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Abstract

This supplementary appendix to Noor and Takeoka [3] provides an axiomatization
for the General Constrained Costly Empathy (General CCE) representation with
negative payoffs.

1 Primitives

There are T +1 < ∞ periods, starting with period 0. The space C of outcomes is assumed
to be C = R.1 Let ∆ denote the set of simple lotteries over C, with generic elements
p, q, ... We will refer to p as consumption. Consider the space of consumption streams
X = ∆T+1, endowed with the product topology. A typical element in X is denoted by
x = (x0, x1, · · · , xT ). The primitive of our model is a preference ≿ over X.

Let ∆0 ⊂ X denote the set of streams x = (p, 0, · · · , 0) that offer consumption p
immediately and 0 in every subsequent period. Abusing notation, we often use p to denote
both a lottery p ∈ ∆ and a stream (p, 0, · · · , 0) ∈ ∆0. Thus, 0 also denotes the stream
(0, · · · , 0). An element of ∆ that is a mixture between two consumption alternatives p, q ∈
∆ is denoted α ◦ p + (1 − α) ◦ q for any α ∈ [0, 1]. The same mixture is also regarded as
α ◦ p+ (1− α) ◦ q ∈ ∆0.

Denote by pt the stream that pays p ∈ ∆ at time t and 0 in all other periods. Such a
stream is called a dated reward.

For notational convenience, for all streams x, y ∈ X and S ⊂ {0, 1, · · · , T}, let xSy
denote the stream that pays according to x at t ∈ S and according to y otherwise. In
particular, if S = {t}, the stream is denoted by x{t}y.

∗Noor (the corresponding author) is a the Dept of Economics, Boston University, 270 Bay State Road,
Boston MA 02215. Email: jnoor@bu.edu. Takeoka is at the Dept of Economics, Hitotsubashi University,
2-1 Naka, Kunitachi, Tokyo 186-8601, Japan. Email: norio.takeoka@r.hit-u.ac.jp.

1This can be replaced with an abstract metric space for the main results of the paper with a suitable
element that can be interpreted as “zero”, but we adopt real consumption, which is applicable to the MRS
approach considered by Noor and Takeoka[2].
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Say that a stream x is positive if xt ≿ 0 for all t, and it is negative if xt ≾ 0 for all t.
Let X+ denote the set of positive streams, that is,

X+ := {x ∈ X |xt ≿ 0, ∀t}.

Note that via the identification between p and (p, 0, .., 0), it is meaningful to say that p ∈ ∆
is positive or negative.

2 The General CCE Representation

2.1 Functional Form

Say that a tuple (u, {φt}, K) is basic if

(a) u : ∆ → R is continuous and mixture linear with (a) u(0) = 0 and (b) u(∆) = R,

(b) φt : [0, 1] → R+ ∪ {∞} is an increasing convex function that is

(i) strictly increasing, strictly convex and differentiable on {d : 0 < φt(d) < ∞}, and
(ii) satisfies φt(0) = 0, φ′

t(0) = 0 and φt ≤ φt+1 for all t < T ,

(c) K : X \∆0 → R++ ∪{∞} is either Kx = ∞ for all x or a continuous function with the
following properties:

(i) Kλx = Kx for all x and λ > 0,

(ii) Kx = Ky if |u(xt)| = |u(yt)| for all t ≥ 1,

(iii) Kpt = φt(dt) for all p ∈ ∆ and t ≥ 1, where dt is a supremum of the effective
domain eff(φt) := {dt ∈ [0, 1] : φt(dt) < ∞},

(iv) if Kx < ∞, Kx ≤ KxS0 for all S ⊂ {1, · · · , T} with xt ≻ 0 for some t ∈ S.

Compared to the regular tuple that defines a CCE representation of Noor and Takeoka
[3], the cognitive cost function φt here is a more general convex function, and moreover,
it is possible that φt(d) = 0 for all d in some interval [0, dt]. Intuitively, there can be a
base-line degree of selflessness (corresponding to a discount function dt) that the agent can
access costlessly, that is, φt(dt) = 0 for each t.

In Noor and Takeoka [3], the capacity constraint is some constant number K > 0. The
capacity constraint K as given above is more general in that it can now change with the
stream. Property (c)(i) states that it is homogeneous of degree 0. This can be viewed as
saying that it depends on the normalized distribution consumption across time. Property
(c)(ii) states that K depends only on the absolute value of utility streams. Property (c)(iii)
states that the empathy constraints for dated rewards attain the cost for the maximum level
of discount factor at each period. Property (c)(iv) requires that a stream x is associated
with weakly less capacity than any of its component rewards.
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Property (c) implies that for all x with xt ̸∼ 0 for some t,

Kx ≤ Kx{t}0 = Kpt = φt(dt), (1)

which means that the empathy constraint Kx is bounded by the empathy constraints for
dated rewards. Another implication of (c) is that if Kx = ∞ for some x, Kpt = ∞ for all t.

For each x, the optimal discount function Dx is chosen subject to two constraints. The
first is the capacity (or empathy) constraint :

φ(D) ≤ Kx,

where φ(D) =
∑

t≥1 φt(D(t)). The second constraint,

D(t) ≤ dt, for all t ≥ 1,

is called the boundary constraint.
Define the representation as follows:

Definition 1 (General CCE Representation) A General Constrained Costly Empathy
(CCE) representation is a basic tuple (u, {φt}, K) such that ≿ is represented by the function
U : X→ R defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,

s.t. Dx = arg max
D∈[0,dt]T

{
∑
t≥1

D(t) |u(xt)| − φt(D(t))} subject to φ(D) ≤ Kx.

For each stream x, an optimal discount function Dx is determined by maximizing the
discounted utilities minus aggregated costs for the discount function subject to the empathy
and boundary constraints. By condition (1), for all t,

φ(D) ≤ Kx ≤ Kpt = φt(dt).

Therefore, if D satisfies the empathy constraint, it also satisfies the boundary constraint,
that is, the boundary constraint is redundant. Consequently, an optimal discount function
for the General CCE representation is determined as

Dx = arg max
D∈RT

+

{
∑
t≥1

D(t) |u(xt)| − φt(D(t))} subject to φ(D) ≤ Kx.
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2.2 Properties of Optimal Discount Functions

For any stream x ∈ X \∆0, consider the ray passing through x:

Xx = {x ∈ X |x = αx, ∃α > 0}.

By property (c) of the General CCE representation, Kx is constant on Xx. Denote K = Kx

for some (any) x ∈ Xx.

Proposition 1 (1) For any x ∈ Xx, if φ(Dx) < K, Dx is strictly increasing, and is
obtained explicitly as

Dx(t) = (φ′
t)

−1(|u(xt)|).

(2) For any x, y ∈ Xx, if φ(Dx) = φ(Dy) = K,

Dx = Dy.

Moreover, Dx(t) depends on the capacity cap K and the whole stream x, not only on the
payoff at t.
(3) Dx is weakly increasing on Xx: Dx is strictly increasing if φ(Dx) < K, and is constant
if φ(Dx) = K.

From part (1), an optimal discount function Dx(t) depends only on the payoff in pe-
riod t if the capacity constraint is not binding. By substituting it into the General CCE
representation, U(x) is written as

U(x) = u(x0) +
∑
t≥1

(φ′
t)

−1(|u(xt)|)u(xt).

Thus, U(x) is additively separable if the capacity constraint is not binding.. According
to increasing in payoffs, Dx(t) grows unless the capacity constraint is binding. Once the
constraint hits, Dx(t) stops growing. Afterwards, on the same ray, Dx(t) is constant but
depends on the whole stream x. The representation U(x) = u(x0)+

∑
t≥1Dx(t)u(xt) is not

additively separable.

3 Behavioral Foundation

Consider a binary relation ≿ over the space of consumption streams X = ∆T+1 as defined
in Section 1.

3.1 Basic Axioms

Axiom 1 (Weak Regularity) (a) (Order). ≿ is complete and transitive.
(b) (Continuity). For all x ∈ X, {y ∈ X : y ≿ x} and {y ∈ X : x ≿ y} are closed.
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(c) (Impatience). For any p ∈ ∆ and t < t′,

(p)t ≿ (p)t
′
.

(d) (C-Monotonicity): for all c, c′ ∈ C,

c ≥ c′ ⇐⇒ c ≿ c′.

(e) (Risk Preference). For any p, p′, p′′ ∈ ∆ and α ∈ (0, 1],

p ≻ p′ =⇒ α ◦ p+ (1− α) ◦ p′′ ≻ α ◦ p′ + (1− α) ◦ p′′.

(f) (Present Equivalents). For any stream x there exist c, c′ ∈ C s.t.

c ≿ x ≿ c′.

Order and Continuity are standard. Impatience requires that positive outcomes are
weakly preferred sooner rather than later. C-Monotonicity states that more consumption
is better than less. Present Equivalents states that for any stream, there are immediate
consumption levels that are better and worse than x. Given Order and Continuity, this
ensures that each stream x has a present equivalent cx ∈ C. Notably, each x has a unique
present equivalent cx (by C-Monotonicity, x ∼ cx > cy ∼ y implies cx ≻ cy and therefore
x ≻ y). Risk Preference imposes vNM Independence only on immediate consumption.

3.2 Axioms for Positive Streams

As argued by Noor and Takeoka [2, 3], the magnitude effect can be identified via violation
of Homotheticity: For any positive streams x ∈ X+ and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ∼ αx.

Axiom 2 (Weak Homotheticity) For any x ∈ X+ and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ≿ αx.

Say that a stream x ∈ X+ is ℓ-Magnitude Sensitive if the agent’s impatience strictly
reduces whenever the stream is made less desirable.

Definition 2 (ℓ-Magnitude-Sensitivity) A stream x ∈ X+ is ℓ-Magnitude Sensitive if

cx ∼ x =⇒ α ◦ cx ≻ αx for all α ∈ (0, 1).

The set of all ℓ-Magnitude Sensitive streams is denoted by Xℓ ⊂ X+.

By Risk Preference, it is clear that immediate rewards are not ℓ-Magnitude Sensitive.
That is, ∆0 ∩Xℓ = ∅.
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3.2.1 Structures on Xℓ

One can imagine that if an agent establishes empathy for self t then she may costlessly
empathize with adjacent selves t− 1 and t+ 1. However, in order to retain some additive
separability in our model, we rule this out, or alternatively, we require that the duration
of a period is sufficiently “long” that such intertemporal complementarities disappear.

Axiom 3 (Xℓ-Separability) For all x ∈ Xℓ and all t,

1

2
◦ cx{t}0 +

1

2
◦ c0{t}x ∼ 1

2
◦ cx +

1

2
◦ c0.

Given that preferences over immediate consumption satisfy Independence and that the
axiom considers lotteries over present equivalents, the axiom can be interpreted in a stan-
dard way via its analogy with the usual Independence condition applied for a hypothetical
preference that is defined over lotteries over streams.2

Axiom 4 (Strong Xℓ-Regularity) For all x ∈ X+ \∆0, the following hold.
(i) if x ̸∈ Xℓ then αx ∈ Xℓ for some α ∈ (0, 1].
(ii) if x ∈ Xℓ then αx ∈ Xℓ for all α ∈ (0, 1).

Consider the ray {αx |α ∈ (0, 1]} that contains all the mixtures that lie between x and
0. By Weak Homotheticity, the agent’s impatience must be weakly increasing as we go
down this ray from x to 0. Strong Xℓ-Regularity requires that impatience is in fact strictly
increasing as we go down the ray, except possibly for being constant near x. Specifically,
Strong Xℓ-Regularity (i) requires that Xℓ should always intersect with this ray. That is,
there always exists some α ∈ (0, 1] for which αx exhibits ℓ-Magnitude Sensitivity.3 Strong
Xℓ-Regularity (ii) requires in addition that if x exhibits an ℓ-Magnitude Sensitivity then
so must every stream in the ray {αx |α ∈ (0, 1]}.

Moreover, we impose four axioms for streams in Xℓ.

Axiom 5 (Xℓ-Time-Invariance) For all p, p̂ ∈ ∆ and t, if pt, p̂t ∈ Xℓ, then

p ≿ p̂ ⇐⇒ pt ≿ p̂t.

Axiom 6 (Time-0 Irrelevance) For any x ∈ X+ and any p ∈ ∆0,

x ∈ Xℓ =⇒ p{0}x ∈ Xℓ.

2To illustrate, consider:

1

2
◦ (0, c′, 0) + 1

2
◦ (c, 0, c′′) ∼ 1

2
◦ (c, c′, c′′) + 1

2
◦ (0, 0, 0).

This says that the agent only cares about the distribution of consumption across periods, and not the
possible correlation across periods.

3That is, cαx ∼ αx =⇒ β ◦ cαx ≻ βαx for all β ∈ (0, 1).
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Axiom 7 (Xℓ-Dominance) For any x ∈ X+ and any S ⊂ {1, · · · , T} such that xt ≻ 0
for some t ∈ S,

x ∈ Xℓ =⇒ xS0 ∈ Xℓ.

Axiom 8 (Xℓ-Continuity) Xℓ is closed in X+ \∆0.

The first axiom requires that rankings over dated rewards in period t are independent
of t for ℓ-magnitude sensitive streams. The second requires that ℓ-magnitude sensitivity of
a stream x does not rely on x0 in any way. The third states that if there is an ℓ-magnitude
sensitive stream x paying positive outcomes at some periods within S, then the stream that
is identical on S and paying nothing elsewhere is also ℓ-magnitude sensitive. The fourth
states that the limit of a sequence of ℓ-magnitude sensitive streams is ℓ-magnitude sensitive
if the limit is not an immediate reward.

3.3 Representation Theorem for Positive Streams

The representation theorem for positive streams only is provided in Noor and Takeoka [3].

Theorem 1 A preference ≿ on X+ satisfies Weak Regularity, Weak Homotheticity, Xℓ-
Separability, Strong Xℓ-Regularity, Xℓ-Time-Invariance, Time-0 Irrelevance, Xℓ-Dominance,
and Xℓ-Continuity if and only if it admits a General CCE representation.

The positive General CCE representation has strong uniqueness properties.

Theorem 2 If there are two positive General CE representations (ui, {φi
t}, K i), i = 1, 2 of

the same preference ≿, then there exists α > 0 such that (i) u2 = αu1, (ii) φ2
t = αφ1

t , and
(iii) K2 = αK1.

3.4 Monotonicity

An axiom that has been conspicuously missing is Monotonicity, that is, the condition that
a stream that yields more preferred consumption in each period than another must also be
preferred. Formally:

Axiom 9 (Monotonicity) For any x, y ∈ X,

(xt, 0, .., 0) ≿ (yt, 0, .., 0) for all t =⇒ x ≿ y.

Moreover, if (xt, 0, .., 0) ≻ (yt, 0, .., 0) for some t, then x ≻ y.

As shown in Noor and Takeoka [3], the CCE representation satisfies Monotonicity. How-
ever, the General CCE representation can potentially violate Monotonicity. For example,
let x, y ∈ RT+1

+ . If y = x − (ε, · · · , ε) for some ε > 0 but there is less cognitive resource
available for x, ie, Kx < Ky, then it may be that the agent is unable to appreciate x
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as much as he could with higher cognitive resources, causing him to exhibit y ≻ x. The
intuition is similar to the case where an agent may disprefer a stochastically dominating
lottery because it is too complex to be recognized as such.

Nevertheless there is a subdomain where Monotonicity holds in the general model:

Proposition 2 Suppose ≿ admits a General CCE representation on X+. Then, Mono-
tonicity holds on Xℓ and along rays.

Proof. The first claim is implied by additive separability of the representation on Xℓ. For
the second part, take any α ∈ (0, 1) and any x ∈ X+. Let Dx and Dαx be optimal discount
functions for x and αx, respectively. Note that since Dx · u(x) ≥ Dαx · u(x), it follows that

U(x) = Dx · u(x) ≥ Dαx · u(x) > αDαx · u(x) = Dαx · u(αx) = U(αx),

establishing Monotonicity along any ray.

3.5 Separability

Xℓ-Separability requires the conclusion of the axiom to hold only on Xℓ. A natural question
is what restrictions on our model are imposed by requiring Separability on all of X. This
is answered by Noor and Takeoka [2, Theorem 3].

Theorem 3 A preference ≿ on X+ satisfies Weak Regularity, Monotonicity, Weak Homo-
theticity, Separability and if and only if it admits a CE representation, that is, a basic tuple
(u, {φ}, K) with K = ∞ represents ≿.

The cost functions in Noor and Takeoka [2] may have kinks, which generate weakly
increasing optimal discount functions, that are more general than part (3) of Proposition
1. See Noor and Takeoka [2, Theorem 3] for more details.

3.6 Convexity

In this subsection, we show that a positive General CCE representation must be star-
shaped, αU(x) ≥ U(αx), which is a property weaker than convexity. It is easy to generate
examples (for instance, when there are only two periods) where our model violates convexity
and thus goes beyond models of convex preferences in the literature (such as Maccheroni
et al [1]).

Proposition 3 A General CCE representation U is star-shaped on X+: for all positive x
and α ∈ [0, 1], αU(x) ≥ U(αx).
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Proof. By Proposition 1 (3), for all positive stream x and α ∈ (0, 1), Dx ≥ Dαx. By
linearity of u, ∑

t≥1

Dx(t)u(xt) ≥
∑
t≥1

Dαx(t)u(xt)

=⇒ α(u(x0) +
∑
t≥1

Dx(t)u(xt)) ≥ u(α ◦ x0) +
∑
t≥1

Dαx(t)u(α ◦ xt)

=⇒ αU(x) ≥ U(αx).

Under a certain condition on K, a General CCE representation satisfies convexity for
non-ℓ-magnitude sensitive streams.

Proposition 4 Suppose x, y, αx + (1 − α)y /∈ Xℓ for some α ∈ (0, 1). If Kαx+(1−α)y ≤
min[Kx, Ky], then a General CCE representation on X+ satisfies

U(αx+ (1− α)x) ≤ αU(x) + (1− α)U(y).

Note that the condition always holds if K is constant. Thus, the CCE representation
of Noor and Takeoka [3] is convex on the subdomain of non-ℓ-magnitude sensitive streams.

4 Extension to Negative Outcomes

We extend the model to accommodate negative outcomes. We say that p∗ ∈ ∆ is an
absolute value of p ∈ ∆ if:4 p∗ ∼ p when p is positive , or p∗ satisfies

1

2
◦ p+ 1

2
◦ p∗ ∼ 0

when p is negative. That is, the 50-50 lottery over p and p∗ is as good as receiving 0.
For any stream x, define x∗ by the stream that replaces each outcome xt with an absolute

value (xt)
∗, that is,

x∗
t = (xt)

∗ for all t.

Note that the absolute value p∗ is not unique, since anything in its indifference class will
also be an absolute value for p.

Our earlier axioms below were formulated for positive streams only. We define a negative
stream as one that delivers negative outcomes and we impose a Symmetry axiom so that
axioms on positive streams translate into restrictions on negative ones.

4For simplicity, we use this terminology rather than the more accurate one that p∗ has the same absolute
value as p. This terminology anticipates the fact that in terms of the representation p, p∗ will satisfy
u(p∗) = |u(p)|.
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Axiom 10 (Symmetry) If x is a negative stream then

(cx)
∗ = cx∗ .

Consider a negative stream x and its present equivalent cx. The axiom states that the
absolute value (cx)

∗ of this present equivalent is the same as the present equivalent cx∗ of
the stream’s absolute value x∗.

As noted earlier, present equivalents carry information about the agent’s assessment of
the outcomes and his impatience towards them. So the axiom suggests that the agent’s
impatience towards two streams is identical when the streams give outcomes that have
identical absolute values. This suggests that if impatience is not constant, it can only
change with the absolute value of outcomes.

Finally, we re-define the set of ℓ-magnitude senseitive streams X∗
ℓ :

X∗
ℓ = {x ∈ X : αcx∗ ≻ αx∗ for all α ∈ (0, 1)}.

That is, an arbitrary stream x is ℓ-magnitude sensitive if its absolute value x∗ is such that
small changes in scale leads to changes in impatience (as with Symmetry, this presumes
that impatience depends only on the absolute value of the stakes). Note that

x ∈ X∗
ℓ ⇐⇒ x∗ ∈ Xℓ, ∀ x.

Axiom 11 (X∗
ℓ -Separability) For all x ∈ X∗

ℓ and all t,

1

2
◦ cx{t}0 +

1

2
◦ c0{t}x ∼ 1

2
◦ cx +

1

2
◦ c0.

Conspicuously missing is an axiom describing streams that offer both positive and neg-
ative consumption. Because of X∗

ℓ -Separability, it turns out to be unnecessary to formulate
such an axiom for ℓ-magnitude sensitive streams, since we can restrict attention to dated
rewards (streams pt that pay p at t and 0 otherwise) for much of our analysis, and such
streams are either positive or negative.

Finally, we impose the following axiom:

Axiom 12 (Symmetric Hometheticity) For any x which is neither positive nor nega-
tive and any α ∈ (0, 1),

cx ∼ x, cx∗ ∼ x∗, and α ◦ cx∗ ∼ αx∗ =⇒ α ◦ cx ∼ αx.

As shown in Lemmas 7 and 8 in Appendix B, Weak Homotheticity and Strong Xℓ-
Regularity jointly imply the same property for positive streams. Together with Symmetry,
the same also holds for negative streams. The above axiom requires the same property for
the other streams.

We establish an axiomatic foundation for a General CCE representation (u, {φt}, K).
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Theorem 4 A non-degenerate preference ≿ on X satisfies Weak Regularity, Weak Homo-
theticity, X∗

ℓ -Separability, Strong Xℓ-Regularity, Xℓ-Time-Invariance, Time-0 Irrelevance,
Xℓ-Dominance, Xℓ-Continuity, Symmetry, and Symmetric Homotheticity if and only if it
admits a General CCE representation.

Moreover, if there are two General CCE representations (ui, {φi
t}, K i), i = 1, 2 of the

same preference ≿, then there exists α > 0 such that (i) u2 = αu1, (ii) φ2
t = αφ1

t , and (iii)
K2 = αK1.

4.1 Special Case 1: CCE Representations with Negative Out-
comes

Say that a tuple (u, {φt}t≥1, K) is regular if
(i) u : ∆ → R is continuous and mixture linear with increasing vNM utility index u : C → R
satisfying (a) u(0) = 0 and (b) unboundedness: u(C) = R.
(ii) for each t ≥ 1, a cost function φt : [0, 1] → R+ takes the form

φt(d) = at · dm,

where m > 1, and at > 0 is increasing in t.
(iii) 0 < K ≤ a1.

Definition 3 (CCE Representation) A Constrained Costly Empathy (CCE) represen-
tation is a regular tuple (u, {φt}, K) such that ≿ is represented by the function U : X→ R
defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,

s.t. Dx = arg max
D∈[0,dt]T

{
∑
t≥1

D(t) |u(xt)| − φt(D(t))} subject to φ(D) ≤ K.

Noor and Takeoka [3] axiomatize the CCE representation which is defined over X+.
The next axiom is introduced by Noor and Takeoka [2] in order to characterize the

homogeneous CE representation.

Axiom 13 (Xℓ-Homogeneity) For any x, y ∈ Xℓ s.t. x0 ∼ y0 ∼ 0, their present equiva-
lents cx ∼ x and cy ∼ y, and any α, β ∈ (0, 1),

β ◦ cx ∼ αx =⇒ β ◦ cy ∼ αy.

For any x ∈ X, 0{0}x denotes the stream that pays 0 in period 0 and pays according to
x from period 1 onward. That is, 0{0}x = (0, x1, · · · , xT ). Intuitively, 0{0}x is interpreted
as the future payoffs obtained from x. The following axiom is introduced by Noor and
Takeoka [3].
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Axiom 14 (Xℓ-Monotonicity) For all x ∈ X+ \∆0, the following hold.
(i) if x /∈ Xℓ, then y ∈ Xℓ for some y ∈ X+ \∆0 with 0{0}x ≿ 0{0}y.
(ii) if x ∈ Xℓ, then y ∈ Xℓ for all y ∈ X+ \∆0 with 0{0}x ≿ 0{0}y.

Theorem 5 A non-degenerate preference ≿ on X satisfies Weak Regularity, Monotonicity,
Weak Homotheticity, X∗

ℓ -Separability, Xℓ-Homogeneity, Xℓ-Monotonicity, Symmetry, and
Symmetric Homotheticity if and only if it admits a CCE representation.

4.2 Special Case 2: CE Representations with Negative Outcomes

Definition 4 (CE Representation) A Costly Empathy (CE) representation is a basic
tuple (u, {φt}) such that ≿ is represented by the function U : X→ R defined by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt), x ∈ X,

s.t. Dx = arg max
D∈[0,dt]T

{
∑
t≥1

D(t) |u(xt)| − φt(D(t))}.

Noor and Takeoka [2] axiomatize the CE representation which is defined over X+.

Theorem 6 A non-degenerate preference ≿ on X satisfies Weak Regularity, Monotonicity,
Weak Homotheticity, Separability, and Symmetry if and only if it admits a CE representa-
tion.

Proof. By Lemma 1, there exists an expected utility representation u on lotteries. There
exists a representation U on X which is an extension of u. Since ≿ satisfies Separability
on the whole domain X, the proof of Lemma 4 goes through without X∗

ℓ -Dominance. The
lemma ensures that U : X → R admits an additively separable form where each component
function Ut is defined on the whole ∆. By replacingX∗

ℓ -Time-Invariance with Monotonicity,
together with Lemma 2, Lemma 5 implies that U : X → R admits a GDU representation
such that the discount function depends only on the absolute value of payoffs. By a similar
argument, we can show that the discount function is weakly increasing in positive payoffs
by Weak Homotheticity. The rest of the proof is the same as in Theorem 3 of Noor and
Takeoka [2].

A Appendix: Proof of Proposition 1

By property (c) of the General CCE representation, Kx = Kx∗ = K|u(x)|. Since the opti-
mization problem depends only on the absolute value of (u(xt))t≥1, it is enough to show
the statement for positive streams. Moreover, by property (c), Kx = Kx if x, x belong to
the same ray. Thus, denote K = Kx for some (any) x on the ray.
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For a positive stream x on the ray, its optimal discount factor Dx is characterized by
the FOC of the following Lagrangian:

L =
∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t)) + λ(K −
∑
t≥1

φt(D(t))),

where λ ≥ 0 is a Lagrange multiplier.
If the capacity constraint is not binding, λ = 0. By differentiating L with respect to

D(t), an optimal Dx satisfies

u(xt) = φ′
t(Dx(t)), ∀t ≥ 1 with u(xt) > 0.

We have a closed-form solution such as

Dx(t) = Du(xt)(t) = (φ′
t)

−1(u(xt)).

In particular, Dx(t) depends only on u(xt).
If the capacity constraint is binding, by differentiating L with respect to D(t), an

optimal Dx satisfies

u(xt) = (1 + λ)φ′
t(Dx(t)), ∀t ≥ 1 with u(xt) > 0, (2)∑

t≥1

φt(Dx(t)) = K (3)

for some λ ≥ 0. From (2), Dx(t) = (φ′
t)

−1(u(xt)/(1 + λ)). By substituting it into (3),∑
t≥1

φt

(
(φ′

t)
−1

(
u(xt)

1 + λ

))
= K.

This equation is solved for λ, which is denoted by λ(x,K). Then, we obtain

Dx(t) = (φ′
t)

−1

(
u(xt)

1 + λ(x,K)

)
.

Note that Dx(t) depends on the whole stream x, not only on the payoff at t, as well as the
capacity cap K.

Take any other y on the ray such that the capacity constraint is binding at its optimal
Dy. From the FOC,

u(yt) = (1 + λ′)φ′
t(Dy(t)), ∀t ≥ 1 with u(xt) > 0,∑

t≥1

φt(Dy(t)) = K

for some positive λ′. Since x and y belong to the same ray, y = αx for some α > 0. Since
u is linear, by setting 1 + λ′ = α(1 + λ), Dy satisfies the FOC of (2). Thus, Dy = Dx.

(3) It is implied from (1) and (2).
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B Appendix: Proof of the General CCE Representa-

tion

The first four subsections establish sufficiency of the axioms. The fifth subsection es-
tablishes necessity. The last subsection shows uniqueness. For a positive General CCE
representation, it is enough to follow the arguments of the first three subsections with
replacing X∗

ℓ by Xℓ.

B.1 Preliminaries

Lemma 1 The preference ≿|∆0 is represented by a utility function u : ∆ → R with u(0) = 0
which is continuous, mixture linear, and homogeneous (that is, u(αp) = αu(p) for all
α ≥ 0.) Moreover, the preference ≿ on X is represented by a continuous utility function
U : X → R such that U(p) = u(p) for all p ∈ ∆0.

Proof. By Weak Regularity, ≿|∆0 satisfies the vNM axioms. There exists a continuous
mixture linear function u : ∆ → R which represents ≿|∆0 and which can be chosen so that
u(0) = 0.

Establish homogeneity of u next. If α ∈ [0, 1], by mixture linearity of u, together with
identifying αp with αp+ (1− α)0,

u(αp) = u(αp+ (1− α)0) = αu(p) + (1− α)u(0) = αu(p).

If α > 1, we identify αp with p′ ∈ ∆ satisfying p = 1
α
p′ + α−1

α
0. Then, mixture linearity of

u implies that u(p) = 1
α
u(p′), that is, u(αp) = u(p′) = αu(p), as desired.

For any x ∈ X, the Present Equivalents axiom ensures that there exists cx ∈ C such
that cx ∼ x. Define U(x) = u(cx). By construction, U represents ≿. Moreover, for all
p ∈ ∆, U(p) = u(p). In particular, we have U(0) = u(0) = 0.

To show the continuity of U , take any sequence xn → x̂. There exists a corresponding
present equivalent cxn ∼ xn. Since U(xn) = u(cxn) and u is continuous, we want to show
that cxn → cx̂.

Claim 1 The present equivalent is continuous, that is, if xn → x, then cxn → cx̂.

Proof. Take any c and c such that c > cx̂ > c. Let W = {x ∈ X | c ≻ x ≻ c}. Since
xn → x̂ ∼ cx̂, by Continuity, we can assume xn ∈ W for all n without loss of generality.

Seeking a contradiction, suppose cxn ̸→ cx̂. Then, there exists a neighborhood of cx̂,
denoted by B(cx̂), such that cxm /∈ B(cx̂) for infinitely many m. Let {xm} denote the
corresponding subsequence of {xn}. Since xn → x̂, {xm} also converges to x̂. Without loss
of generality, we can assume xm ∈ W , that is, c ≻ xm ∼ cxm ≻ c. By C-Monotonicity,
c > cxm > c. Thus, {cxm} belongs to a compact interval [c, c], and hence, there exists a
convergent subsequence {cxℓ} with a limit c̃ ̸= cx̂. On the other hand, since xℓ → x̂ and
xℓ ∼ cxℓ , Continuity implies x̂ ∼ c̃. Since cx̂ is unique, cx̂ = c̃, which is a contradiction.
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The symmetric argument can be applied for the case that 0 ≿ x, xn for all n. Finally,
suppose that x ∼ 0. If xn ∼ 0 for some n, U(xn) = 0 = U(x) for such n. Thus, we can
assume without loss of generality that xn ̸∼ 0 for all n. For the subsequence {xm} of {xn}
satisfying xm ≻ 0, we have xm → x. By the above argument, U(xm) → U(x). Similarly,
for the subsequence {xm} of {xn} satisfying 0 ≻ xm, we have U(xm) → U(x). Therefore,
U(xn) → U(x), as desired.

We show several properties of an absolute value of streams.

Lemma 2 (1) For all negative outcomes p ∈ ∆, u(p) = −u(p∗).
(2) For any dated reward pt with a negative outcome, (cpt)

∗ ∼ (p∗)t.
(3) For all x ∈ X, if x∗ is an absolute value of x, αx∗ is an absolute value of αx for all
α > 0.

Proof. (1) If 0 ≻ p, by definition, its absolute value p∗ ∈ ∆ satisfies

1

2
◦ p+ 1

2
◦ p∗ ∼ 0.

Since u is mixture linear, u(p) = −u(p∗).
(2) Since the dated reward pt with this negative outcome is a negative stream, by

Symmetry, (cpt)
∗ = c(pt)∗ . Since (pt)∗ = (p∗)t by definition, we have a desired result.

(3) By part (1), for any negative outcome p ∈ ∆, its absolute value p∗ ∈ ∆ satisfies
u(p) = −u(p∗). Since u is homogeneous, for all negative outcomes p ∈ ∆ and α > 0, we
have

u(αp) = αu(p) = −αu(p∗) = −u(αp∗),

that is, αp∗ is an absolute value of αp. Thus, the claim holds by definition.

Axiom 15 (X∗
ℓ -Time-Invariance) For all p, p̂ ∈ ∆ and t, if pt, p̂t ∈ X∗

ℓ , then

p ≿ p̂ ⇐⇒ pt ≿ p̂t.

Axiom 16 (X∗
ℓ -Dominance) For all x and all S ⊂ {1, · · · , T} such that xt ̸∼ 0 for some

t ∈ S,
x ∈ X∗

ℓ =⇒ xS0 ∈ X∗
ℓ .

Lemma 3 ≿ satisfies X∗
ℓ -Time-Invariance and X∗

ℓ -Dominance.

Proof. ByXℓ-Time-Invariance, the statement holds for all positive outcomes. If p ≿ 0 ≿ p̂,
pt is a positive stream and p̂t is a negative stream. So, we have pt ≿ 0 ≿ p̂t. Thus, for
negative outcomes p, p̂ with p ≿ p̂, assume pt, p̂t ∈ X∗

ℓ . By definition of X∗
ℓ , (p

t)∗ = (p∗)t ∈
Xℓ and (p̂t)∗ = (p̂∗)t ∈ Xℓ. Moreover, by Lemma 2 (1), p̂∗ ≿ p∗. Xℓ-Time-Invariance
implies that (p̂∗)t ≿ (p∗)t. By Lemma 2 (2), (cp̂t)

∗ ≿ (cpt)
∗. Since cp̂t and cpt are negative

outcomes, again by Lemma 2 (1), cpt ≿ cp̂t , or equivalently, p
t ≿ p̂t, as desired.

Note that x ∈ X∗
ℓ if and only if x∗ ∈ Xℓ. Since x∗ is a positive stream, Xℓ-Dominance

implies that x∗S0 ∈ Xℓ. Thus, we have xS0 ∈ X∗
ℓ .
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B.2 Representation on X∗
ℓ

For each t ≥ 1, let ∆t = {p ∈ ∆ | pt ∈ X∗
ℓ }.

Lemma 4 On the subdomain X∗
ℓ ∪ ∆0 ⊂ X, U can be written as an additively separable

utility form, i.e. U : X∗
ℓ ∪∆0 → R s.t. for all x ∈ X∗

ℓ ∪∆0,

U(x) = u(x0) +
∑
t≥1

Ut(xt),

where u is given as in Lemma 1 and Ut : ∆t → R are continuous with Ut(0) = 0 for each
t. Moreover, u is unbounded.

Proof. Take any x ∈ X∗
ℓ , which is denoted by x = (x0, x1, · · · , xT ). There exists some

t > 0 with xt ̸∼ 0. We start with the case where there are two xt, xs ̸∼ 0. By notational
convenience, denote such a stream by (xt, xs, 0, · · · , 0). By X∗

ℓ -Separability,

1

2
◦ c(0,xs,0,··· ,0) +

1

2
◦ c(xt,0,··· ,0) ∼

1

2
◦ c(xt,xs,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,xs,0,··· ,0)) + u(c(xt,0,··· ,0)) = u(c(xt,xs,0,··· ,0)) + u(0)

⇐⇒ U(0, xs, 0, · · · , 0) + U(xt, 0, · · · , 0) = U(xt, xs, 0, · · · , 0).

Define Ut(xt) = U(xt, 0, · · · , 0) and Us(xs) = U(0, xs, 0, · · · , 0). Then, we have

U(xt, xs, 0, · · · , 0) = Ut(xt) + Us(xs). (4)

If a stream has three outcomes xt, xs, xr ̸∼ 0, denote it by (xt, xs, xr, 0, · · · , 0). By
X∗

ℓ -Dominance, (xt, xs, 0, · · · , 0) ∈ X∗
ℓ . From the above argument, we have (4). By X∗

ℓ -
Separability,

1

2
◦ c(0,0,xr,0,··· ,0) +

1

2
◦ c(xt,xs,0,··· ,0) ∼

1

2
◦ c(xt,xs,xr,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,0,xr,0,··· ,0)) + u(c(xt,xs,0,··· ,0)) = u(c(xt,xs,xr,0,··· ,0)) + u(0)

⇐⇒ U(0, 0, xr, 0 · · · , 0) + U(xt, xs, 0, · · · , 0) = U(xt, xs, xr, 0, · · · , 0).

Define Ur(xr) = U(0, 0, xr, 0, · · · , 0). Then, we have

U(xt, xs, xr, 0, · · · , 0) = Ur(xr) + U(xt, xs, 0, · · · , 0)
= Ut(xt) + Us(xs) + Ur(xr).
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By repeating the same argument finitely many times, we have

U(x) =
∑
t≥0

Ut(xt),

where Ut(xt) is defined as Ut(xt) = U(0, · · · , 0, xt, 0, · · · , 0). By definition, Ut(0) = 0. By
X∗

ℓ -Dominance, for any x ∈ X∗
ℓ , if xt ̸∼ 0, (xt)

t ∈ X∗
ℓ , that is, (xt)

t ∈ ∆t. Hence, Ut is
defined on ∆t.

Since U is continuous, Ut is also continuous. Take any p ∈ ∆ and any sequence xn =
(0, xn

1 , · · · , xn
T ) ∈ X∗

ℓ , where xn
t → 0 for all t ≥ 1. By Time-0 Irrelevance, p{0}xn =

(p, xn
1 , · · · , xn

T ) ∈ X∗
ℓ . Since p{0}xn → p ∈ ∆0, by continuity, U(p{0}xn) → u(p) and

U(p{0}xn) = U0(p) +
∑

t≥1 Ut(x
n
t ) → U0(p). Thus, U0(p) = u(p).

Finally, we show that u must be unbounded. First, we show that u is unbounded from
above. By seeking a contradiction, suppose otherwise. Then, the range of u is nonempty
and has an upper bound. There exists a supremum v of the range of u. Since Ut is non-
constant by Time Invariance, there exists some p̃ ∈ ∆ with Ut(p̃) > 0. Take a lottery p ∈ ∆
such that v − u(p) < Ut(p̃). Consider the stream x which pays p in period 0, p̃ in period t,
and zero otherwise. By Time-0 Irrelevance, x ∈ X∗

ℓ . By the representation,

U(x) = u(p) + Ut(p̃) > v.

Since v is the supremum of u(∆), the above inequality contradicts to the Present Equiva-
lents axiom. By the symmetric argument, we can show that u is unbounded from below.

Lemma 5 The function U : X∗
ℓ ∪∆0 → R defined as in Lemma 4 can be written as follows:

U(x) = u(x0) +
∑
t≥1

D|u(xt)|(t)u(xt),

where for all t ≥ 1, D|u(p)|(t) ∈ [0, 1] and D|u(p)|(t) is continuous and strictly increasing in
|u(p)|.

Proof. Taking the additive representation from Lemma 4, by X∗
ℓ -Time-Invariance, we

have that Ut(xt) can be written as an increasing transformation of u(xt). So we can write

Ut(xt) as Ut(u(xt)). Define Dx by Du(xt)(t) = Ut(u(xt))
u(xt)

> 0 for any xt ∈ ∆ with xt ̸∼ 0.

Define dt = inf {Du(p)(t) : 0 ̸∼ p ∈ ∆t}. Then

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), for all x ∈ X∗
ℓ ∪∆0.

By Lemma 2, the representation implies

Du(p)(t)u(p) = U(pt) = u(cpt) = −u((cpt)
∗) = −u(c(pt)∗)

= −U((pt)∗) = −Du(p∗)(t)u(p
∗) = D|u(p)|(t)u(p),
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and hence, Du(p)(t) = D|u(p)|(t), as desired.
To see that D|u(p)|(t) is strictly increasing in |u(p)|, it suffices to show by the above

observation thatDu(p)(t) is strictly increasing in u(p) > 0. Note that for any positive stream
x ∈ Xℓ and its present equivalent cx, by definition of Xℓ, αU(cx) > U(αx) for all α ∈ (0, 1)
and thus αU(x) > U(αx). Applying this more specifically to a dated reward pt with
u(p) > 0 and exploiting mixture linearity of u, we obtain αDu(p)(t)u(p) > Du(αp)(t)u(αp) =
αDαu(p)(t)u(p) and thus

Du(p)(t) > Dαu(p)(t), for all α ∈ (0, 1),

as desired.
Since u and Ut are continuous, so is Du(p)(t) in u(p) on the domain of u(p) ̸= 0.

Moreover, since |u(p)| is continuous, so is D|u(p)|(t) for all |u(p)| ̸= 0. Since dt is defined as
inf{Du(p)(t) : 0 ̸∼ p ∈ ∆t} and D|u(p)|(t) is strictly increasing in |u(p)|, D|u(p)|(t) is indeed
continuous for all |u(p)| ≥ 0.

By Impatience, for all positive p and t ≥ 1, u(p) = U(p0) ≥ U(pt) = D|u(p)|(t)u(p),
which implies D|u(p)|(t) ≤ 1.

Lemma 6 The function U : X∗
ℓ ∪∆0 → R appeared in Lemma 5 can be written as follows:

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = argmax
D

{
∑
t≥1

(
D(t)|u(xt)| − φt(D(t))

)
}

where for each t ≥ 1, φt : [0, 1] → R+ ∪ {∞} is an increasing convex function that is
strictly increasing, strictly convex, and differentiable on {d | 0 < φt(d) < ∞}, and satisfies
φt(dt) = 0 and φ′

t(dt) = 0. Moreover, φt(d) ≤ φt+1(d) for all t < T and d.

Proof. By X∗
ℓ -Dominance, if x ∈ X∗

ℓ , then xt0 ∈ X∗
ℓ , that is, x

∗t0 ∈ Xℓ if xt ̸∼ 0. Thus,
φt can be derived from the positive dated rewards at t as follows. Define

St = {d ∈ [0, 1] | d = D|u(p)|(t) for some pt ∈ Xℓ}.

By Xℓ-Regularity, if p
t ∈ Xℓ, then αpt ∈ Xℓ for all α ∈ (0, 1). Thus, St is an interval. Note

dt = inf St. Denote dt = supSt. Define It = St ∪ {dt, dt}. The cost function φt on It is
implicitly defined by the first order condition

|u(p)| = φ′
t(D|u(p)|(t)), (5)

along with the assumption that φt(dt) = 0. Moreover, the continuity of D|u(p)|(t) wrt |u(p)|
requires that 0 = φ′

t(dt). The function is by construction once differentiable and has a
positive slope. Since D|u(p)|(t) is strictly increasing in |u(p)|, (5) implies that φ′

t is strictly
increasing, and hence, φt is strictly convex.

18



By construction, the set argmaxD{
∑(

D(t)|u(xt)| −φt(D(t))
)
} is nonempty and more-

over, it is a singleton since
∑(

D(t)|u(xt)| − φt(D(t))
)
is a strictly concave function of D.

Thus Dx is a unique solution.
The cost function can be extended to [0, 1] by

φt(d) =


0 if d ∈ [0, dt)
φt(d) if d ∈ It
∞ if d ∈ (dt, 1]

.

Then, φt is increasing and convex on [0, 1].
By Impatience, for all positive p and for all t < T , Du(p)(t)u(p) = U(pt) ≥ U(pt+1) =

Du(p)(t + 1)u(p). Thus, Du(p)(t) is weakly decreasing wrt t. This observation implies that
the effective domain eff (φt) of φt includes that of φt+1. For any d := Du(c)(t + 1) in the
effective domain of φt+1, it follows from the FOC that

φ′
t(d) ≤ φ′

t(Du(p)(t)) = u(p) = φ′
t+1(Du(p)(t+ 1)) = φ′

t+1(d),

that is, φ′
t(d) ≤ φ′

t+1(d) for all d ∈ eff (φt+1). By integrating both functions we obtain
φt(d) ≤ φt+1(d) for all d ∈ eff (φt+1). Consequently, φt(d) ≤ φt+1(d) for all d ∈ [0, 1].

B.3 Extending the Representation to X+

Recall that X+ is the set of positive streams. We extend the representation on Xℓ ∪∆0 to
X+. The first lemma states that Xℓ has a boundary point on a ray.

Lemma 7 For any stream x ∈ X+ \∆0, there exists a unique αx ∈ (0, 1] such that{
α ≤ αx =⇒ αx ∈ Xℓ,
α > αx =⇒ αx /∈ Xℓ.

Proof. Let A = {α ∈ (0, 1] |αx ∈ Xℓ}. By part (i) of Strong Xℓ-Regularity, A ̸= ∅. Let
αx = supA. We claim that A is an interval with inf A = 0. Take any α ∈ A and β ∈ (0, α).
Since αx ∈ Xℓ, by part (ii) of Strong Xℓ-Regularity, βx = β

α
(αx) ∈ Xℓ, that is, β ∈ A as

desired. Now, by definition of αx, if α < αx, then α ∈ A, and hence αx ∈ Xℓ. If α > αx,
then α /∈ A, and hence αx /∈ Xℓ. Uniqueness of αx is obvious. Moreover, if x ∈ Xℓ, by part
(ii) of Strong Xℓ-Regularity, A = (0, 1), and hence, αx = 1.

Lemma 8 For any x ∈ X+ \∆0, take αx ∈ (0, 1] which is defined as in Lemma 7. Then,{
α < αx =⇒ α ◦ cx ≻ αx,
α ≥ αx =⇒ α ◦ cx ∼ αx.

Proof. Step 1: For all x ∈ X+ \∆0, α ◦ cx ≻ αx implies β ◦ cx ≻ βx for all β ∈ (0, α]. By
definition, a present equivalent of αx, denoted by cαx, satisfies α ◦ cx ≻ αx ∼ cαx. For any
γ ∈ (0, 1), let β = γα ∈ (0, α). By Weak Homotheticity and Risk Preference,

β ◦ cx = γα ◦ cx ≻ γ ◦ cαx ≿ γαx = βx,
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as desired.
Step 2: If there exist α, β ∈ (0, 1) such that α ◦ cx ∼ αx and β ◦ cαx ∼ β(αx), then

αβ ◦ cx ∼ αβx. By definition and the assumption, α ◦ cx ∼ αx ∼ cαx. By Risk Preference,
αβ ◦ cx ∼ β ◦ cαx. Hence, by assumption, αβ ◦ cx ∼ αβx.

Step 3: There exists a unique α̃x ∈ (0, 1] such that{
α < α̃x =⇒ α ◦ cx ≻ αx,
α ≥ α̃x =⇒ α ◦ cx ∼ αx.

If x ∈ Xℓ, α̃x = 1 satisfies this condition. Thus, assume x /∈ Xℓ. Let Ã = {α ∈ (0, 1] |α ◦
cx ≻ αx}. By part (i) of Strong Xℓ-Regularity, Ã is non-empty. Moreover, by Step 1, Ã is

an interval with inf Ã = 0. Let α̃x be a supremum of Ã. If Ã = (0, 1), α̃x = 1 and this α̃x

satisfies the desired property. If Ã is a proper subset of (0, 1), α̃x < 1. Then, there exists
a sequence αn → α̃x with αn > α̃x. Since αn ◦ cx ∼ αnx, by Continuity, α̃x ◦ cx ∼ α̃xx, as
desired.

Step 4: α̃x ≤ αx. Seeking a contradiction, suppose α̃x > αx. Lemma 7 implies α̃xx /∈ Xℓ.
By definition, there exists β ∈ (0, 1) such that β ◦ cα̃xx ∼ β(α̃xx). Since α̃x ◦ cx ∼ α̃xx, by
Step 2, α̃xβ ◦ cx ∼ α̃xβx. Since α̃xβ < α̃x, this contradicts to Step 3.

Step 5: α̃x = αx. By Step 4, seeking a contradiction, suppose α̃x < αx. Take any
α ∈ (α̃x, αx). By Step 3, α ◦ cx ∼ αx. Moreover, for all γ sufficiently close to one, since
γα ∈ (α̃x, αx), γα ◦ cx ∼ γαx. Now, by definition, cαx ∼ αx, which implies cαx ∼ α ◦ cx.
Since αx ∈ Xℓ by Lemma 7, for all γ ∈ (0, 1), γ ◦ cαx ≻ γαx. Thus, we have

γ ◦ cαx ≻ γαx ∼ γα ◦ cx

for all γ sufficiently close to one. By Risk Preference, cαx ≻ α◦cx, which is a contradiction.

Lemma 9 For all x, y ∈ X+ \ ∆0, take αx, αy ∈ (0, 1] which are defined as in Lemma 7.
If xt ∼ yt for all t ≥ 1, then αx = αy.

Proof. By Lemma 6, the representation depends only on utility streams (u(xt))
T
t=0. More-

over, by Time-0 Irrelevance, x0 is independent of whether x is ℓ-magnitude sensitive. Since
u(xt) = u(yt) for all t ≥ 1, x is ℓ-magnitude sensitive if and only if so is y. If x, y ∈ Xℓ,
αx = αy = 1. Assume next that x, y ̸∈ Xℓ. Seeking a contradiction, suppose that αx ̸= αy.
Without loss of generality, let αx > αy. For any α ∈ (αy, αx), by Lemma 7, αx is ℓ-
magnitude sensitive and αy is not ℓ-magnitude sensitive. Since u(αxt) = u(αyt) for all t,
this contradicts to the above argument. Thus, αx = αy, as desired.

As shown in Lemma 7, for any x ∈ X+ \∆0,

αx = sup{α ∈ [0, 1] |αx ∈ Xℓ}.
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Lemma 10 The function U : X+ → R+ appeared in Lemma 1 can be written as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx =

 argmax
D

{
∑
t≥1

D(t)u(xt)− φt(D(t))} if x ∈ Xℓ ∪∆0,

Dαxx if x ̸∈ Xℓ ∪∆0.

Proof. By Lemma 6, U has the desired form on Xℓ∪∆0. Consider the case of x ̸∈ Xℓ∪∆0.
Since u(αx ◦ cx) = U(αxx) by Lemma 8,

U(x) = u(cx) =
1

αx

U(αxx). (6)

By the representation on Xℓ,

U(αxx) = u(αx ◦ x0) +
∑
t≥1

Dαxx(t)u(αx ◦ xt). (7)

By combining (6) with (7),

U(x) =
1

αx

U(αxx) =
1

αx

(
u(αx ◦ x0) +

∑
t≥1

Dαxx(t)u(αx ◦ xt)

)
= u(x0) +

∑
t≥1

Dαxx(t)u(xt),

as desired.
From now on, we derive a function K : X+ \∆0 → R++∪{∞} which serves as a general

capacity constraint for the General CCE representation.
First, consider the case of Xℓ = X+ \ ∆0. Since x ∈ Xℓ ∪ ∆0 for all x, Lemma 10

directly delivers the desired representation by setting Kx = ∞ for all x ∈ X+ \ ∆0. The
CCE representation in this case is additively separable on the whole domain.

From now on, assume Xℓ ⊊ X+ \∆0. Let

φ(D) :=
∑
t≥1

φt(D(t)).

Lemma 11 There is a function K : X+ \∆0 → R++ ∪ {∞} such that ≿ is represented by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))}

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.
Moreover, (1) the function Kx satisfies Kx = Kλx for any x and λ, and (2) for all positive
streams x, y, if u(xt) = u(yt) for all t ≥ 1, then Kx = Ky.

21



Proof. Since U(p) = u(p) for all p ∈ ∆0, K does not play any role for consumption stream
on ∆0. Take any x ∈ X+ \ ∆0. If λx ∈ Xℓ for all λ > 0, define Kx = Kλx = ∞ for all
λ > 0. Otherwise, we can find another x on the same ray with x /∈ Xℓ. For such x, define

Kx := φ(Dαxx) < ∞.

Extend to Xℓ by requiring Kx = Kλx for any λ > 0.
For all x ∈ X+ \ ∆0, by Lemma 7, there exists αx > 0 such that αxx ∈ Xℓ. For

any β ∈ (0, αx), since φ is strictly increasing and Du(c)(t) is strictly increasing in u(c),
Kx = φ(Dαxx) > φ(Dβx) ≥ 0. Hence, Kx > 0.

For any x ∈ X+ \∆0, define

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.

From Lemma 10, for any x ∈ Xℓ we have

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = argmax
D

{
∑

D(t)u(xt)− φt(D(t))}.

There exists x′ /∈ Xℓ ∪ ∆0 such that x = αx′ for some α ∈ (0, 1). Since φ is strictly
increasing and Dαx′ is increasing in α up to αx′x′, φ(Dx) ≤ φ(Dαx′x

′) = Kx, that is, we
have Dx ∈ Λx. Thus, Dx is also the unique maximizer in the constrained problem:

Dx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))},

thereby establishing the result for x ∈ Xℓ.
Next consider x ̸∈ Xℓ ∪∆0, and take αxx ∈ Xℓ. By definition, note that Kx < ∞. By

the preceding,

Dαxx = arg max
D∈Λx

{
∑

D(t)u(αxxt)− φt(D(t))}.

For notational simplicity, for any x, let u(x) denote (u(x1), · · · , u(xT )) ∈ RT
+. We first

prove that
Dαxx ∈ arg max

D∈Λx

D · u(x). (8)

To see this, suppose by way of contradiction that there is D ∈ Λx s.t. D ·u(x) > Dαxx ·u(x).
Since Dαxx is on the boundary of Λx and D ∈ Λx, we have φ(Dαxx) = Kx ≥ φ(D). But
these inequalities imply that

D · u(αxx)− φ(D) > Dαxx · u(αxx)− φ(Dαxx),

contradicting the optimality of Dαxx for αxx, as desired.
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To conclude the proof of the lemma, observe that for any D ∈ Λx with D ̸= Dαxx,

Dαxx · u(αxx)− φ(Dαxx) > D · u(αxx)− φ(D)

=⇒ Dαxx · u(αxx)−D · u(αxx) > φ(Dαxx)− φ(D)

=⇒ αx[Dαxx · u(x)−D · u(x)] > φ(Dαxx)− φ(D)

=⇒ Dαxx · u(x)−D · u(x) > φ(Dαxx)− φ(D)

(since Dαxx · u(x) ≥ D · u(x), by (8))

=⇒ Dαxx · u(x)− φ(Dαxx) > D · u(x)− φ(D).

Thus,

Dαxx = arg max
D∈Λx

{
∑

D(t)u(xt)− φt(D(t))},

as desired.
By Lemma 9, if u(xt) = u(yt) for all t ≥ 1, αx = αy. Thus Kx is finite if and only if

Ky is finite. If Kx is finite, it is obvious from the definition that Kx depends only on the
utility stream (u(xt))

T
t=1. Thus, we have Kx = Ky.

All that remains to be established is to show properties of K: For all S ⊂ {1, · · · , T},
let

φS(D) :=
∑
t∈S

φt(D(t)).

Lemma 12 (1) K : X+ \∆0 → R++ ∪ {∞} is continuous.

(2) For all p and t ≥ 1, Kpt = φt(dt).

(3) If Kx < ∞, Kx ≤ KxS0 for all S ⊂ {1, · · · , T}.

Proof. (1) Take any x ∈ X+ \∆0. First assume Kx < ∞. Thus, there exists some λ with
λx /∈ Xℓ. By Xℓ-Continuity, any consumption stream y in a small neighborhood of x also
satisfies λy /∈ Xℓ, which implies Ky < ∞. In this case, by definition, Ky = φ(Dαyy) for all
such y. Moreover, Dαxx is a unique maximizer of

max{
∑

D(t)u(αx ◦ xt)− φt(D(t))}.

If αx is continuous in x, then D · u(αxx) is continuous and hence the maximum theorem
implies that Dαxx is continuous. Since φ is differentiable (and hence continuous), we have
the desired result.

From now on, we will claim that αx is continuous in x.

Claim 2 αx is lower semi-continuous in x, that is, if xn → x, then

lim inf
n
αxn ≥ αx.
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Proof. Seeking a contradiction, suppose

αx > α∗ := lim inf
n
αxn .

Take any α ∈ (α∗, αx). There exists a subsequence αxm converging to α∗. Since αxm → α∗,
αxm < α for all sufficiently large m. By Lemma 8, αxm ∼ α ◦ cxm . By Continuity and
Claim 1, αx ∼ α ◦ cx. On the other hand, since α < αx, Lemma 8 implies α ◦ cx ≻ αx,
which is a contradiction.

Claim 3 αx is upper semi-continuous in x, that is, if xn → x, then

lim sup
n

αxn ≤ αx.

Proof. Seeking a contradiction, suppose

αx < α∗ := lim sup
n

αxn .

Take any α ∈ (αx, α
∗). There exists a subsequence αxm converging to α∗. Since αxm → α∗,

α < αxm for all sufficiently large m. By Lemma 7, αxm ∈ Xℓ. Since Xℓ is closed in X+ \∆0

by Xℓ-Continuity, αx ∈ Xℓ. On the other hand, since αx < α, Lemma 7 implies αx /∈ Xℓ,
which is a contradiction.

Next consider the case of Kx = ∞. We want to show that Kxn diverges to infinity as
xn → x. Without loss of generality, assume Kxn < ∞ for all n. Seeking a contradiction,
suppose that there exists some subsequence xm such thatKxm ≤ K for someK < ∞. There
exists ym on the boundary of Xℓ corresponding to each xm. By definition, Kxm = φ(Dym).
Since Kx = ∞, all y on the same ray passing through x belong to Xℓ. By Xℓ-Dominance,
pt ∈ Xℓ for all p. Thus, each φt is unbounded above because φ′

t(Du(p)(t)) = u(p) for all u(p).
Therefore, together with K ≥ Kxm = φ(Dym), the sequence {ym}∞m=1 must be bounded.
We can find a consumption stream zm := λmym /∈ Xℓ with λm sufficiently larger than one.
In particular, α̃zm /∈ Xℓ for some α̃ ∈ (0, 1) sufficiently close to one. Moreover, since xm

and zm are on the same ray, zm can be taken to converge to some point z := λx.
By Lemma 8, together with the above observations, α̃ ◦ czm ∼ α̃zm. By continuity of

preference and continuity of present equivalents (Claim 1), α̃◦cz ∼ α̃z. On the other hand,
Kx = ∞ implies that z ∈ Xℓ, and hence, α̃ ◦ cz ≻ α̃z, which is a contradiction. This
completes the proof.

(2) Since φt is defined by using pt ∈ Xℓ, by construction, we have Kpt = φt(dt).
(3) Step 1: Kx ≤ Kpt . By part (2), it must be that

{D(t) ∈ [0, 1] |φt(D(t)) ≤ Kpt} = eff(φt),

and in turn,
{D ∈ [0, 1]T |φt(D(t)) ≤ Kpt for all t} = eff(φ).
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For any stream x, trivially we must have {D |φ(D) ≤ Kx} ⊂ eff(φ), and so

{D ∈ [0, 1]T |φ(D) ≤ Kx} ⊂ {D ∈ [0, 1]T |φt(D(t)) ≤ Kpt for all t}.

To show that Kx ≤ Kpt for all t, take any t and any D in {D |φ(D) ≤ Kx} that satisfies
D(t′) = 0 for t′ ̸= t. Then the above condition implies

φt(D(t)) ≤ Kx =⇒ φt(D(t)) ≤ Kpt .

In particular, if D(t) satisfies φt(D(t)) = Kx,

Kx = φt(D(t)) ≤ Kpt ,

as desired.
Step 2: For all x ∈ X+ \∆0, d = (dt)

T
t=1, and S ⊂ {1, · · · , T},

φ(d) ≤ Kx =⇒ φS(d) ≤ KxS0.

Take any x and d with φ(d) ≤ Kx. By the properties of K shown by Lemma 11, for any
λ > 0, if y := λx, then Kx = Kλx = Ky. By definition of Kx, there exists λ > 0 such
that y = λx belongs to the boundary of Xℓ and Ky = φ(Dy). Since Xℓ-Dominance implies
yS0 ∈ Xℓ for all S ⊂ {1, · · · , T} such that yt ≻ 0 for some t ∈ S, we have φS(DyS0) ≤ KyS0.
Moreover, the value Dy(t) is also optimal for yS0, that is, Dy(t) = DyS0(t) for all t ∈ S.
Now, for any d with φ(d) ≤ Kx, since Kx = Ky = φ(Dy), we have φS(d) ≤ φS(Dy).
Therefore,

φS(d) ≤ φS(Dy) = φS(DyS0) ≤ KyS0 = K(λx)S0 = Kλ(xS0) = KxS0.

Step 3: The result. Take any dS ∈ [0, 1]T such that dS(t) ≥ 0 for all t ∈ S and dS(t) = 0
otherwise. Assume also φ(dS) ≤ Kx. By part (2) and Step 1, φ(dS) ≤ Kx ≤ Kpt = φt(dt).
Hence, there exists some d∗S such that φ(d∗S) = Kx. It follows from Step 2 that Kx =
φ(d∗S) = φS(d

∗
S) ≤ KxS0, as desired.

B.4 Extending the Representation to X

Finally, we extend the representation on X∗
ℓ ∪∆0 to all of X.

Lemma 13 For any stream x ∈ X \∆0 and any its absolute value x∗, there exists a unique
αx∗ ∈ (0, 1] such that {

α ≤ αx∗ =⇒ αx ∈ X∗
ℓ ,

α > αx∗ =⇒ αx /∈ X∗
ℓ .

Proof. Since x∗ is a positive stream, there exists αx∗ ∈ (0, 1], ensured by Lemma 7, such
that αx∗ ∈ Xℓ if α ≤ αx∗ and αx∗ /∈ Xℓ if α > αx∗ . By definition of X∗

ℓ , αx ∈ X∗
ℓ if and

only if αx∗ ∈ Xℓ, as desired.
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Lemma 14 Take any x ∈ X \ ∆0 and any its absolute values x∗ and x∗∗. Then, (1)
αx∗ = αx∗∗, where αx∗ and αx∗∗ are defined as in Lemma 13.
(2) If a positive stream y satisfies x∗

t ∼ yt for all t, αx∗ = αy.

Proof. (1) By definition of absolute values, x∗
t ∼ x∗∗

t for all t. By Lemma 9, αx∗ = αx∗∗ .
(2) Immediate from Lemma 9.

For all x ∈ X \∆0, by Lemma 13, define

αx := αx∗ .

By Lemma 14, αx is well-defined.

Lemma 15 αx ◦ cx ∼ αxx for all x ∈ X \∆0.

Proof. If αx = 1, the claim holds by definition of cx. So, assume αx < 1. If x is a positive
stream, x∗ = x. Thus, Lemma 8 implies αx ◦ cx ∼ αxx, as desired. Next assume that x
is a negative stream. Since x∗ is a positive stream, Lemma 8 implies αx ◦ cx∗ ∼ αxx

∗. By
Symmetry, αx ◦ (cx)

∗ ∼ αxx
∗. By Lemma 2 (3), (αx ◦ cx)

∗ ∼ (αxx)
∗. Since αxx ∈ X∗

ℓ ,
together with Lemma 2 (1),

u((αx ◦ cx)∗) = U((αxx)
∗)

=⇒ − u(αx ◦ cx) = −u(αx ◦ x0)−
∑
t≥1

D|u(αx◦xt)|(t)u(αx ◦ xt)

=⇒ − u(αx ◦ cx) = −U(αxx).

Thus, αx ◦ cx ∼ αxx, as desired. Finally assume that a stream x is neither positive nor
negative. By Lemma 13, a sequence αn → αx with αn > αx satisfies αnx /∈ X∗

ℓ . By
Lemma 2 (3), αnx∗ /∈ Xℓ. Lemmas 7 and 8 imply αn ◦ cx∗ ∼ αnx∗. Thus, by Symmetric
Homotheticity, αn ◦ cx ∼ αnx. By Continuity, αx ◦ cx ∼ αxx as n → ∞.

Lemma 16 The function U : X → R appeared in Lemma 1 can be written as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx =

{
argmax

D
{
∑

D(t)|u(xt)| − φt(D(t))} if x ∈ X∗
ℓ ∪∆0,

Dαxx if x ̸∈ X∗
ℓ ∪∆0.

Proof. By Lemma 6, U has the desired form on X∗
ℓ ∪∆0. Consider the case of x ̸∈ X∗

ℓ ∪∆0.
By Lemma 13, αxx ∈ X∗

ℓ . Together with Lemma 15, the result follows from the same
argument as in Lemma 10.
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Lemma 17 There is a function K : X \∆0 → R++ ∪ {∞} such that ≿ is represented by

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

s.t. Dx = arg max
D∈Λx

{
∑

D(t)|u(xt)| − φt(D(t))}

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.

Moreover, the function Kx satisfies Kx = Kλx for any x and λ.

Proof. By Lemma 11, there exists such a function K on X+ \ ∆0. For any x ∈ X \ ∆0,
since its absolute value x∗ is a positive stream, define

Kx := Kx∗ > 0

for some absolute value x∗ of x. Note that for all absolute values x∗ and x∗∗ of x, x∗
t ∼ x∗∗

t .
By the property ofK stated in Lemma 11, Kx∗ = Kx∗∗ . Thus, Kx is well-defined. Moreover,
by definition, for all λ > 0, Kλx = Kλx∗ = Kx∗ = Kx.

Note that λx ∈ X∗
ℓ for all λ > 0 if and only if λx∗ ∈ Xℓ for all λ > 0. Thus,

Kx = Kx∗ = ∞. Otherwise, we can find another x on the same ray with x /∈ X∗
ℓ . For such

an x,
Kx = Kx∗ = φ(Dαx∗x∗).

Since Dαxx depends only on an absolute value of αxx, φ(Dαxx) = φ(Dαx∗x∗). That is,
Kx = φ(Dαxx).

For any x ∈ X \∆0, define

Λx := {D ∈ [0, 1]T |φ(D) ≤ Kx}.

By replacing Xℓ with X∗
ℓ , the subsequent argument is the same as in Lemma 11.

All that remains to be established is to show properties of K:

Lemma 18 (1) For all x, y, if |u(xt)| = |u(yt)| for all t, then Kx = Ky.

(2) K : X \∆0 → R++ ∪ {∞} is continuous.

(3) For all p and t ≥ 1, Kpt = φt(dt).

(4) If Kx < ∞, Kx ≤ KxS0 for all S ⊂ {1, · · · , T}.

Proof. (1) Consider such x and y. By assumption, x∗
t ∼ y∗t for all t. By property (2) of K

appeared in Lemma 11, Kx∗ = Ky∗ . Thus, by definition, Kx = Ky.
(2) By part (1), Kx can be written as K|u(x)|, that is, K depends only on the absolute

value of utility streams (|u(xt)|)Tt=1. Thus, K can be regarded as a composite function
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between the transformation from x into (|u(xt)|)Tt=1 and the function K : X+ \ ∆0 →
R++ ∪ {∞}. The desired result follows from continuity of the latter shown by Lemma 12
(1).

(3) Since K depends only on the absolute value of utility stream, the desired result
follows from Lemma 12 (2).

(4) Since K depends only on the absolute value of utility stream, the desired result
follows from Lemma 12 (3).

B.5 Necessity

Given a General CCE representation, define the set of ℓ-magnitude sensitive streams Xℓ ⊂
X by

Xℓ = {x ∈ X+ |αU(x) > U(αx) for all α ∈ (0, 1)}.

First of all, we show that Xℓ is characterized by the FOC of the unconstrained opti-
mization problem:

max
D∈RT

+

{
∑
t≥1

D(t)|u(xt)| − φt(D(t))}.

Let Dun
x denote an optimal discount function for the unconstrained optimization problem,

which is characterized by the FOC, |u(xt)| = φ′
t(D

un
x (t)) for all t ≥ 1 with |u(xt)| > 0, or

equivalently,
Dun

x (t) := (φ′
t)

−1(|u(xt)|)

if u(xt) > 0, and Dun
x (t) = 0 if u(xt) = 0. Since φ′

t is strictly increasing, Dun
x (t) is strictly

increasing in |u(xt)|.

Lemma 19
Xℓ = {x ∈ X+ |φ(Dun

x ) ≤ Kx}.

Proof. To show Xℓ belongs to the right-hand side, take any x ∈ Xℓ. By the representation,

u(cx) = U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

where Dx = argmaxD∈Λx{
∑

t≥1D(t)u(xt) − φt(D(t))}. By definition of Xℓ, for all α ∈
(0, 1), u(α ◦ cx) > U(αx). Together with linearity of u, this implies∑

t≥1

Dx(t)u(xt) >
∑
t≥1

Dαx(t)u(xt).

Since u(xt) ≥ 0 and Dx ≥ Dαx by Proposition 1 (3), we have Dx(t) > Dαx(t) for some t.
By definition of Dx, together with properties of the representation,

φ(Dαx) < φ(Dx) ≤ Kx = Kαx.
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Hence, Dαx = Dun
αx. As α → 1, we have φ(Dun

x ) ≤ Kx, as desired.
Conversely, take any x from the right-hand side. For α ∈ (0, 1), By property (c) of the

representation,
φ(Dun

αx) < φ(Dun
x ) ≤ Kx = Kαx.

Therefore,

Dun
αx = Dαx = argmax

Λαx

{
∑
t≥1

D(t)u(α ◦ xt)− φt(D(t))}.

Since Dx = Dun
x > Dun

αx = Dαx and u is linear,

u(α ◦ cx) = u(α ◦ x0) +
∑
t≥1

Dx(t)u(α ◦ xt)

> u(α ◦ x0) +
∑
t≥1

Dαx(t)u(α ◦ xt) = U(αx),

that is, α ◦ cx ≻ αx. Hence, x ∈ Xℓ.

For all streams x, note that x∗ is an absolute value of x if and only if u(x∗
t ) = |u(xt)|

for all t. Given the representation, the set of ℓ-magnitude sensitive streams is defined as

X∗
ℓ = {x ∈ X |αU(x∗) > U(αx∗) for all α ∈ (0, 1)}.

By Lemma 19,

X∗
ℓ = {x ∈ X |φ(Dun

x ) ≤ Kx}. (9)

Note that Dx(t) is continuous in x. By (9), Dx(t) is strictly increasing in |u(xt)| on X∗
ℓ .

It is obvious to see that ≿ that U represents satisfies Weak Regularity. Lemma 19 implies
Time-0 Irrelevance and Xℓ-Continuity.

Lemma 20 ≿ satisfies Weak Homotheticity.

Proof. Take any positive stream x ∈ X+. By Proposition 1 (3), Dx(t) ≥ Dαx(t), which
implies, with linearity of u, αU(x) ≥ U(αx), or α ◦ cx ≿ αx, as desired.

Lemma 21 ≿ satisfies Strong Xℓ-Regularity.

Proof. Take any positive x ̸∈ X+ \ ∆0. Assume x /∈ Xℓ. Then by Lemma 19, the
unconstrained optimal discount function Dun

x violates the capacity constraint, that is,
φ(Dun

x ) > Kx. Since Dun
x is strictly increasing in u(xt), as α → 0, Dun

αx(t) → dt of the
minimum discount factor. Since φt(dt) = 0, there must exist α < 1 for which φ(Dun

αx) < Kx.
By property (c), φ(Dun

αx) < Kαx, implying that αx ∈ Xℓ by Lemma 19.
Next, take any x ∈ Xℓ and α ∈ (0, 1). By Lemma 19 and property (c) of the repre-

sentation, φ(Dun
αx) < φ(Dun

x ) ≤ Kx = Kαx. Again by Lemma 19, αx ∈ Xℓ, as desired.
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Lemma 22 ≿ satisfies X∗
ℓ -Separability.

Proof. From (9), Dx = Dun
x on X∗

ℓ . Thus, Dx(t) depends only on |u(xt)|. Therefore, the
representation on X∗

ℓ is additively separable and satisfies X∗
ℓ -Separability.

Lemma 23 ≿ satisfies Xℓ-Time-Invariance.

Proof. Take any positive outcomes p and p̂. Suppose pt, p̂t ∈ Xℓ. By the representation
on Xℓ, U(pt) = Du(p)(t)u(p) and U(p̂t) = Du(p̂)(t)u(p̂). Since Dr(t) is increasing in r, if
u(p) ≥ u(p̂), we have

U(pt) = Du(p)(t)u(p) ≥ Du(p̂)(t)u(p̂) = U(p̂t).

Lemma 24 ≿ satisfies Xℓ-Dominance.

Proof. Take any x ∈ Xℓ and consider an optimal Dx. By Lemma 19, φ(Dun
x ) ≤ Kx.

Take any S ⊂ {1, · · · , T} with xt ≻ 0 for some t ∈ S. Note that Dun
x (t) is also optimal

for xS0, that is, Dun
x (t) = Dun

xS0(t) for all t ∈ S. By property (c)(iv) of the General CCE
representation,

φS(D
un
xS0) = φS(D

un
x ) ≤ φ(Dun

x ) ≤ Kx ≤ KxS0.

Thus, again by By Lemma 19, xS0 ∈ Xℓ, as desired.

Lemma 25 ≿ satisfies Symmetry

Proof. Take any negative stream x and its absolute value x∗. Note that the absolute
value of the utility stream of x∗ is written as (|u(xt)|)Tt=0, which is denoted by |u(x)|. By
representation,

U(x∗) = |u(x0)|+
∑
t≥1

D|u(x)||u(xt)|, and

U(x) = u(x0) +
∑
t≥1

D|u(x)|u(xt).

Therefore,
u(cx∗) = U(x∗) = −U(x) = −u(cx) = u((cx)

∗),

as desired.

Lemma 26 ≿ satisfies Symmetric Homotheticity.
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Proof. For all x /∈ ∆0 and α ∈ (0, 1), assume that α ◦ cx∗ ∼ αx∗. The representation
implies that αU(x∗) = U(αx∗), which in turn implies∑

t≥1

(Dx∗(t)−Dαx∗(t))u(x∗
t ) = 0.

Since u(x∗
t ) ≥ 0 and Dx∗(t) ≥ Dαx∗(t) by Proposition 1 (3), we have Dx∗(t) = Dαx∗(t) for

all t with u(x∗
t ) > 0.

By representation, an optimal discount function satisfies Dx = Dx∗ = D|u(x)|. Thus,
Dx(t) = Dαx(t) for all t with u(xt) ̸= 0. We have∑

t≥1

(Dx(t)−Dαx(t))u(xt) = 0,

which implies αU(x) = U(αx), as desired.

B.6 Uniqueness

For any dated reward x = pt with u(p) > 0, the discount function (which requires Dx(t) > 0
and Dx(τ) = 0 for τ ̸= t) is determined by preference: if γ ∈ [0, 1] is such that γ ◦ p ∼ x,
then Dx(t) = γ. Thus the discount functions for dated rewards are uniquely pinned down
by preference. Moreover, the set {Dpt(t) ∈ [0, 1] : p ≿ 0} defines the effective domain of
the cost function φt in any representation. We make use of these observations below.

Take two General CCE representations for the preference. Since u1 and u2 are linear
and represent the same preference over lotteries, there exists α > 0 such that u2 = αu1.
(Note that we impose a normalization u1(0) = u2(0) = 0.) Take a positive dated reward
x = pt. By the FOC, together with the above observation,

(φ2
t )

′(Dx(t)) = |u2(p)| = α|u1(p)| = α(φ1
t )

′(Dx(t)),

which implies φ2
t = αφ1

t . By property (c)(iii) of the representation, this holds on the
effective domain.

Note that the unconstrained optimal discount function is identical between the two
representations. Indeed, from the above observation, |u2(xt)| = (φ2

t )
′(Dun,2

x (t)) if and only
if α|u1(xt)| = α(φ1

t )
′(Dun,2

x (t)), which is equivalent to |u1(xt)| = (φ1
t )

′(Dun,2
x (t)). Thus, we

have Dun,1
x (t) = Dun,2

x .
By Lemma 19,

{x ∈ X |φ1(Dun
x ) ≤ K1

x} = Xℓ = {x ∈ X |φ2(Dun
x ) ≤ K2

x}.

Since φ2
t = αφ1

t ,

{x ∈ X |φ2(Dun
x ) ≤ K2

x} = {x ∈ X |φ1(Dun
x ) ≤ K2

x

α
}.

Therefore, we must have K2
x = αK1

x.
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C Appendix: Proof of Proposition 4

Take any x /∈ Xℓ. Define

Λx = {D ∈ [0, 1]T : φ(D) ≤ Kx}.

Since the empathy constraint must be binding for large streams, φ(Dx) = Kx holds. Thus,

Dx =arg max
D∈Λx

{
∑
t≥1

D(t)u(xt)−
∑
t≥1

φt(D(t))}

=arg max
D∈Λx

{
∑
t≥1

D(t)u(xt)−Kx} = arg max
D∈Λx

{
∑
t≥1

D(t)u(xt)}.

Therefore,

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt)

= u(x0) + max
D∈Λx

∑
t≥1

D(t)u(xt) = max
D∈Λx

D · u(x)

with identifying Λx by {D ∈ [0, 1]T+1 :
∑

t≥0 φt(D(t)) ≤ Kx} with φ0(d) = 0 for all
d ∈ [0, 1].

Together with this observation, the assumption implies that

U(αx+ (1− α)y) = max
D∈Λαx+(1−α)y

D · u(αx+ (1− α)y)

≤ α max
D∈Λαx+(1−α)y

D · u(x) + (1− α) max
D∈Λαx+(1−α)y

D · u(y)

≤ αmax
D∈Λx

D · u(x) + (1− α) max
D∈Λy

D · u(y)

= αU(x) + (1− α)U(y).

D Appendix: Proof of Theorem 5

First, we show the sufficiency. Noor and Takeoka [3] show that the axioms on ≿ implies
Strong Xℓ-Regularity, Time-0 Irrelevance, Xℓ-Time-Invariance, Xℓ-Dominance, and Xℓ-
Continuity. Thus, as shown in Appendix B.2, ≿ admits the desired representation U on
X∗

ℓ ∪∆0. Noor and Takeoka [3] show that U on Xℓ∪∆0 can be extended to X+ as desired.
In particular, φt admits a CRRA form. As shown in Appendix B.4, U is extended to X
by using (φ,K) constructed for the positive representation. The function K is extended to
X \∆0 by Kx = Kx∗ .

Turn to the necessity. As shown in Noor and Takeoka [3], the axioms on X+ is implied
by the CCE representation. The CCE representation is a special case of the General CCE
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representation, which implies X∗
ℓ -Separability, Symmetry and Symmetric Homotheticity,

as shown in Appendix B.5.
A non-trivial part is to show Monotonicity. For each components (u, {φt}, K), the

reduced form of a CCE representation is obtained as

U(x) = u(x0) +
∑
t≥1

Dx(t)u(xt),

where γ(t) := (mat)
− 1

m−1 , and

Dx(t) = γ(t)|u(xt)|
1

m−1 (10)

if U(x∗)− |u(x0)| ≤ mK, and

Dx(t) =
(mK)

1
mγ(t)|u(xt)|

1
m−1{∑T

τ=1 γ(τ)|u(xτ )|
m

m−1

} 1
m

(11)

if U(x∗)− |u(x0)| > mK.

Lemma 27 ≿ satisfies Monotonicity.

Proof. Take any x, y such that u(xt) ≥ u(yt) for all t ≥ 0. Since U(x) is additively
separable between x0 and everything else, it is enough to show Monotonicity for streams
x, y with u(x0) = u(y0) = 0. From now on, we consider such streams only.

Step 1: ∑
γ(t)|u(xt)|

1
m−1u(xt) ≥

∑
γ(t)|u(yt)|

1
m−1u(yt).

For each t, there are three cases: (1) u(xt) ≥ u(yt) ≥ 0, (2) u(xt) ≥ 0 ≥ u(yt), and (3)

0 ≥ u(xt) ≥ u(yt). In any case, |u(xt)|
1

m−1u(xt) ≥ |u(yt)|
1

m−1u(yt). By adding up these
inequalities across t, we have the desired result.

By Step 1, if x and y are small, we have the desired result. From now on, suppose that
either x or y is large.

Step 2: If ∑
γ(t)|u(xt)|

1
m−1u(xt) ≥ 0 ≥

∑
γ(t)|u(yt)|

1
m−1u(yt), (12)

then U(x) ≥ U(y). Suppose that x is large. Then, U(x) is obtained by multiplying the
expression in (12) by a positive multiplier, that is,

U(x) =

(
mK∑

γ(t)|u(xt)|
m

m−1

) 1
m ∑

γ(t)|u(xt)|
1

m−1u(xt).

Since this operation does not change the sign, we have the desired result. The same
argument is applicable also when y is large.
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Now assume that∑
γ(t)|u(xt)|

1
m−1u(xt) ≥

∑
γ(t)|u(yt)|

1
m−1u(yt) ≥ 0. (13)

Step 3: Let S = {t ≥ 1 |u(yt) ≤ 0}. For any z ∈ X satisfying 0 ≥ u(zt) ≥ u(yt) for
t ∈ S and u(zt) = u(yt) elsewhere, U(z) ≥ U(y).

By assumption, for all t ∈ S, 0 ≥ u(zt) ≥ u(yt), which implies |u(zt)| ≤ |u(yt)|. Thus,∑
γ(t)|u(zt)|

m
m−1 ≤

∑
γ(t)|u(yt)|

m
m−1 . If y is small, z must be small as well. Hence, assume

that y is large.
Suppose that z is large. By representation,

U(z) =

(
mK∑

γ(t)|u(zt)|
m

m−1

) 1
m ∑

γ(t)|u(zt)|
1

m−1u(zt).

If a consumption stream changes from z to y, the numerator is decreasing because (13)
holds for z and y, while the denominator is increasing by assumption. Thus, U(z) ≥ U(y).

Next suppose that z is small. Since y is large, by Proposition ??,mK ≤
∑

γ(t)|u(yt)|
m

m−1 .
Since (13) holds for z and y,

U(z) =
∑

γ(t)|u(zt)|
1

m−1u(zt)

≥
(

mK∑
γ(t)|u(yt)|

m
m−1

) 1
m ∑

γ(t)|u(yt)|
1

m−1u(yt) = U(y),

as desired.

Now turn to the comparison between x and y. Define SN = {t ≥ 1 |u(xt) < 0} and
SP = {t ≥ 1 |u(yt) > 0}. Let yd be the stream such that ydt = xt on t ∈ SN , y

d
t = yt on

t ∈ SP , and ydt = 0 otherwise. Note that u(ydt ) ≥ u(yt) for all t. Moreover, 0 ≥ u(ydt ) ≥ u(yt)
for t /∈ SP and u(ydt ) = u(yt) elsewhere. By Step 3, U(yd) ≥ U(y).

It is enough to show that U(x) ≥ U(yd). Note that u(xt) ≥ u(ydt ) ≥ 0 for all t /∈ SN

and u(xt) = u(ydt ) elsewhere. From the representation,

U(x) =
∑
t∈SN

Dx(t)u(xt) +
∑
t/∈SN

Dx(t)u(xt)

and
U(yd) =

∑
t∈SN

Dyd(t)u(y
d
t ) +

∑
t/∈SN

Dyd(t)u(y
d
t ).

Note that for all t ∈ SN , u(xt) = u(ydt ) < 0. We show U(x) ≥ U(yd) by the following two
steps.

Step 4: For all t ∈ SN , Dx(t) ≤ Dyd(t).
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Since
∑

γ(t)|u(xt)|
m

m−1 ≥
∑

γ(t)|u(ydt )|
m

m−1 , we have either (a) x and yd are large, or
(b) x is large and yd is small. If (a) holds, for all t ∈ SN ,

Dyd(t) =

(
mK∑T

τ=1 γ(τ)|u(ydτ )|
m

m−1

) 1
m

γ(t)|u(ydt )|
1

m−1

≥

(
mK∑T

τ=1 γ(τ)|u(xτ )|
m

m−1

) 1
m

γ(t)|u(xt)|
1

m−1 = Dx(t).

If (b) holds, Dyd(t) = γ(t)|u(ydt )|
1

m−1 . Since x is large, the multiplier for Dx(t) is smaller
than one. Thus we have the desired result.

Step 5:
∑

t/∈SN
Dx(t)u(xt) ≥

∑
t/∈SN

Dyd(t)u(y
d
t ).

Since
∑

γ(t)|u(xt)|
m

m−1 ≥
∑

γ(t)|u(ydt )|
m

m−1 , we have either (a) x and yd are large, or
(b) x is large and yd is small. If we define a function f : R++ → R++ by

f(θ) =

(
a

b+ θ

) 1
m

θ

for some a, b > 0, it is easy to verify that f ′(θ) > 0, that is, f is a strictly increasing
function because m > 1. Given this observation, if (a) holds,∑

t/∈SN

Dx(t)u(xt)

=

(
mK∑

τ∈SN
|u(xτ )|

m
m−1 +

∑
τ /∈SN

u(xτ )
m

m−1

) 1
m ∑

t/∈SN

γ(t)u(xt)
m

m−1

≥

(
mK∑

τ∈SN
|u(ydτ )|

m
m−1 +

∑
τ /∈SN

u(ydτ )
m

m−1

) 1
m ∑

t/∈SN

γ(t)u(ydt )
m

m−1

=
∑
t/∈SN

Dyd(t)u(y
d
t ),

as desired.
Suppose that (b) holds. Define x(α) = αx + (1 − α)yd for all α ∈ (0, 1). Note that

u(xt) = u(xt(α)) = u(ydt ) for all t ∈ SN and u(xt) ≥ u(xt(α)) ≥ u(ydt ) ≥ 0 otherwise. By
continuity of the representation, there exists α∗ ∈ (0, 1) such that x(α) is large if α > α∗
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and x(α) is small if α ≤ α∗. By the same argument as above,∑
t/∈SN

Dx(t)u(xt)

≥

(
mK∑

τ∈SN
|u(xτ (α∗))|

m
m−1 +

∑
τ /∈SN

u(xτ (α∗))
m

m−1

) 1
m ∑

t/∈SN

γ(t)u(xt(α
∗))

m
m−1

=

(
mK

mK

) 1
m ∑

t/∈SN

γ(t)u(xt(α
∗))

m
m−1 =

∑
t/∈SN

γ(t)u(xt(α
∗))

m
m−1

≥
∑
t/∈SN

γ(t)u(ydt )
m

m−1 =
∑
t/∈SN

Dyd(t)u(y
d
t ).

Consider the case

0 ≥
∑

γ(t)|u(xt)|
1

m−1u(xt) ≥
∑

γ(t)|u(yt)|
1

m−1u(yt). (14)

Define x̄ ∈ X by u(x̄t) = −u(xt) for all t. That is, x̄ is the stream that has an opposite sign
of utilities u(xt). Similarly, ȳ is defined. Note that |u(x̄t)| = |u(xt)| and |u(ȳt)| = |u(yt)|
for all t. Moreover, u(ȳt) ≥ u(x̄t) for all t because u(yt) ≤ u(xt) by assumption. From (14),∑

γ(t)|u(ȳt)|
1

m−1u(ȳt) ≥
∑

γ(t)|u(x̄t)|
1

m−1u(x̄t) ≥ 0.

By the same argument as above,

U(ȳ) ≥ U(x̄)

⇐⇒
∑
t≥1

D|u(ȳ)|(t)u(ȳt) ≥
∑
t≥1

D|u(x̄)|(t)u(x̄t)

⇐⇒
∑
t≥1

D|u(x)|(t)u(xt) ≥
∑
t≥1

D|u(y)|(t)u(yt)

⇐⇒ U(x) ≥ U(y).
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