−2. The more difficult solving
the trade-offs is, the more the background pool is depreciated.
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Property (iii) implies that for all x with xt ≻ 0 for some t,

Kx ≤ Kx{t}0 = Kpt = φt(dt), (10)

which means that the empathy constraint Kx is bounded by the empathy constraints for
dated rewards. This condition is regarded as a generalization of property (iii) of the regular
tuple. Another implication of (iii) is that if Kx = ∞ for some x, Kpt = ∞ for all t.

Property (iii)(b) is imposed for uniqueness of the representation. Suppose that for
a dated reward pt, φt(dt) < Kpt . Since D(t) > dt is prohibitively costly, the capacity
constraint is never achieved in this case. Hence, Kpt can be reduced up to φt(dt) without
changing behavioral implications. On the other hand, suppose Kpt < φt(dt). Together with
property (iii)(c), for all streams x with Kx < ∞, Kx ≤ Kpt < φt(dt). Therefore, φt does
not have any empirical meaning beyond Kpt . Consequently, we can assume φt(dt) = Kpt .

9

As in the CCE model, for each x the optimal discount function Dx is chosen subject to
two constraints: the capacity constraint given by

φ(D) ≤ Kx,

where φ(D) =
∑

t≥1 φt(D(t)), and the boundary constraint given by

D(t) ≤ dt, for all t ≥ 1.

We define the representation as follows:

Definition 4 (General CCE Representation) A General Constrained Costly Empathy
(General CCE) representation is a basic tuple (u, {φt}, K) such that ≿ is represented by
the function U : X→ R+ defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,

s.t. Dx = arg max
D∈[0,dt]T

{
∑
t≥1

D(t)u(xt)− φt(D(t))} subject to φ(D) ≤ Kx.

For each stream x, an optimal discount function Dx is determined by maximizing the
discounted utilities net of aggregated costs for the discount function subject to the capacity
and boundary constraints. By condition (10), for all t,

φ(D) ≤ Kx ≤ Kpt = φt(dt).

Therefore, if D satisfies the capacity constraint, it also satisfies the boundary constraint,
that is, the boundary constraint is redundant. Consequently, an optimal discount function
for the General CCE representation is determined by the problem:

Dx = arg max
D∈RT

+

{
∑
t≥1

D(t)u(xt)− φt(D(t))} subject to φ(D) ≤ Kx.

9In other words, the definition of the basic tuple implicitly assumes the maximum costs and minimum
capacity constraints for representing preferences. On the other hand, in the regular tuple of the CCE
representation, {φt} is assumed to be a CRRA family, and the parameters ((at)t≥1,m,K) are enough to
pin down the representation. Hence, we don’t have to consider the maximum cost functions there.
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6.2 Properties of Optimal Discount Functions

For any stream x ∈ X \∆0, consider the ray passing through x:

Xx = {x ∈ X |x = αx, ∃α > 0}.

By property (iii) of the General CCE representation, Kx is constant onXx. DenoteK = Kx

for some (any) x ∈ Xx.

Proposition 4 (1) For any x ∈ Xx, if φ(Dx) < K, Dx is strictly increasing, and is
obtained explicitly by the FOC condition:

Dx(t) = (φ′
t)

−1(u(xt)).

(2) For any x, y ∈ Xx, if φ(Dx) = φ(Dy) = K,

Dx = Dy.

Moreover, Dx(t) depends on the capacity cap K and the whole stream x, and not just the
payoff at t.
(3) Dx is weakly increasing on Xx. In particular, Dx is strictly increasing if φ(Dx) < K,
and is constant if φ(Dx) = K.

From part (1), an optimal discount function Dx(t) depends only on the payoff in pe-
riod t if the capacity constraint is not binding. By substituting it into the General CCE
representation, U(x) is written as

U(x) = u(x0) +
∑
t≥1

(φ′
t)

−1(u(xt))u(xt). (11)

Thus, U(x) is additively separable if the capacity constraint is not binding. According
to increasing in payoffs, Dx(t) grows unless the capacity constraint is binding. Once
the constraint hits, Dx(t) stops growing. Afterwards, on the same ray, Dx(t) is con-
stant but depends on the whole stream x. Consequently, the representation U(x) =
u(x0) +

∑
t≥1Dx(t)u(xt) is not additively separable.

6.3 Axioms

The Regularity axiom excluding the Monotonicity condition will be referred to as:

Axiom 8 (Weak Regularity) ≿ satisfies Order, Continuity, Impatience, C-Monotonicity,
and Risk Preference. Moreover, for any steam x, there exists c ∈ C such that

c ≿ x ≿ 0.
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The last condition is stronger than the Present Equivalent axiom, and requires that 0 is
the worst alternative. If ≿ satisfies Monotonicity, this additional requirement is redundant.

Axiom 9 (Strong Xℓ-Regularity) For all x ∈ X \∆0, the following hold.
(i) if x ̸∈ Xℓ then αx ∈ Xℓ for some α ∈ (0, 1].
(ii) if x ∈ Xℓ then αx ∈ Xℓ for all α ∈ (0, 1).

Consider the ray {αx |α ∈ (0, 1]} that contains all the mixtures that lie between x and
0. By Weak Homotheticity, the agent’s impatience must be weakly increasing as we go
down this ray from x to 0. Strong Xℓ-Regularity requires that impatience is in fact strictly
increasing as we go down the ray, except possibly for being constant near x. Specifically,
Strong Xℓ-Regularity (i) requires that Xℓ should always intersect with this ray. That is,
there always exists some α ∈ (0, 1] for which αx exhibits ℓ-Magnitude Sensitivity.10 Strong
Xℓ-Regularity (ii) requires in addition that if x exhibits an ℓ-Magnitude Sensitivity then
so must every stream in the ray {αx |α ∈ (0, 1]}.

A weaker axiom, called Xℓ-Regularity, is considered by NT, which requires the same
conditions only for dated rewards pt ≻ 0 instead of general streams x ∈ X \∆0. We show
in Appendix B.1 that together with the other axioms, Xℓ-Monotonicity implies Strong
Xℓ-Regularity.

Moreover, we impose four axioms for streams in Xℓ. For notational convenience, for all
streams x, y ∈ X and S ⊂ {0, 1, · · · , T}, let xSy denote the stream that pays according to
x at t ∈ S and according to y otherwise.

Axiom 10 (Xℓ-Time-Invariance) For all p, p̂ ∈ ∆ and t, if pt, p̂t ∈ Xℓ, then

p ≿ p̂ ⇐⇒ pt ≿ p̂t.

Axiom 11 (Time-0 Irrelevance) For any x ∈ X and any p ∈ ∆0,

x ∈ Xℓ =⇒ p{0}x ∈ Xℓ.

Axiom 12 (Xℓ-Dominance) For any x ∈ X and any S ⊂ {1, · · · , T} such that xt ≻ 0
for some t ∈ S,

x ∈ Xℓ =⇒ xS0 ∈ Xℓ.

Axiom 13 (Xℓ-Continuity) Xℓ is closed in X \∆0.

The first axiom requires that rankings over dated rewards in period t are independent
of t for ℓ-magnitude sensitive streams. The second requires that ℓ-magnitude sensitivity of
a stream x does not rely on x0 in any way. The third states that if there is an ℓ-magnitude
sensitive stream x paying positive outcomes at some periods within S, then the stream that
is identical on S and paying nothing elsewhere is also ℓ-magnitude sensitive. The fourth
states that the limit of a sequence of ℓ-magnitude sensitive streams is ℓ-magnitude sensitive
if the limit is not an immediate reward.

10That is, cαx ∼ αx =⇒ β ◦ cαx ≻ βαx for all β ∈ (0, 1).
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6.4 Representation Results

Theorem 3 A preference ≿ on X satisfies Weak Regularity, Weak Homotheticity, Xℓ-
Separability, Strong Xℓ-Regularity, Xℓ-Time-Invariance, Time-0 Irrelevance, Xℓ-Dominance,
and Xℓ-Continuity if and only if it admits a General CCE representation.

Under Weak Regularity, ≿ does not necessarily satisfy Monotonicity, and Xℓ-Time In-
variance is a weaker requirement than Monotonicity. Monotonicity can in fact fail depend-
ing on how Kx varies across consumption streams. Nevertheless, there are subdomains
where Monotonicity holds. One is the set of magnitude-sensitive streams, Xℓ. On this
subdomain, Kx is irrelevant, and the representation is reduced to an additively separable
functional form given by (11). Thus, the representation satisfies Monotonicity. Another
subdomain is any ray passing through some consumption stream. As shown in Proposition
4 (3), Dx is weakly increasing on the ray. Thus, the representation satisfies Monotonicity
on this subdomain. See Noor and Takeoka [25] for more details.

As in the CE representation, the General CCE representation has strong uniqueness
properties.

Theorem 4 If there are two General CCE representations (ui, {φi
t}, K i), i = 1, 2 of the

same preference ≿, then there exists α > 0 such that (i) u2 = αu1, (ii) φ2
t = αφ1

t , and (iii)
K2 = αK1.

6.5 Proof Outline

A proof sketch of sufficiency of Theorem 3 is as follows. Weak Regularity, Xℓ-Separability,
Xℓ-Time Invariance, andXℓ-Dominance yield an additively separable representation U(x) =∑

t≥0 U(xt) on the space of magnitude-sensitive streams Xℓ. This representation can be

rewritten in the obvious way (that is, define u(p) = U0(p) and Dx(t) = Ut(xt)
u(xt)

) so that
it looks like a discounted utility as in the desired representation, with the discount func-
tion Dx dependent on the stream. Since u and Dx are given, we can use the first order
condition u(xt) = φ′

t(Dx(t)) for each t to obtain an additive cost function φ =
∑

φt for
which Dx is optimal. Here, the cost function φt, t ≥ 1, is increasing and convex (and not
necessarily CRRA). This yields a representation close to the desired one on the space of
magnitude-sensitive rewards Xℓ.

The second step is to extend this representation to the whole domain. For any x ∈
X \ ∆0, consider the ray from the origin passing through x, that is, {αx |α > 0}. Weak
Homotheticity and Strong Xℓ-Regularity imply that there exists a unique αx such that
αx is magnitude sensitive if and only if α ≤ αx. Thus, αxx can be regarded as being on
the “boundary” of Xℓ. By this property, for any x /∈ Xℓ ∪ ∆0, ≿ satisfies Homotheticity
when α > αx, which implies αx ◦ cx ∼ αxx. From this condition, the representation can
be extended by U(x) = u(cx) = U(αxx)/αx. Moreover, since αxx ∈ Xℓ, U(αxx) admits an
additively separable representation by the first step. Then, U(x) is more explicitly written
as U(x) = u(x0) +

∑
t≥1Dαxx(t)u(xt).
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The remaining problem is to infer a general capacity constraint Kx and to show that
Dαxx can be regarded as an optimal discount function for x under the constraint. As
shown above, along a ray {λx |λ > 0}, as λ increases, Dλx should first strictly increase and
eventually become constant once λx crosses the boundary of Xℓ. The main step in proving
the theorem is to find a cognitive constraint Λx for which the optimal D has this property.
An arbitrary closed and convex set Λx ⊂ [0, 1]T satisfying Λx = Λλx for all λ does not define
a model that is consistent with Weak Homotheticity and Strong Xℓ-Regularity.

11 Instead,
we define Kx = φ(Dαxx). That is, Kx is the total empathy cost of the optimal discount
function at the boundary of Xℓ. We find that the cognitive constraint

Λx = {D ∈ [0, 1]T :
∑
t≥1

φt(D(t)) ≤ Kx}

does the job. The remaining step is to verify that Kx satisfies property (iii) of the basic
tuple. Xℓ-Continuity is required for proving continuity of Kx.

7 Concluding Remarks

In the CCE representation, the regular tuple assumes that φt takes a CRRA form and
K is a constant. On the other hand, in the General CCE representation, the basic tuple
assumes that φt is increasing and convex, while K is stream-dependent. An intermediate
class of the two representations, which has not been axiomatized in the present paper, is
that φt is increasing and convex, and K is constant. As mentioned in Section 3.5, it is
difficult to find an elegant axiom that would imply that Kx is a constant function without
homogeneity of φt.

The following is one attempt to characterize the constant K model. Say that a capacity
constraint K : X \∆0 → R++ is monotonic if

u(xt) ≥ u(yt), ∀t =⇒ Kx ≤ Ky.

Then, we can show the next proposition.

11 Fix x and let Λx = Λλx = Λ. Weak Homotheticity and Strong Xℓ-Regularity require that as stakes
are increased, the discount function eventually ceases to change. But without additional structure on
Λ, this property may not be obtained. To see this suppose Dx is optimal for x, that is, it satisfies
Dx · u(x) − φ(Dx) > D · u(x) − φ(D) for all D ∈ Λ (the strict inequality comes from the strict convexity
of the cost function, which yields a unique maximizer). This can be rewritten as

Dx · u(x)−D · u(x) > φ(Dx)− φ(D)

for all D ∈ Λ. However, suppose Dx · u(x)−D · u(x) < 0 for some D ∈ Λ. Exploiting the linearity of u, it
is readily seen that scaling up x to λx for λ > 1 can lead to the inequality

Dx · u(λx)−D · u(λx) < φ(Dx)− φ(D).

Consequently, even if Dx is on the boundary of Λ, scaling up rewards may change the agent’s discount
function in a way inconsistent with Weak Homotheticity and Strong Xℓ-Regularity.
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Proposition 5 Consider ≿ that admits a General CCE representation. Moreover, assume
≿ satisfies Monotonicity. Then, if K is monotonic, Kx = Ky for any x, y ∈ X \∆0.

Note that monotonicity ofK is stronger than property (iii)(c) of the General CCE repre-
sentation. SinceXℓ-Dominance is closely related to property (iii)(c), StrongXℓ-Dominance,
considered in Appendix B.1, might be a behavioral counterpart of monotonic K. Further
investigation is left for future research.

The Impatience axiom does not play a significant role in the construction of our rep-
resentation from our axioms. We impose it because of its central place in the literature,
and because we feel that its violation (such as due to anticipation) is not best understood
in terms of empathy. Nevertheless, if we drop Impatience, the boundary constraint would
cease to exist since we would be allowing D(t) > 1. In this case the joint restriction be-
tween at and K, that is, K ≤ a1, is not needed. Each parameter ((at)t≥1,m,K) of the
CCE representation is independent to each other, and 0 < K ≤ ∞ in particular.

Our modelling choices not withstanding, constrained cognitive optimization can gives
rise to the Weak Axiom of Revealed Preference. Consider a model where the agent has a
pool of resources K, and on facing a menu {x, y, z, ...} of streams, she invests her resources
in some manner on all the available streams in the menu. This then yields an optimal D
with which she evaluates all streams in this menu. This gives rise to a menu-dependent
discount function, and would correspond to violations of the Weak Axiom of Revealed
Preference. We eschew such a study in this paper. In the CCE model, we assume that
there is a cap K in the evaluation of each individual stream. This gives rise to stream-
dependent discount functions and preserves the Weak Axiom of Revealed Preference. This
affords us tractability for applications and keeps us close to the time preference literature.
We leave it to future research to extend and analyze a menu-dependent version of our
model.

A Appendix: Proof of Proposition 1

We solve the cognitive optimization problem for each x. Let φt(d) = atd
m on d ∈ [0, 1]. As

explained in Section 2.2, the boundary constraint D(t) ≤ 1 is effectively ignored by condi-
tion (iii) of regularity. For each x, an optimal discount function {Dx(t)}t≥1 is determined
by

max
D≥0

∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t)),

subject to
∑
t≥1

φt(D(t)) ≤ K.

The FOC of the above maximization problem is obtained as the FOC of the following
Lagrangian:

L =
∑
t≥1

D(t)u(xt)−
∑
t≥1

atD(t)m + λ(K −
∑
t≥1

atD(t)m),
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where λ ≥ 0 is a Lagrange multiplier for the capacity constraint. By differentiating L with
respect to D(t), we have

Dx(t) =

(
u(xt)

(1 + λ)mat

) 1
m−1

, (12)

for all t = 1, · · · , T .
Suppose x is small. Since the capacity constraint is not binding, we have λ = 0. Thus,

Dx(t) =

(
u(xt)

mat

) 1
m−1

and
U(x) = u(x0) +

∑
t≥1

Dx(t)u(xt) = u(x0) +
∑
t≥1

γ(t)u(xt)
m

m−1 ,

where γ(t) = (mat)
− 1

m−1 .
Next, suppose x is large. Then, the capacity constraint is binding. By substituting (12)

into the capacity constraint, ∑
t≥1

at

(
u(xt)

(1 + λ)mat

) m
m−1

= K.

By rearrangement,
1

(1 + λ)
1

m−1

=
K

1
m{∑

t≥1 at

(
u(xt)
mat

) m
m−1

} 1
m

.

By substituting it into (12),

Dx(t) =
K

1
m

(
u(xt)
mat

) 1
m−1

{∑
t≥1 at

(
u(xt)
mat

) m
m−1

} 1
m

=
(mK)

1
mγ(t)u(xt)

1
m−1{∑

t≥1 γ(t)u(xt)
m

m−1

} 1
m

.

Therefore,

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt)

= u(x0) + (mK)
1
m

{∑
t≥1

γ(t)u(xt)
m

m−1

}m−1
m

.

Finally, we derive a threshold where small and large streams are distinguished. At this
boundary of consumption streams,∑

t≥1

φt(Dx(t)) =
∑
t≥1

at

(
u(xt)

mat

) m
m−1

= K.

25



Equivalently, ∑
t≥1

γ(t)u(xt)
m

m−1 = mK.

Therefore, at the boundary,

U(x) = u(x0) +
∑
t≥1

γ(t)u(xt)
m

m−1 = u(x0) +mK.

B Appendix: Proof of Theorem 1

B.1 Sufficiency

Consider the following axiom:

Axiom 14 (Strong Xℓ-Dominance) For any x ∈ X,

x ∈ Xℓ and xt ≿ yt, ∀t =⇒ y ∈ Xℓ.

This says that if there is an ℓ-magnitude sensitive stream x then the stream that pays
smaller payoffs in every period is also ℓ-magnitude sensitive. If we set yt = xt on S and
yt = 0 elsewhere, this axiom implies Xℓ-Dominance.

As an intermediate result, we show the following:

Lemma 1 Assume Xℓ ⊊ X \ ∆0. If a preference ≿ on X satisfies Regularity, Weak
Homotheticity, Xℓ-Separability, Strong Xℓ-Regularity, Time-0 Irrelevance, and Strong Xℓ-
Dominance, then it admits a General CCE representation with K : X \∆0 → R++.

Proof. Notice that the set of the axioms in this lemma implies all the axioms of Theorem
3 except for Xℓ-Continuity. Thus, by all the arguments up to Lemma 18, there exists
K : X \∆0 → R++ ∪ {∞} such that ≿ is represented by the General CCE representation.
We want to show that K can be taken to be finite-valued. We modify the argument in
Lemma 18 as follows.

By assumption, there exists x̄ /∈ Xℓ ∪∆0. By Lemma 14, there exists αx̄ ∈ (0, 1) such
that αx̄x ∈ Xℓ and αx /∈ Xℓ for all α > αx̄. Let Xαx̄ = {y ∈ X | yt ≻ αx̄ ◦ x̄t, ∀t}. If
Xαx̄ ∩ Xℓ ̸= ∅, there exists y ∈ Xαx̄ ∩ Xℓ. By Monotonicity, yt ≿ α ◦ x̄t for all t for all
α > αx sufficiently close to αx. But, then, Strong Xℓ-Dominance implies αx̄ ∈ Xℓ for such
α, which is a contradiction. Hence, we have Xαx̄ ∩Xℓ = ∅, or Xℓ ⊂ X \Xαx̄ .

Now take any y ∈ X \ ∆0. Let x̄ be the stream fixed in the above argument. For
sufficiently large λ > 0, we have λ ◦ yt ≻ αx̄ ◦ x̄t for all t, that is, λy ∈ Xαx̄ . Together with
the above observation, λy /∈ Xℓ. Let x denote such λy. That is, we find x /∈ Xℓ on the
same ray of y. For such x, define

Kx := φ(Dαxx) < ∞.
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Extend to Xℓ by requiring Kx = Kλx for any λ > 0. The rest of the proof of Lemma 18 is
the same as before.

We next verify that the set of axioms for the CCE representation implies that of Lemma
1.

Lemma 2 ≿ satisfies Time-0 Irrelevance, Strong Xℓ-Dominance, and Strong Xℓ-Regularity.

Proof. Time-0 Irrelevance is directly implied from Xℓ-Monotonicity (ii).
By Time-0 Irrelevance, x ∈ Xℓ if and only if p{0}x ∈ Xℓ for all p ∈ ∆. Xℓ-Monotonicity

(ii) and Monotonicity immediately imply Strong Xℓ-Dominance.
Take any x ∈ X \ ∆0. By Monotonicity, 0{0}x ≻ 0. Suppose x /∈ Xℓ. By Xℓ-

Monotonicity (i), there exists y ∈ Xℓ such that 0{0}x ≿ 0{0}y. By Monotonicity, 0{0}y ≻
0. By Continuity, 0{0}y ≿ 0{0}αx for some sufficiently small α > 0, and so by Xℓ-
Monotonicity (ii), αx ∈ Xℓ. On the other hand, if x ∈ Xℓ, by Monotonicity, 0{0}x ≿
0{0}αx, and hence, by Xℓ-Monotonicity (ii), αx ∈ Xℓ.

Therefore, there exists a General CCE representation for ≿. We first show that the
cost function on its effective domain takes the power form for some constants m > 1 and
at > 0,

φt(d) = atd
m. (13)

Moreover, at ≤ at+1 for all t ≥ 1. We already know that φt : [0, 1] → R+ ∪ {∞} is an
increasing convex function that is strictly increasing, strictly convex, and differentiable on
{d | 0 < φt(d) < ∞}. Moreover, Dr(t) is strictly increasing in r on

Rℓ(t) = {r | r = u(p) for some pt ∈ Xℓ}, (14)

and is constant otherwise. Since ≿ satisfies Xℓ-Homogeneity, by the same proof of Theorem
7 (Appendix F) in NT, we can show that Dr(t) on Rℓ(t) is written as a power form, that
is, Dr(t) = γtr

θ for some γt > 0 and θ > 0. Then, φt : [0, dt] → R+ is rewritten as in (13).

Lemma 3 For all x ∈ Xℓ,

φ(Dx) =
1

m
[U(x)− u(x0)].

Proof. As shown in (13), φt admits a power form, φt(d) = atd
m. For all x ∈ Xℓ, the FOC

implies mat(Dxt(t))
m−1 = u(xt). Thus,

φ(Dx) =
∑
t≥1

φt(Dxt(t)) =
∑
t≥1

at

(
u(xt)

mat

) m
m−1

=
1

m

∑
t≥1

(
u(xt)

mat

) 1
m−1

u(xt)

=
1

m

∑
t≥1

Dxt(t)u(xt) =
1

m
[U(x)− u(x0)],

as desired.
We exclude the possibility of Kx = ∞ in the CCE representation.
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Lemma 4 Xℓ ⊊ X \∆0.

Proof. By seeking a contradiction, suppose Xℓ = X \∆0. From (14), Dr(t) = γtr
θ for all

r ∈ Rℓ(t) = R+. But, then, Dr(t) > 1 for all r > γ
− 1

θ
t , which contradicts to the Impatience

axiom. Hence, Xℓ ̸= X \∆0, as desired.
By Lemma 1, ≿ admits a General CCE representation with a bounded capacity con-

straint K : X \∆0 → R++. From now on, we show that K is constant.
Define Vℓ := {U(0{0}x) ∈ R++ |x ∈ Xℓ}. By Lemma 4, Vℓ is bounded from above.

Indeed, take some y ∈ (X \ ∆0) \ Xℓ. If there exists x ∈ Xℓ with U(0{0}x) > U(0{0}y),
then by Xℓ-Monotonicity (ii), we must have y ∈ Xℓ, which is a contradiction. Hence, for
all x ∈ Xℓ, U(0{0}x) ≤ U(0{0}y). That is, Vℓ is bounded from above. Hence, there exists
v := supVℓ > 0. Let

Xv = {x ∈ X \∆0 |U(0{0}x) ≤ v}.

The following lemma states that Xℓ is characterized as the lower contour set of some
indifference curve.

Lemma 5 Xℓ = Xv.

Proof. Xℓ ⊂ Xv: Take any x /∈ Xv. By definition, U(0{0}x) > v. Then, we have x /∈ Xℓ

because x ∈ Xℓ violates the definition of v.
Xv ⊂ Xℓ: Take any x ∈ Xv with U(0{0}x) < v. By definition of v, there exists y ∈ Xℓ

with U(0{0}x) ≤ U(0{0}y). By part (ii) of Xℓ-Monotonicity, x ∈ Xℓ. Next, take x ∈ Xv

with U(0{0}x) = v. For any α ∈ (0, 1), by Risk Preference and Monotonicity, αx ≺ x,
and hence, U(0{0}αx) < U(0{0}x) = v, which implies αx ∈ Xv. By the above argument,
αx ∈ Xℓ. By Lemma 14, appeared in the proof of Theorem 3, x ∈ Xℓ as α → 1.

Next, define
bd(Xℓ) = {x ∈ Xℓ |λx /∈ Xℓ for all λ > 1}.

Since Kx = Kλx for all λ > 0, it suffices to show that Kx = Ky for all x, y ∈ bd(Xℓ). This
claim follows from the two lemmas below.

Lemma 6 bd(Xℓ) = {x ∈ Xv |U(0{0}x) = v}.

Proof. Take any x ∈ bd(Xℓ). Since x ∈ Xℓ = Xv by Lemma 5, U(0{0}x) ≤ v. Seeking
a contradiction, suppose U(0{0}x) < v. By Continuity, there exists some λ > 1 such that
U(0{0}λx) < v, which implies λx ∈ Xℓ by Lemma 5. However, by definition of bd(Xℓ),
λx /∈ Xℓ. This is a contradiction.

Conversely, take any x ∈ Xv satisfying U(0{0}x) = v. By Lemma 5, we know x ∈ Xℓ.
By seeking a contradiction, suppose x /∈ bd(Xℓ). Then, there exists some λ > 1 with
λx ∈ Xℓ. By Monotonicity, U(0{0}λx) > U(0{0}x) = v. Lemma 5 implies λx /∈ Xℓ, a
contradiction.

Lemma 7 For all x, y ∈ bd(Xℓ), Kx = Ky.
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Proof. By Lemmas 3 and 6,

x, y ∈ bd(Xℓ)

=⇒ U(0{0}x) = U(0{0}y)
=⇒ U(x)− u(x0) = U(y)− u(y0)

=⇒ φ(Dx) = φ(Dy)

=⇒ Kx = Ky.

The last implication comes from the definition of Kx, which says that Kx = φ(Dx) for all
x ∈ bd(Xℓ).

12

From now on, let K > 0 be the constant number implied by Lemma 7.

Lemma 8 For all t ≥ 1, atd
m

t = K.

Proof. Consider a dated reward pt ∈ Xℓ. By the FOC, u(p) = matDu(p)(t)
m−1. Since pt is

ℓ-magnitude sensitive,

Du(p)(t) =

(
u(p)

mat

) 1
m−1

≤ dt.

Let p̄t be a dated reward which attains a supremum of {u(p) | pt ∈ Xℓ}. Since the capacity
constraint will be binding at p̄t,

K = at

(
u(p̄)

mat

) m
m−1

= atd
m

t ,

as desired.
Together with d1 ≤ 1, this lemma implies K ≤ a1. Since the shape of the cost function

beyond the capacity constraintK does not have any behavioral implications, we can assume
that φt(d) = atd

m on the whole unit interval [0, 1]. Therefore, (u, {φt}t≥1, K) is a regular
tuple, as desired.

B.2 Necessity

For each components (u, {φt}, K), a CCE representation is given as in Definition 2. As
shown in Appendix A, its reduced form is obtained as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

where
Dx(t) = γ(t)u(xt)

1
m−1 (15)

12See the proof of Lemma 18.
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if U(x)− u(x0) ≤ mK, and

Dx(t) =
(mK)

1
mγ(t)u(xt)

1
m−1{∑

τ≥1 γ(τ)u(xτ )
m

m−1

} 1
m

(16)

if U(x)− u(x0) > mK.
If U(x)− u(x0) > mK, Dαx(t) is constant for all α sufficiently close to one. If U(x)−

u(x0) ≤ mK, Dx(t) = Du(xt)(t) is strictly increasing in u(xt). Therefore,

Xℓ = {x ∈ X |
∑
t≥1

γ(t)u(xt)
m

m−1 ≤ mK}. (17)

Note that Dx(t) is continuous in x. By (15) and (16), Dx(t) is strictly increasing in
u(xt) in Xℓ, and it is constant on a ray in X \ Xℓ. It is obvious to see that ≿ that U
represents satisfies Order, Continuity, C-Monotonicity, Impatience, Present Equivalents,
and Risk Preference. Weak Homotheticity requires αU(x) ≥ U(αx), which follows from
(15) and (16). Since Dx(t) depends only on u(xt) on Xℓ, U is additively separable on
this subdomain, which implies Xℓ-Separability. Xℓ-Homogeneity is implied by the same
argument as in Theorem 7 of NT (The proof is found in the supplementary appendix
(Noor and Takeoka [24, Section 4])).

To show Xℓ-Monotonicity, notice that the CCE representation is additively separable
between period 0 and period 1 onward. Thus, for all x, U(0{0}x) = U(x)−u(x0). Take any
x ∈ Xℓ and y with U(0{0}y) ≤ U(0{0}x). Since U(y)− u(y0) = U(0{0}y) ≤ U(0{0}x) =
U(x) − u(x0) ≤ mK, U(y) − u(y0) ≤ mK, that is, y ∈ Xℓ. If x /∈ Xℓ, U(0{0}x) =
U(x) − u(x0) > mK. Since U(0{0}αx) → 0 as α → 0, there exists some α ∈ (0, 1) such
that U(0{0}αx) ≤ U(0{0}x) and U(0{0}αx) = U(αx)−u(α◦x0) ≤ mK, that is, αx ∈ Xℓ.

Finally, we show the following property:

Lemma 9 ≿ satisfies Monotonicity.

Proof. Take any x, y such that u(xt) ≥ u(yt) for all t ≥ 0. Since U(x) is additively
separable between x0 and everything else, it is enough to show Monotonicity for streams
x, y with u(x0) = u(y0) = 0. From now on, we consider such streams only.

Since u(xt)
m

m−1 ≥ u(yt)
m

m−1 for all t, we have∑
γ(t)u(xt)

m
m−1 ≥

∑
γ(t)u(yt)

m
m−1 .

Thus, if x and y are ℓ-magnitude sensitive, we have the desired result. From now on,
suppose that either x or y is not ℓ-magnitude sensitive. Moreover, since

∑
γ(t)u(xt)

m
m−1 ≥∑

γ(t)u(yt)
m

m−1 , we have either (a) neither x nor y is ℓ-magnitude sensitive, or (b) y is
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ℓ-magnitude sensitive but x is not. If case (a) holds, the representation implies that

∑
t≥1

Dx(t)u(xt) = (mK)
1
m

{∑
t≥1

γ(t)u(xt)
m

m−1

}m−1
m

≥(mK)
1
m

{∑
t≥1

γ(t)u(yt)
m

m−1

}m−1
m

=
∑
t≥1

Dy(t)u(yt),

as desired.
Suppose that case (b) holds. Define x(α) = αx+ (1− α)y for all α ∈ (0, 1). Note that

u(xt) ≥ u(xt(α)) ≥ u(yt) ≥ 0. By continuity of the representation, there exists α∗ ∈ (0, 1)
such that x(α) is not ℓ-magnitude sensitive if α > α∗ and x(α) is ℓ-magnitude sensitive if
α ≤ α∗. Since

∑
t≥1 γ(t)u(xt(α

∗))
m

m−1 = mK, the representation implies

∑
t≥1

Dx(t)u(xt) = (mK)
1
m

{∑
t≥1

γ(t)u(xt)
m

m−1

}m−1
m

≥(mK)
1
m

{∑
t≥1

γ(t)u(xt(α
∗))

m
m−1

}m−1
m

=
∑
t≥1

γ(t)u(xt(α
∗))

m
m−1

≥
∑
t≥1

γ(t)u(yt)
m

m−1 =
∑
t≥1

Dy(t)u(yt).

C Appendix: Proof of Theorem 2

For any dated reward x = pt with u(p) > 0, the discount function (which requires Dx(t) > 0
and Dx(τ) = 0 for τ ̸= t) is determined by preference: if γ ∈ [0, 1] is such that γ ◦ p ∼ x,
then Dx(t) = γ. Thus the discount functions for dated rewards are uniquely pinned down
by preference. Moreover, the set {Dpt(t) ∈ [0, 1] | p ≿ 0} defines the effective domain of the
cost function φt in any representation. We make use of these observations below.

Take two CCE representations for the preference. Since u1 and u2 are linear and repre-
sent the same preference over lotteries, there exists α > 0 such that u2 = αu1 (Note that
we impose a normalization ui(0) = 0 in the definition of the regular tuple).

Take a dated reward x = pt. By the above observation, Dx(t) is invariant between the
two representation. By the first order condition,

(φ2
t )

′(Dx(t)) = u2(p) = αu1(p) = α(φ1
t )

′(Dx(t)),

which implies φ2
t = αφ1

t . In particular, m1 = m2 and a2t = αa1t for all t.
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From (17) in Appendix B.2, for all i = 1, 2,

Xℓ = {x ∈ X |
∑
t≥1

γi(t)ui(xt)
m

m−1 ≤ mKi}.

Since

γ2(t)u2(xt)
m

m−1 = (ma2t )
− 1

m−1u2(xt)
m

m−1 = (mαa1t )
− 1

m−1 (αu1(xt))
m

m−1

= αγ1(t)u1(xt)
m

m−1 ,

we have K2 = αK1, as desired.

D Proof of Proposition 2

Note that a cost function φt(d) can be written as φt(d) = K( d
dt
)m. On the other hand, the

capacity constraint is equivalent to

φ(D) =
∑
t≥1

(
D(t)

dt

)m

≤ 1,

which is independent of K. For all discount functions D with D(t) < dt,
(

D(t)

dt

)m
→ 0 as

m → ∞. Thus, all D ∈ eff (φ) \ {(dt)Tt=1} eventually satisfies the capacity constraint.
Note that from Proposition 1, Xℓ approaches to X and all streams become ℓ-magnitude

sensitive streams as m → ∞. Proposition 1 implies that for all streams x,

Du(xt)(t) =

(
d
m

t u(xt)

mK

) 1
m−1

=

(
u(xt)

mK

) 1
m−1

d
m

m−1

t =

(
u(xt)

K

) 1
m−1

m− 1
m−1d

m
m−1

t .

Since 1
m−1

→ 0 and m
m−1

→ 1,
(

u(xt)
K

) 1
m−1 → 1 and d

m
m−1

t → dt. Let f(m) = m− 1
m−1 . By

L’Hôpital’s rule,

lim
m→∞

ln f(m) = lim
m→∞

−
1
m

1
= 0,

which implies limm→∞ f(m) = 1. Thus, Du(xt)(t) → dt as desired.

E Appendix: Proof of Proposition 4

By property (iii), Kx = Kx if x, x belong to the same ray. Thus, denote K = Kx for
some (any) x on the ray. For a stream x on the ray, its optimal discount factor Dx is
characterized by the FOC of the following Lagrangian:

L =
∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t)) + λ(K −
∑
t≥1

φt(D(t))),
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where λ ≥ 0 is a Lagrange multiplier.
If the capacity constraint is not binding, λ = 0. By differentiating L with respect to

D(t), an optimal Dx satisfies

u(xt) = φ′
t(Dx(t)), ∀t ≥ 1 with u(xt) > 0.

We have a closed-form solution such as

Dx(t) = Du(xt)(t) = (φ′
t)

−1(u(xt)).

In particular, Dx(t) depends only on u(xt).
If the capacity constraint is binding, by differentiating L with respect to D(t), an

optimal Dx satisfies

u(xt) = (1 + λ)φ′
t(Dx(t)), ∀t ≥ 1 with u(xt) > 0, (18)∑

t≥1

φt(Dx(t)) = K (19)

for some λ ≥ 0. From (18), Dx(t) = (φ′
t)

−1(u(xt)/(1 + λ)). By substituting it into (19),∑
t≥1

φt

(
(φ′

t)
−1

(
u(xt)

1 + λ

))
= K.

This equation is solved for λ, which is denoted by λ(x,K). Then, we obtain

Dx(t) = (φ′
t)

−1

(
u(xt)

1 + λ(x,K)

)
.

Note that Dx(t) depends on the whole stream x, not only on the payoff at t, as well as the
capacity cap K.

Take any other y on the ray such that the capacity constraint is binding at its optimal
Dy. From the FOC,

u(yt) = (1 + λ′)φ′
t(Dy(t)), ∀t ≥ 1 with u(xt) > 0,∑

t≥1

φt(Dy(t)) = K

for some positive λ′. Since x and y belong to the same ray, y = αx for some α > 0. Since
u is linear, by setting 1 + λ′ = α(1 + λ), Dy satisfies the FOC of (18). Thus, Dy = Dx.

(3) It is implied from (1) and (2).
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F Appendix: Proof of Theorem 3

F.1 Additively Separable Utility Representation on Xℓ

Lemma 10 The preference ≿|∆0 is represented by a utility function u : ∆ → R+ with
u(0) = 0 which is continuous, mixture linear, and homogeneous (that is, u(α ◦ p) = αu(p)
for all α ≥ 0.) Moreover, the preference ≿ on X is represented by a continuous utility
function U : X → R+ such that U(p) = u(p) for all p ∈ ∆0.

Proof. By Weak Regularity, ≿|∆0 satisfies the vNM axioms. There exists a continuous
mixture linear function u : ∆ → R+ which represents ≿|∆0 and which can be chosen so
that u(0) = 0.

Establish homogeneity of u next. If α ∈ [0, 1], by mixture linearity of u, together with
identifying α ◦ p with α ◦ p+ (1− α) ◦ 0,

u(α ◦ p) = u(α ◦ p+ (1− α) ◦ 0) = αu(p) + (1− α)u(0) = αu(p).

If α > 1, we identify α ◦ p with p′ ∈ ∆ satisfying p = 1
α
◦ p′ + α−1

α
◦ 0. Then, mixture

linearity of u implies that u(p) = 1
α
u(p′), that is, u(α ◦ p) = u(p′) = αu(p), as desired.

For any x ∈ X, the Present Equivalents axiom ensures that there exists cx ∈ C such
that cx ∼ x. Define U(x) = u(cx). By construction, U represents ≿. Moreover, for all
p ∈ ∆, U(p) = u(p). In particular, we have U(0) = u(0) = 0.

To show the continuity of U , take any sequence xn → x̂. There exists a corresponding
present equivalent cxn ∼ xn. Since U(xn) = u(cxn) and u is continuous, we want to show
that cxn → cx̂.

Claim 1 The present equivalent is continuous, that is, if xn → x, then cxn → cx̂.

Proof. Take any c and c such that c > cx̂ > c. Let W = {x ∈ X | c ≻ x ≻ c}. Since
xn → x̂ ∼ cx̂, by Continuity, we can assume xn ∈ W for all n without loss of generality.

Seeking a contradiction, suppose cxn ̸→ cx̂. Then, there exists a neighborhood of cx̂,
denoted by B(cx̂), such that cxm /∈ B(cx̂) for infinitely many m. Let {xm} denote the
corresponding subsequence of {xn}. Since xn → x̂, {xm} also converges to x̂. Without loss
of generality, we can assume xm ∈ W , that is, c ≻ xm ∼ cxm ≻ c. By C-Monotonicity,
c > cxm > c. Thus, {cxm} belongs to a compact interval [c, c], and hence, there exists a
convergent subsequence {cxℓ} with a limit c̃ ̸= cx̂. On the other hand, since xℓ → x̂ and
xℓ ∼ cxℓ , Continuity implies x̂ ∼ c̃. Since cx̂ is unique, cx̂ = c̃, which is a contradiction.

For each t ≥ 1, let ∆t = {p ∈ ∆ | pt ∈ Xℓ}.

Lemma 11 On the subdomain Xℓ ∪∆0 ⊂ X, U can be written as an additively separable
utility form, i.e. U : Xℓ ∪∆0 → R+ s.t. for all x ∈ Xℓ ∪∆0,

U(x) = u(x0) +
∑
t≥1

Ut(xt),

34



where u is given as in Lemma 10 and Ut : ∆t → R are continuous with Ut(0) = 0 for each
t. Moreover, u is unbounded from above.

Proof. Take any x ∈ Xℓ, which is denoted by x = (x0, x1, · · · , xT ). There exists some
t > 0 with xt ≻ 0. We start with the case where there are two xt, xs ≻ 0. By notational
convenience, denote such a stream by (xt, xs, 0, · · · , 0). By Xℓ-Separability,

1

2
◦ c(0,xs,0,··· ,0) +

1

2
◦ c(xt,0,··· ,0) ∼

1

2
◦ c(xt,xs,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,xs,0,··· ,0)) + u(c(xt,0,··· ,0)) = u(c(xt,xs,0,··· ,0)) + u(0)

⇐⇒ U(0, xs, 0, · · · , 0) + U(xt, 0, · · · , 0) = U(xt, xs, 0, · · · , 0).

Define Ut(xt) = U(xt, 0, · · · , 0) and Us(xs) = U(0, xs, 0, · · · , 0). Then, we have

U(xt, xs, 0, · · · , 0) = Ut(xt) + Us(xs). (20)

If a stream has three outcomes xt, xs, xr ≻ 0, denote it by (xt, xs, xr, 0, · · · , 0). By
Xℓ-Dominance, (xt, xs, 0, · · · , 0) ∈ X∗

ℓ . From the above argument, we have (20). By Xℓ-
Separability,

1

2
◦ c(0,0,xr,0,··· ,0) +

1

2
◦ c(xt,xs,0,··· ,0) ∼

1

2
◦ c(xt,xs,xr,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,0,xr,0,··· ,0)) + u(c(xt,xs,0,··· ,0)) = u(c(xt,xs,xr,0,··· ,0)) + u(0)

⇐⇒ U(0, 0, xr, 0 · · · , 0) + U(xt, xs, 0, · · · , 0) = U(xt, xs, xr, 0, · · · , 0).

Define Ur(xr) = U(0, 0, xr, 0, · · · , 0). Then, we have

U(xt, xs, xr, 0, · · · , 0) = Ur(xr) + U(xt, xs, 0, · · · , 0)
= Ut(xt) + Us(xs) + Ur(xr).

By repeating the same argument finitely many times, we have

U(x) =
∑
t≥0

Ut(xt),

where Ut(xt) is defined as Ut(xt) = U(0, · · · , 0, xt, 0, · · · , 0). By definition, Ut(0) = 0. By
Xℓ-Dominance, for any x ∈ Xℓ, if xt ≻ 0, (xt)

t ∈ Xℓ, that is, (xt)
t ∈ ∆t. Hence, Ut is

defined on ∆t.
Since U is continuous, Ut is also continuous. Take any p ∈ ∆ and any sequence xn =

(0, xn
1 , · · · , xn

T ) ∈ Xℓ, where xn
t → 0 for all t ≥ 1. By Time-0 Irrelevance, p{0}xn =
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(p, xn
1 , · · · , xn

T ) ∈ Xℓ. Since p{0}xn → p ∈ ∆0, by continuity, U(p{0}xn) → u(p) and
U(p{0}xn) = U0(p) +

∑
t≥1 Ut(x

n
t ) → U0(p). Thus, U0(p) = u(p).

Finally, we show that u must be unbounded from above. First, we show that u is
unbounded from above. By seeking a contradiction, suppose otherwise. Then, the range
of u is nonempty and has an upper bound. There exists a supremum v of the range of u.
Since Ut is non-constant by Time Invariance, there exists some p̃ ∈ ∆ with Ut(p̃) > 0. Take
a lottery p ∈ ∆ such that v − u(p) < Ut(p̃). Consider the stream x which pays p in period
0, p̃ in period t, and zero otherwise. By Time-0 Irrelevance, x ∈ Xℓ. By the representation,

U(x) = u(p) + Ut(p̃) > v.

Since v is the supremum of u(∆), the above inequality contradicts to the Present Equiva-
lents axiom.

Lemma 12 The function U : Xℓ ∪ ∆0 → R+ defined as in Lemma 11 can be written as
follows:

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt),

where for all t ≥ 1, Du(p)(t) ∈ [0, 1] and Du(p)(t) is continuous and strictly increasing in
u(p).

Proof. Taking the additive representation from Lemma 11, by Xℓ-Time-Invariance, we
have that Ut(xt) can be written as an increasing transformation of u(xt). So we can write

Ut(xt) as Ut(u(xt)). Define Dx by Du(xt)(t) = Ut(u(xt))
u(xt)

> 0 for any xt ∈ ∆ with xt ≻ 0.

Define dt = inf {Du(p)(t) | 0 ≺ p ∈ ∆t}. Then

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), for all x ∈ Xℓ ∪∆0.

To see that Du(p)(t) is strictly increasing in u(p), note that for any stream x ∈ Xℓ

and its present equivalent cx, by definition of Xℓ, αU(cx) > U(αx) for all α ∈ (0, 1)
and thus αU(x) > U(αx). Applying this more specifically to a dated reward pt with
u(p) > 0 and exploiting mixture linearity of u, we obtain αDu(p)(t)u(p) > Du(αp)(t)u(αp) =
αDαu(p)(t)u(p) and thus

Du(p)(t) > Dαu(p)(t), for all α ∈ (0, 1),

as desired.
Since u and Ut are continuous, so is Du(p)(t) in u(p) on the domain of u(p) > 0. Since

dt is defined as inf{Du(p)(t) | 0 ≺ p ∈ ∆t} and Du(p)(t) is strictly increasing in u(p), Du(p)(t)
is indeed continuous for all u(p) ≥ 0.

By Impatience, for all p and t ≥ 1, u(p) = U(p0) ≥ U(pt) = Du(p)(t)u(p), which implies
Du(p)(t) ≤ 1.
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Lemma 13 The function U : Xℓ ∪ ∆0 → R+ appeared in Lemma 12 can be written as
follows:

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = argmax
D

{
∑
t≥1

(
D(t)u(xt)− φt(D(t))

)
}

where for each t ≥ 1, φt : [0, 1] → R+ ∪ {∞} is an increasing convex function that is
strictly increasing, strictly convex, and differentiable on {d | 0 < φt(d) < ∞}, and satisfies
φt(dt) = 0 and φ′

t(dt) = 0. Moreover, φt(d) ≤ φt+1(d) for all t < T and d.

Proof. By Xℓ-Dominance, if x ∈ Xℓ, then xt0 ∈ Xℓ for xt ≻ 0. Thus, φt can be derived
from the dated rewards at t as follows. Define

St = {d ∈ [0, 1] | d = Du(p)(t) for some pt ∈ Xℓ}.

By Strong Xℓ-Regularity, if p
t ∈ Xℓ, then αpt ∈ Xℓ for all α ∈ (0, 1). Thus, St is an

interval. Note dt = inf St. Denote dt = supSt. Define It = St ∪ {dt, dt}. The cost function
φt on It is implicitly defined by the first order condition

u(p) = φ′
t(Du(p)(t)), (21)

along with the assumption that φt(dt) = 0. Moreover, the continuity of Du(p)(t) wrt u(p)
requires that 0 = φ′

t(dt). The function is by construction once differentiable and has a
positive slope. Since Du(p)(t) is strictly increasing in u(p), (21) implies that φ′

t is strictly
increasing, and hence, φt is strictly convex.

By construction, the set argmaxD{
∑(

D(t)u(xt) − φt(D(t))
)
} is nonempty and more-

over, it is a singleton since
∑(

D(t)u(xt) − φt(D(t))
)
is a strictly concave function of D.

Thus Dx is a unique solution.
The cost function can be extended to [0, 1] by

φt(d) =


0 if d ∈ [0, dt)
φt(d) if d ∈ It
∞ if d ∈ (dt, 1]

.

Then, φt is increasing and convex on [0, 1].
By Impatience, for all positive p and for all t < T , Du(p)(t)u(p) = U(pt) ≥ U(pt+1) =

Du(p)(t + 1)u(p). Thus, Du(p)(t) is weakly decreasing wrt t. This observation implies that
the effective domain eff (φt) of φt includes that of φt+1. For any d := Du(c)(t + 1) in the
effective domain of φt+1, it follows from the FOC that

φ′
t(d) ≤ φ′

t(Du(p)(t)) = u(p) = φ′
t+1(Du(p)(t+ 1)) = φ′

t+1(d),

that is, φ′
t(d) ≤ φ′

t+1(d) for all d ∈ eff (φt+1). By integrating both functions we obtain
φt(d) ≤ φt+1(d) for all d ∈ eff (φt+1). Consequently, φt(d) ≤ φt+1(d) for all d ∈ [0, 1].
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F.2 Extension to X

Lemma 14 For any stream x ∈ X \∆0, there exists a unique αx ∈ (0, 1] such that{
α ≤ αx =⇒ αx ∈ Xℓ,
α > αx =⇒ αx /∈ Xℓ.

Proof. Let A = {α ∈ (0, 1] |αx ∈ Xℓ}. By part (i) of Strong Xℓ-Regularity, A ̸= ∅. Let
αx = supA. We claim that A is an interval with inf A = 0. Take any α ∈ A and β ∈ (0, α).
Since αx ∈ Xℓ, by part (ii) of Strong Xℓ-Regularity, βx = β

α
(αx) ∈ Xℓ, that is, β ∈ A as

desired. Now, by definition of αx, if α < αx, then α ∈ A, and hence αx ∈ Xℓ. If α > αx,
then α /∈ A, and hence αx /∈ Xℓ. Uniqueness of αx is obvious. Moreover, if x ∈ Xℓ, by part
(ii) of Strong Xℓ-Regularity, A = (0, 1), and hence, αx = 1.

Lemma 15 For any x ∈ X \∆0, take αx ∈ (0, 1] which is defined as in Lemma 14. Then,{
α < αx =⇒ α ◦ cx ≻ αx,
α ≥ αx =⇒ α ◦ cx ∼ αx.

Proof. Step 1: For all x ∈ X \∆0, α ◦ cx ≻ αx implies β ◦ cx ≻ βx for all β ∈ (0, α]. By
definition, a present equivalent of αx, denoted by cαx, satisfies α ◦ cx ≻ αx ∼ cαx. For any
γ ∈ (0, 1), let β = γα ∈ (0, α). By Weak Homotheticity and Risk Preference,

β ◦ cx = γα ◦ cx ≻ γ ◦ cαx ≿ γαx = βx,

as desired.
Step 2: If there exist α, β ∈ (0, 1) such that α ◦ cx ∼ αx and β ◦ cαx ∼ β(αx), then

αβ ◦ cx ∼ αβx. By definition and the assumption, α ◦ cx ∼ αx ∼ cαx. By Risk Preference,
αβ ◦ cx ∼ β ◦ cαx. Hence, by assumption, αβ ◦ cx ∼ αβx.

Step 3: There exists a unique α̃x ∈ (0, 1] such that{
α < α̃x =⇒ α ◦ cx ≻ αx,
α ≥ α̃x =⇒ α ◦ cx ∼ αx.

If x ∈ Xℓ, α̃x = 1 satisfies this condition. Thus, assume x /∈ Xℓ. Let Ã = {α ∈ (0, 1] |α ◦
cx ≻ αx}. By part (i) of Strong Xℓ-Regularity, Ã is non-empty. Moreover, by Step 1, Ã is

an interval with inf Ã = 0. Let α̃x be a supremum of Ã. If Ã = (0, 1), α̃x = 1 and this α̃x

satisfies the desired property. If Ã is a proper subset of (0, 1), α̃x < 1. Then, there exists
a sequence αn → α̃x with αn > α̃x. Since αn ◦ cx ∼ αnx, by Continuity, α̃x ◦ cx ∼ α̃xx, as
desired.

Step 4: α̃x ≤ αx. Seeking a contradiction, suppose α̃x > αx. Lemma 14 implies
α̃xx /∈ Xℓ. By definition, there exists β ∈ (0, 1) such that β ◦ cα̃xx ∼ β(α̃xx). Since
α̃x ◦ cx ∼ α̃xx, by Step 2, α̃xβ ◦ cx ∼ α̃xβx. Since α̃xβ < α̃x, this contradicts to Step 3.

Step 5: α̃x = αx. By Step 4, seeking a contradiction, suppose α̃x < αx. Take any
α ∈ (α̃x, αx). By Step 3, α ◦ cx ∼ αx. Moreover, for all γ sufficiently close to one, since
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γα ∈ (α̃x, αx), γα ◦ cx ∼ γαx. Now, by definition, cαx ∼ αx, which implies cαx ∼ α ◦ cx.
Since αx ∈ Xℓ by Lemma 14, for all γ ∈ (0, 1), γ ◦ cαx ≻ γαx. Thus, we have

γ ◦ cαx ≻ γαx ∼ γα ◦ cx

for all γ sufficiently close to one. By Risk Preference, cαx ≻ α◦cx, which is a contradiction.

Lemma 16 For all x, y ∈ X \∆0, take αx, αy ∈ (0, 1] which are defined as in Lemma 14.
If xt ∼ yt for all t ≥ 1, then αx = αy.

Proof. By the result in Section F.1, the representation on Xℓ depends only on utility
streams (u(xt))

T
t=0. Moreover, by Time-0 Irrelevance, x0 is independent of whether x is

ℓ-magnitude sensitive. Since u(xt) = u(yt) for all t ≥ 1, x is ℓ-magnitude sensitive if
and only if so is y. If x, y ∈ Xℓ, αx = αy = 1. Assume next that x, y ̸∈ Xℓ. Seeking
a contradiction, suppose αx ̸= αy. Without loss of generality, let αx > αy. For any
α ∈ (αy, αx), by Lemma 14, αx is ℓ-magnitude sensitive and αy is not ℓ-magnitude sensitive.
Since u(αxt) = u(αyt) for all t, this contradicts to the above argument. Thus, αx = αy, as
desired.

As shown in Lemma 14, for any x ∈ X \∆0,

αx = sup{α ∈ [0, 1] |αx ∈ Xℓ}.

Lemma 17 The function U : X → R+ appeared in Section F.1 can be written as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx =

 argmax
D

{
∑
t≥1

D(t)u(xt)− φt(D(t))} if x ∈ Xℓ ∪∆0,

Dαxx if x ̸∈ Xℓ ∪∆0.

Proof. By the result of Section F.1, U has the desired form on Xℓ∪∆0. Consider the case
of x ̸∈ Xℓ ∪∆0. Since u(αx ◦ cx) = U(αxx) by Lemma 15,

U(x) = u(cx) =
1

αx

U(αxx). (22)

By the representation on Xℓ,

U(αxx) = u(αx ◦ x0) +
∑
t≥1

Dαxx(t)u(αx ◦ xt). (23)
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By combining (22) with (23),

U(x) =
1

αx

U(αxx) =
1

αx

(
u(αx ◦ x0) +

∑
t≥1

Dαxx(t)u(αx ◦ xt)

)
= u(x0) +

∑
t≥1

Dαxx(t)u(xt),

as desired.
From now on, we derive a function K : X \∆0 → R++ ∪{∞} which serves as a general

capacity constraint for the General CCE representation.
First, consider the case of Xℓ = X \ ∆0. Since x ∈ Xℓ ∪ ∆0 for all x, Lemma 17

directly delivers the desired representation by setting Kx = ∞ for all x ∈ X \ ∆0. The
CCE representation in this case is additively separable on the whole domain. That is,

Claim 2 Assume Xℓ = X \∆0. If a preference ≿ on X satisfies Weak Regularity, Weak
Homotheticity, Xℓ-Separability, Strong Xℓ-Regularity, Xℓ-Time-Invariance, Time-0 Irrele-
vance, and Xℓ-Dominance, then it admits a General CCE representation with Kx = ∞ for
all x ∈ X \∆0.

From now on, assume Xℓ ⊊ X \∆0. Let

φ(D) :=
∑
t≥1

φt(D(t)).

Lemma 18 There is a function K : X \∆0 → R++ ∪ {∞} such that ≿ is represented by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))}

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.

Moreover, (1) the function Kx satisfies Kx = Kλx for any x and λ, and (2) for all streams
x, y, if u(xt) = u(yt) for all t ≥ 1, then Kx = Ky.

Proof. Since U(p) = u(p) for all p ∈ ∆0, K does not play any role for consumption stream
on ∆0. Take any x ∈ X \∆0. If λx ∈ Xℓ for all λ > 0, define Kx = Kλx = ∞ for all λ > 0.
Otherwise, we can find another x on the same ray with x /∈ Xℓ. For such x, define

Kx := φ(Dαxx) < ∞.

Extend to Xℓ by requiring Kx = Kλx for any λ > 0.
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For all x ∈ X \ ∆0, by Lemma 14, there exists αx > 0 such that αxx ∈ Xℓ. For
any β ∈ (0, αx), since φ is strictly increasing and Du(c)(t) is strictly increasing in u(c),
Kx = φ(Dαxx) > φ(Dβx) ≥ 0. Hence, Kx > 0.

For any x ∈ X \∆0, define

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.

From Lemma 17, for any x ∈ Xℓ we have

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = argmax
D

{
∑

D(t)u(xt)− φt(D(t))}.

There exists x′ /∈ Xℓ ∪ ∆0 such that x = αx′ for some α ∈ (0, 1). Since φ is strictly
increasing and Dαx′ is increasing in α up to αx′x′, φ(Dx) ≤ φ(Dαx′x

′) = Kx, that is, we
have Dx ∈ Λx. Thus, Dx is also the unique maximizer in the constrained problem:

Dx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))},

thereby establishing the result for x ∈ Xℓ.
Next consider x ̸∈ Xℓ ∪∆0, and take αxx ∈ Xℓ. By definition, note that Kx < ∞. By

the preceding,

Dαxx = arg max
D∈Λx

{
∑

D(t)u(αxxt)− φt(D(t))}.

For notational simplicity, for any x, let u(x) denote (u(x1), · · · , u(xT )) ∈ RT
+. We first

prove that
Dαxx ∈ arg max

D∈Λx

D · u(x). (24)

To see this, suppose by way of contradiction that there is D ∈ Λx s.t. D ·u(x) > Dαxx ·u(x).
Since Dαxx is on the boundary of Λx and D ∈ Λx, we have φ(Dαxx) = Kx ≥ φ(D). But
these inequalities imply that

D · u(αxx)− φ(D) > Dαxx · u(αxx)− φ(Dαxx),

contradicting the optimality of Dαxx for αxx, as desired.
To conclude the proof of the lemma, observe that for any D ∈ Λx with D ̸= Dαxx,

Dαxx · u(αxx)− φ(Dαxx) > D · u(αxx)− φ(D)

=⇒ Dαxx · u(αxx)−D · u(αxx) > φ(Dαxx)− φ(D)

=⇒ αx[Dαxx · u(x)−D · u(x)] > φ(Dαxx)− φ(D)

=⇒ Dαxx · u(x)−D · u(x) > φ(Dαxx)− φ(D)

(since Dαxx · u(x) ≥ D · u(x), by (24))

=⇒ Dαxx · u(x)− φ(Dαxx) > D · u(x)− φ(D).
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Thus,

Dαxx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))},

as desired.
By Lemma 16, if u(xt) = u(yt) for all t ≥ 1, αx = αy. Thus Kx is finite if and only if

Ky is finite. If Kx is finite, it is obvious from the definition that Kx depends only on the
utility stream (u(xt))

T
t=1. Thus, we have Kx = Ky.

All that remains to be established is to show properties of K: For all S ⊂ {1, · · · , T},
let

φS(D) :=
∑
t∈S

φt(D(t)).

Lemma 19 (1) K : X \∆0 → R++ ∪ {∞} is continuous.
(2) For all p and t ≥ 1, Kpt = φt(dt).
(3) If Kx < ∞, Kx ≤ KxS0 for all S ⊂ {1, · · · , T}.

Proof. (1) Take any x ∈ X \∆0. First assume Kx < ∞. Thus, there exists some λ with
λx /∈ Xℓ. By Xℓ-Continuity, any consumption stream y in a small neighborhood of x also
satisfies λy /∈ Xℓ, which implies Ky < ∞. In this case, by definition, Ky = φ(Dαyy) for all
such y. Moreover, Dαxx is a unique maximizer of

max{
∑

D(t)u(αx ◦ xt)− φt(D(t))}.

If αx is continuous in x, then D · u(αxx) is continuous and hence the maximum theorem
implies that Dαxx is continuous. Since φ is differentiable (and hence continuous), we have
the desired result.

From now on, we will claim that αx is continuous in x.

Claim 3 αx is lower semi-continuous in x, that is, if xn → x, then

lim inf
n
αxn ≥ αx.

Proof. Seeking a contradiction, suppose

αx > α∗ := lim inf
n
αxn .

Take any α ∈ (α∗, αx). There exists a subsequence αxm converging to α∗. Since αxm → α∗,
αxm < α for all sufficiently large m. By Lemma 15, αxm ∼ α ◦ cxm . By continuity of
preference and continuity of present equivalents (Claim 1), αx ∼ α ◦ cx. On the other
hand, since α < αx, Lemma 15 implies α ◦ cx ≻ αx, which is a contradiction.

Claim 4 αx is upper semi-continuous in x, that is, if xn → x, then

lim sup
n

αxn ≤ αx.
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Proof. Seeking a contradiction, suppose

αx < α∗ := lim sup
n

αxn .

Take any α ∈ (αx, α
∗). There exists a subsequence αxm converging to α∗. Since αxm → α∗,

α < αxm for all sufficiently large m. By Lemma 14, αxm ∈ Xℓ. Since Xℓ is closed in X \∆0

by Xℓ-Continuity, αx ∈ Xℓ. On the other hand, since αx < α, Lemma 14 implies αx /∈ Xℓ,
which is a contradiction.

Next consider the case of Kx = ∞. We want to show that Kxn diverges to infinity as
xn → x. Without loss of generality, assume Kxn < ∞ for all n. Seeking a contradiction,
suppose that there exists some subsequence xm such thatKxm ≤ K for someK < ∞. There
exists ym on the boundary of Xℓ corresponding to each xm. By definition, Kxm = φ(Dym).
Since Kx = ∞, all y on the same ray passing through x belong to Xℓ. By Xℓ-Dominance,
pt ∈ Xℓ for all p. Thus, each φt is unbounded above because φ′

t(Du(p)(t)) = u(p) for all u(p).
Therefore, together with K ≥ Kxm = φ(Dym), the sequence {ym}∞m=1 must be bounded.
We can find a consumption stream zm := λmym /∈ Xℓ with λm sufficiently larger than one.
In particular, α̃zm /∈ Xℓ for some α̃ ∈ (0, 1) sufficiently close to one. Moreover, since xm

and zm are on the same ray, zm can be taken to converge to some point z := λx.
By Lemma 15, together with the above observations, α̃ ◦ czm ∼ α̃zm. By continuity

of preference and continuity of present equivalents (Claim 1), α̃ ◦ cz ∼ α̃z. On the other
hand, Kx = ∞ implies that z ∈ Xℓ, and hence, α̃ ◦ cz ≻ α̃z, which is a contradiction. This
completes the proof.

(2) Since φt is defined by using pt ∈ Xℓ, by construction, we have Kpt = φt(dt).
(3) Step 1: Kx ≤ Kpt . By part (2), it must be that

{D(t) ∈ [0, 1] |φt(D(t)) ≤ Kpt} = eff(φt),

and in turn,
{D ∈ [0, 1]T |φt(D(t)) ≤ Kpt for all t} = eff(φ).

For any stream x, trivially we must have {D |φ(D) ≤ Kx} ⊂ eff(φ), and so

{D ∈ [0, 1]T |φ(D) ≤ Kx} ⊂ {D ∈ [0, 1]T |φt(D(t)) ≤ Kpt for all t}.

To show that Kx ≤ Kpt for all t, take any t and any D in {D |φ(D) ≤ Kx} that satisfies
D(t′) = 0 for t′ ̸= t. Then the above condition implies

φt(D(t)) ≤ Kx =⇒ φt(D(t)) ≤ Kpt .

In particular, if D(t) satisfies φt(D(t)) = Kx,

Kx = φt(D(t)) ≤ Kpt ,

as desired.
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Step 2: For all x ∈ X \∆0, d = (dt)
T
t=1, and S ⊂ {1, · · · , T},

φ(d) ≤ Kx =⇒ φS(d) ≤ KxS0.

Take any x and d with φ(d) ≤ Kx. By the properties of K shown by Lemma 18, for any
λ > 0, if y := λx, then Kx = Kλx = Ky. By definition of Kx, there exists λ > 0 such
that y = λx belongs to the boundary of Xℓ and Ky = φ(Dy). Since Xℓ-Dominance implies
yS0 ∈ Xℓ for all S ⊂ {1, · · · , T} such that yt ≻ 0 for some t ∈ S, we have φS(DyS0) ≤ KyS0.
Moreover, the value Dy(t) is also optimal for yS0, that is, Dy(t) = DyS0(t) for all t ∈ S.
Now, for any d with φ(d) ≤ Kx, since Kx = Ky = φ(Dy), we have φS(d) ≤ φS(Dy).
Therefore,

φS(d) ≤ φS(Dy) = φS(DyS0) ≤ KyS0 = K(λx)S0 = Kλ(xS0) = KxS0.

Step 3: The result. Take any dS ∈ [0, 1]T such that dS(t) ≥ 0 for all t ∈ S and dS(t) = 0
otherwise. Assume also φ(dS) ≤ Kx. By part (2) and Step 1, φ(dS) ≤ Kx ≤ Kpt = φt(dt).
Hence, there exists some d∗S such that φ(d∗S) = Kx. It follows from Step 2 that Kx =
φ(d∗S) = φS(d

∗
S) ≤ KxS0, as desired.

F.3 Necessity

Given a General CCE representation, define the set of ℓ-magnitude sensitive streams Xℓ ⊂
X by

Xℓ = {x ∈ X |αU(x) > U(αx) for all α ∈ (0, 1)}.

First of all, we show that Xℓ is characterized by the FOC of the unconstrained opti-
mization problem:

max
D∈RT

+

{
∑
t≥1

D(t)u(xt)− φt(D(t))}.

Let Dun
x denote an optimal discount function for the unconstrained optimization problem,

which is characterized by the FOC, u(xt) = φ′
t(D

un
x (t)) for all t ≥ 1 with u(xt) > 0, or

equivalently,
Dun

x (t) := (φ′
t)

−1(u(xt))

if u(xt) > 0, and Dun
x (t) = 0 if u(xt) = 0. Since φ′

t is strictly increasing, Dun
x (t) is strictly

increasing in u(xt).

Lemma 20
Xℓ = {x ∈ X |φ(Dun

x ) ≤ Kx}.

Proof. To show Xℓ belongs to the right-hand side, take any x ∈ Xℓ. By the representation,

u(cx) = U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),
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where Dx = argmaxD∈Λx{
∑

t≥1D(t)u(xt) − φt(D(t))}. By definition of Xℓ, for all α ∈
(0, 1), u(α ◦ cx) > U(αx). Together with linearity of u, this implies∑

t≥1

Dx(t)u(xt) >
∑
t≥1

Dαx(t)u(xt).

Since u(xt) ≥ 0 and Dx ≥ Dαx by Proposition 4 (3), we have Dx(t) > Dαx(t) for some t.
By definition of Dx, together with properties of the representation,

φ(Dαx) < φ(Dx) ≤ Kx = Kαx.

Hence, Dαx = Dun
αx. As α → 1, we have φ(Dun

x ) ≤ Kx, as desired.
Conversely, take any x from the right-hand side. For α ∈ (0, 1), By property (c) of the

representation,
φ(Dun

αx) < φ(Dun
x ) ≤ Kx = Kαx.

Therefore,

Dun
αx = Dαx = argmax

Λαx

{
∑
t≥1

D(t)u(α ◦ xt)− φt(D(t))}.

Since Dx = Dun
x > Dun

αx = Dαx and u is linear,

u(α ◦ cx) = u(α ◦ x0) +
∑
t≥1

Dx(t)u(α ◦ xt)

> u(α ◦ x0) +
∑
t≥1

Dαx(t)u(α ◦ xt) = U(αx),

that is, α ◦ cx ≻ αx. Hence, x ∈ Xℓ.

Note that Dx(t) is continuous in x. By Lemma 20, Dx(t) is strictly increasing in u(xt)
on Xℓ. It is obvious to see that ≿ that U represents satisfies Weak Regularity. Lemma 20
implies Time-0 Irrelevance and Xℓ-Continuity.

Lemma 21 ≿ satisfies Weak Homotheticity.

Proof. Take any stream x ∈ X. By Proposition 4 (3), Dx(t) ≥ Dαx(t), which implies,
with linearity of u, αU(x) ≥ U(αx), or α ◦ cx ≿ αx, as desired.

Lemma 22 ≿ satisfies Strong Xℓ-Regularity.

Proof. Take any x ̸∈ X \ ∆0. Assume x /∈ Xℓ. Then by Lemma 20, the unconstrained
optimal discount function Dun

x violates the capacity constraint, that is, φ(Dun
x ) > Kx.

Since Dun
x is strictly increasing in u(xt), as α → 0, Dun

αx(t) → dt of the minimum discount
factor. Since φt(dt) = 0, there must exist α < 1 for which φ(Dun

αx) < Kx. By property (c),
φ(Dun

αx) < Kαx, implying that αx ∈ Xℓ by Lemma 20.
Next, take any x ∈ Xℓ and α ∈ (0, 1). By Lemma 20 and property (c) of the repre-

sentation, φ(Dun
αx) < φ(Dun

x ) ≤ Kx = Kαx. Again by Lemma 20, αx ∈ Xℓ, as desired.
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Lemma 23 ≿ satisfies Xℓ-Separability.

Proof. From Lemma 20, Dx = Dun
x on Xℓ. Thus, Dx(t) depends only on u(xt). Therefore,

the representation on Xℓ is additively separable and satisfies Xℓ-Separability.

Lemma 24 ≿ satisfies Xℓ-Time-Invariance.

Proof. Take any outcomes p, p̂ ∈ ∆. Suppose pt, p̂t ∈ Xℓ. By the representation on Xℓ,
U(pt) = Du(p)(t)u(p) and U(p̂t) = Du(p̂)(t)u(p̂). SinceDr(t) is increasing in r, if u(p) ≥ u(p̂),
we have

U(pt) = Du(p)(t)u(p) ≥ Du(p̂)(t)u(p̂) = U(p̂t).

Lemma 25 ≿ satisfies Xℓ-Dominance.

Proof. Take any x ∈ Xℓ and consider an optimal Dx. By Lemma 20, φ(Dun
x ) ≤ Kx.

Take any S ⊂ {1, · · · , T} with xt ≻ 0 for some t ∈ S. Note that Dun
x (t) is also optimal

for xS0, that is, Dun
x (t) = Dun

xS0(t) for all t ∈ S. By property (iii)(c) of the General CCE
representation,

φS(D
un
xS0) = φS(D

un
x ) ≤ φ(Dun

x ) ≤ Kx ≤ KxS0.

Thus, again by By Lemma 20, xS0 ∈ Xℓ, as desired.

G Proof of Theorem 4

Take two General CCE representations for the preference. By the same argument as in
Theorem 2, there exists α > 0 such that u2 = αu1 and φ2

t = αφ1
t on the effective domain

by property (iii)(b).
Note that the unconstrained optimal discount function is identical between the two

representations. Indeed, from the above observation, u2(xt) = (φ2
t )

′(Dun,2
x (t)) if and only if

αu1(xt) = α(φ1
t )

′(Dun,2
x (t)), which is equivalent to u1(xt) = (φ1

t )
′(Dun,2

x (t)). Thus, we have
Dun,1

x (t) = Dun,2
x .

By Lemma 20,

{x ∈ X |φ1(Dun
x ) ≤ K1

x} = Xℓ = {x ∈ X |φ2(Dun
x ) ≤ K2

x}.

Since φ2
t = αφ1

t ,

{x ∈ X |φ2(Dun
x ) ≤ K2

x} = {x ∈ X |φ1(Dun
x ) ≤ K2

x

α
}.

Therefore, we must have K2
x = αK1

x.
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H Proof of Proposition 5

First, take any x, y such that u(xt) > 0, u(yt) > 0 for all t ≥ 0. Consider the ray passing
through x, denoted by Xx = {αx |α > 0}. By the property of K, Kz = Kx for all
z ∈ Xx. By Monotonicity of preference, there exists z̄ ∈ Xx such that u(yt) > u(z̄t). Let
X z̄ = {z ∈ X |u(z̄t) ≥ u(zt), ∀t}. For any sufficiently small α > 0, αy ∈ X z̄. Since K is
monotonic,

Kx = Kz̄ ≤ Kαy = Ky.

By the symmetric argument, Ky ≤ Kx. Thus, we have Kx = Ky.
Let K̄ = Kx > 0 for some (any) x such that u(xt) > 0 for all t. Take any x ∈ X \∆0

such that u(xt) = 0 for some t. Take any sequence xn within the interior which converges
to x. Since Kxn = K̄ for all n, Kx = K̄ by continuity of the function K.

References

[1] Ainslie, G. (1992): Picoeconomics, Cambridge University Press.

[2] Andersen, S., Harrison, G. W., Lau, M. I. and Rutström, E. E. (2013): “Discounting
Behaviour and the Magnitude Effect: Evidence from a Field Experiment in Denmark,”
Economica 80, pp. 670–697.

[3] Baucells, M. and F. Heukamp (2012): “Probability and Time Trade-Off”, Management
Science 58(4), pp. 831–842.

[4] Becker, G. and C. Mulligan (1997): “The Endogenous Determination of Time Prefer-
ence,” The Quarterly Journal of Economics 112(3), pp. 729–758

[5] Brunnermeier, M., and J. Parker (2005):“Optimal Expectations”, American Economic
Review 95, pp. 1092–1118.

[6] Dohmen, T., A. Falk, D. Huffman and U. Sunde (2010): “Are Risk Aversion and Im-
patience Related to Cognitive Ability?” American Economic Review 100(3), pp. 1238–
1260.

[7] Ellis, A. (2018): “Foundations for Optimal Inattention”, Journal of Economic Theory
173, pp. 56–94.

[8] Epstein, L., and J. Hynes (1983): “The Rate of Time Preference and Dynamic Eco-
nomic Analysis”, The Journal of Political Economy 91(4), pp. 611–635.

[9] Ergin, H., and T. Sarver (2010): “A Unique Costly Contemplation Representation”,
Econometrica 78(4), pp. 1285–1339.

[10] Fredrick, S., G. Loewenstein and T. O’Donoghue (2002): ‘Time Discounting and Time
Preference: A Critical Review’, Journal of Economic Literature 40(2), pp. 351–401.

47



[11] Fudenberg, D., and D. Levine (2006): ‘A Dual Self Model of Impulse Control’, Amer-
ican Economic Review 96, pp. 1449–1476.

[12] Gabaix, X. (2014): “A Sparsity-Based Model of Bounded Rationality”, The Quarterly
Journal of Economics 129(4): pp. 1661–1710.

[13] Gilboa, I., and D. Schmeidler (1989): “Maxmin Expected Utility with Non-Unique
Prior ” Journal of Mathematical Economics 18, pp. 141–153.

[14] Gul, F. and W. Pesendorfer (2001): ‘Temptation and Self-Control’, Econometrica 69,
pp. 1403–1435.

[15] Hardisty D., K. Appelt and E. Weber (2013): “Good or Bad, We Want it Now:
Fixed-cost Present Bias for Gains and Losses Explains Magnitude Asymmetries in
Intertemporal Choice,” Journal of Behavioral Decision Making 26(4), pp. 348–361.

[16] Laibson, D. (1997): “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal of
Economics 112, pp. 443–77.

[17] Liang, M., S. Grant, S. Hsieh (2019): “Costly self-control and limited willpower”,
Economic Theory, pp 1-26.

[18] Loewenstein, G. and D. Prelec (1993): “Preferences for Sequences of Outcomes”,
Psychological Review 100, pp. 91–108.

[19] Maccheroni, F., M. Marinacci and A. Rustichini (2006): “Ambiguity Aversion, Robust-
ness, and the Variational Representation of Preferences”, Econometrica 74, pp. 1447–
1498.

[20] Masatlioglu, Y., D. Nakajima, and E. Ozdenoren (2020): “Willpower and Compromise
Effect”, Theoretical Economics 15, pp. 279–317.

[21] Noor, J. (2011): ‘Temptation and Revealed Preference’, Econometrica 79(2), pp. 601–
644.

[22] Noor, J. (2011): “Intertemporal Choice and the Magnitude Effect,” Games and Eco-
nomic Behavior 72(1), pp. 255–270.

[23] Noor, J. and N. Takeoka (2020): “Optimal Discounting,” Working paper.

[24] Noor, J. and N. Takeoka (2020): “Supplementary Appendix to “Optimal Discounting”,
” Working paper.

[25] Noor, J. and N. Takeoka (2020): “Supplementary Appendix to “Constrained Optimal
Discounting”, ” Working paper.

[26] O’Donoghue, T., and M. Rabin (1999), “Doing it Now or Later,” American Economic
Review 89, pp. 103–124.

48



[27] Ozdenoren, E., S. W. Salant, and D. Silverman (2012), “Willpower and the Opti-
mal Control of Visceral Urges, ” Journal of the European Economic Association 10,
pp. 342–368.

[28] Strotz R. (1955): ‘Myopia and Inconsistency in Dynamic Utility Maximization’, Review
of Economic Studies XXIII, pp. 165–180.

[29] Sun, C. and J. Potters (2016): “Magnitude Effect in Intertemporal Allocation Tasks,”
mimeo.

[30] Thaler, R. (1981): ‘Some Empirical Evidence on Dynamic Inconsistency’, Economic
Letters 8, pp. 201–207.

[31] Wakai, K. (2008): “A Model of Utility Smoothing ” Econometrica 76, pp. 137–153.

49


