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Abstract

Behavior is inertial if it does not react to the apparent arrival of relevant informa-
tion. In a context where information is subjective, we formulate an axiom that captures
inertial behavior, and provide a representation that explains such behavior as that of a
rational decision maker who perceives a particular type of information structure, we call
a generalized partition. We characterize the learning processes that can be described
by a generalized partition. We then investigate behavioral protocols that may lead
individuals to perceive a generalized partition (and thus to display inertial behavior)
even when facing a di¤erent type of information structure: A cognitive bias referred to
as cognitive inertia and a bound on rationality, which we term shortsightedness.

Key words: Inertial behavior, subjective learning, generalized partition, uniform cover,
cognitive inertia, shortsighted rationality

1. Introduction

Individuals often seem reluctant to change their behavior in response to new information,

unless that information is conclusive. Examples include managers who do not adapt their

strategy to changes in the business environment (Hodgkinson 1997 and reference therein),

a bias in favor of renewing the status quo health plan when reviewing other options after

a change in health status, or a �one advice suits all�approach among consultants, such as

medical doctors or �nancial advisors, dealing with a heterogeneous population (clients with

di¤erent symptoms or di¤erent levels of risk attitude). We refer to this apparent bias as

inertial behavior.

We contend that in most applied situations, the analyst may suspect inertial behavior

even without being aware of the exact information available to each agent; behavior does

�Some of the results in this paper previously appeared in Dillenberger, D., and P. Sadowski (2012).
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Eliaz for their comments and suggestions.
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not change although it is likely that some inconclusive information became available. But

if information is subjective, then it is possible that inertial behavior is not actually biased

(compared to the rational Bayesian benchmark), but instead is the optimal course of action

given the information structure perceived by the agent.

Our goal in this paper is to analyze sources of inertial behavior under the assumption

that learning about the relevant state of the world is subjective. We start by eliciting

the information structure a decision maker (henceforth DM) perceives from his observed

choice behavior. We then formulate an axiom that captures inertial behavior, and provide a

representation that explains such behavior as that of a rational DMwho perceives a particular

type of information structure, called a generalized partition. While consistent with Bayesian

updating, this representation does not rule out the possibility that the DM nevertheless

ignores some relevant information and behaves sub-optimally. To better understand where

inertial behavior could originate from, we proceed to assume that there is a true underlying

information structure, and investigate di¤erent channels that can lead the DM to perceive

this information structure as a generalized partition (and thus to display inertial behavior).

In order to elicit the subjective information structure from observed behavior, we follow

the approach in Dillenberger, Lleras, Sadowski, and Takeoka (2014, henceforth DLST) and

take as primitive a preference relation over sets (or menus) of acts, which are de�ned over

a given space of payo¤-relevant states, S.1 ;2 This allows us to identify a suitable notion of

anticipated preferences over acts contingent on learning an event. Our notion of inertial

behavior then connects the ex ante comparison of acts (i.e., singleton menus) to those an-

ticipated ex post preferences. Loosely speaking, the Inertial Behavior axiom requires that

if I � S is an event the DM can foresee learning, then he prefers to commit to act fI0,

which agrees with f on I and pays zero otherwise, over committing to gI0, only if he also

anticipates to prefer f to g contingent on actually learning I.

Theorem 1 derives a generalized-partition representation, which can be interpreted as

follows: the DM behaves as if he (i) holds prior beliefs over the state space; and (ii) perceives

a particular type of stochastic rule, referred to as a generalized partition, that determines

which event he will learn contingent on the true state. Upon learning an event, the DM

calculates posterior beliefs using Bayes�law, which leads him to exclude all states that are

not in that event, keeping the relative likelihood of the remaining states �xed (a property

1The interpretation is that the DM initially chooses among menus and subsequently chooses an act from
the menu. If the ultimate choice of an act takes place in the future, then the DM may expect information
to arrive prior to this choice. Analyzing preferences over future choice situations allows one to identify the
anticipated future choice behavior without observing ex post preferences, and to interpret it in terms of the
information the DM expects to receive.

2The set S may represent the state space on which acts are naturally de�ned in a particular application.
The same primitive is also analyzed in de Oliveira et al. (2016).
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we term non-shifting-weights). He then chooses from the menu the act that maximizes

the corresponding expected utility. The prior and the generalized partition are uniquely

identi�ed.

Turning to discuss the di¤erent channels that might lead the DM to perceive a generalized

partition, the most immediate one is that the true underlying information structure is itself

a generalized partition. We show that the class of generalized partitions can accommodate

a variety of information structures that correspond to intuitive learning processes and to

plausible behavior. As the name suggests, generalized partition extends the notion of set

partition, according to which the DM learns which cell of a partition contains the true

state. In the case of a set partition, signals are deterministic; that is, for each state there

is only one possible event that contains it. Another example of a generalized partition is

a random partition, where one of multiple partitions is randomly drawn and then an event

in it is reported. A situation that may give rise to a random partition is an experiment

with uncertainty about its precision. A sequential elimination of candidates, say during a

recruiting process, where k out of n candidates are to be eliminated in the �rst stage (so that

the resulting collection of events the DM might learn is the set of all (n� k)-tuples), can
also be modeled by an information structure we can accommodate. Theorem 2 characterizes

all types of learning that can be described by a generalized partition.

Alternatively, as we discuss in Section 4.1, the DM could indeed be biased and display

cognitive inertia, in the sense that he ignores all information that is not conclusive. That

is, even when receiving signals that speak to the relative likelihood of di¤erent states, he

believes that the content of any signal is merely the collection of states that have been

completely ruled out by it. Our model is consistent with this explanation, but establishes

that it, too, is restrictive: the true information structure must be such that ignoring all

inconclusive information leads to a generalized partition.

Lastly, we propose a particular bound on rationality, which leads the DM to behave

as if he faces a generalized partition for any true underlying information structure. Our

bound is inspired by the construal level theory in social psychology, according to which the

closer in time (or physical distance) a situation is from the individual, the more easily and

concretely it will be thought of. To wit, decisions about the distant future, for example about

careers after graduation or life after retirement, are challenging not only because relevant

information is noisy far in advance, but simply because individuals cannot think concretely

about contingencies that may occur in the distant future.3

3This is conceptually di¤erent from the idea of present bias. According to the later, individuals may trade
o¤ outcomes in consecutive periods di¤erently, depending on whether those periods lie in the immediate
or distant future. In contrast, the boundedly rational individual we consider �nds it hard to make any
comparison between the two outcomes if they are relevant only in the distant future.
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To capture this intuition, we propose a bound on the horizon up to which the DM can

independently form beliefs about his uncertain environment, and call such a DM shortsighted.

Suppose nature determines the state in two stages. In the �rst stage some states are ruled

out, and in the second stage all but one of the remaining ones are removed. The DM is

able to directly form beliefs only over the �rst stage; that is, he can not independently form

beliefs over the further resolution of uncertainty in the second stage. This constraint has

two consequences. First, the DM does not initially hold a prior over �nal states, but only

over the events he might learn in the �rst period. Second, he is oblivious to any correlation

in the resolution of uncertainty across periods.4

It seems plausible that, given this bound, a rational DM will try to construct a prior

on S, as well as an information structure that features no correlation across periods (i.e., a

generalized partition),5 so that jointly they match his beliefs for the �rst period. Theorem

3 establishes that this construction is always possible, while Theorem 4 provides a su¢ cient

condition for the constructed prior and generalized partition to be unique. In other words, a

shortsighted, but otherwise rational, DM can always be described as if he faces a generalized

partition.

The remainder of the paper is organized as follows. Section 2 formalizes our notion of

inertial behavior and provides our representation result. Section 3 characterizes the learning

processes that generate a generalized partition. Section 4 provides the two protocols that

lead to learning via a generalized partition even if the true underlying information structure

does not belong to this class. Related literature is discussed in Section 5. Most proofs are

relegated to the appendices.

2. Inertial Behavior and Generalized Partition

Our analysis is broken into three parts. First, we discuss which information structures give

rise to inertial behavior under Bayesian updating. Second, we formulate an axiom that

captures inertial behavior in terms of preferences over menus of acts when the information

structure, as well as the ex post preferences, are unobservable. Finally, our main theorem

establishes that, when information is subjective, inertial behavior of a forward looking DM

can always be explained as that of a Bayesian who faces an appropriate information structure,

namely a generalized partition.

4We identify signals with events here. This is without loss, because two di¤erent signals that have the
same support will be equivalent for a DM wo does not understand their correlation with the states in that
support.

5Even if the DM were aware that there could be correlation across periods, the principle of insu¢ cient
reason might lead him to focus on generalized partitions.
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2.1. Inertial Behavior and the Non-Shifting Weights Property

Let S = fs1; :::; skg be a �nite state space. An act is a mapping f : S ! [0; 1]. We interpret

payo¤s in [0; 1] to be in utils; that is, we look directly at utility acts (assuming that the

cardinal utility function over outcomes is known and payo¤s are stated in its units) instead

of the corresponding Anscombe-Aumann (1963) acts. For any number c 2 [0; 1], we simply
denote by c the constant act that yields c in every state. Let F be the set of all acts.

Consider an expected utility maximizer with a prior probability � over S who expects to

receive signals from some set �. Let r : S��! [0; 1] be the information structure he faces,

where rs (�) denotes the probability of learning signal � 2 � given s 2 S. Let (Pr (� j� ))�2�
be the corresponding set of posteriors. We say that the pair (�; r) satis�es the non-shifting

weights property if (i) rs (�) = 0 implies Pr (s j� ) = 0, and (ii) the relative weight of any two
states s; s0 with rs (�) > 0 and rs0 (�) > 0 remains intact when � is learned, that is,

� (s)

� (s0)
=
Pr (s j� )
Pr (s0 j� ) : (1)

Consider f ,g 2 F and � 2 � such that f(s) 6= g(s) only if rs (�) = 0, and such thatP
s2S f (s)� (s) �

P
s2S g (s)� (s). It follows immediately from (1) that for some s0 with

rs0 (�) > 0;

X
s

f (s) Pr (s j� ) = Pr (s0 j� )
� (s0)

X
s:rs(�)>0

f (s)� (s)

� Pr (s0 j� )
� (s0)

X
s:rs(�)>0

g (s)� (s) =
X
s2S

g (s) Pr (s j� )

In words, the behavioral implication of non-shifting weights is that the ranking of two acts

does not change when learning a signal, as long as none of the states where they di¤er are

ruled out. When information is observable, this is what we refer to as inertial behavior.

We now establish that non-shifting weights is consistent with Bayesian updating if and

only if the information structure r can be described as what we term a generalized partition.6

De�nition 1. A function � : 2S
0 ! [0; 1] is a generalized partition of S 0 � S if for any

s 2 S 0, �s de�ned by �s (I) =
(
� (I) if s 2 I
0 if s =2 I

satis�es
P

I�S0�s (I) = 1.

A generalized partition induces an information structure where �s (I) is the probability

of event I being reported contingent on the state being s. (When there is no danger of

6Throughout the paper, � (resp., �) denotes weak (resp., strict) set inclusion. The support of any
function is denoted by supp(�) :
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confusion, we simply refer to � itself as an information structure.) The special case of a

set partition corresponds to � taking only two values, zero and one. In that case, for every

s 2 S 0 there exists a unique Is 2 2S
0
with s 2 Is and �s (Is) = 1. Furthermore, s0 2 Is implies

that Is = Is0, that is, �s0 (Is) = 1 for all s0 2 Is.
The fact that �s (I) is independent of s (conditional on s 2 I) implies that even a Bayesian

DM cannot draw any inferences from learning an event other than that states outside that

event were not realized �in this sense signals are appropriately described as events. Formally,

Proposition 1. The pair (�; (Pr (� jI ))I2I�2S) satis�es the non-shifting weights property if
and only if we can label signals as events, � = I, and there is a generalized partition � such
that rs � �s.

Proof. For generalized partition �, Bayes�law implies that for any s; s0 2 I,

Pr (s jI )
Pr (s0 jI ) =

�s (I)� (s) =� (I)

�s0 (I)� (s0) =� (I)
=
� (s)

� (s0)

independently of I. Conversely, if the information structure r is not a generalized partition,

then there exists an signal � 2 � and two states s; s0 with rs (�) > 0 and rs0 (�) > 0, such
that rs (�) 6= rs0 (�) : For these two states, condition (1) fails.
In the next sections we turn to describe how, with unobservable (i.e., subjective) infor-

mation, inertial behavior can be explained as that of a Bayesian who perceives a generalized

partition.

2.2. Inertial Behavior with Unobservable Information

Since we consider an environment where the information structure is subjective and ex post

preferences (after a signal has been received) are not observable, we adopt the menu choice

approach, with the interpretation that preferences over menus of acts re�ect anticipated

updating upon receiving information. Let K (F) be the set of all non-empty compact subsets
of F . Capital letters denote sets, or menus, and small letters denote acts. For example, a
typical menu is F = ff; g; h; :::g 2 K (F). Let � be a binary relation over K (F). The
symmetric and asymmetric parts of � are denoted by � and �, respectively. Let fIg 2 F
be the act that agrees with f 2 F on event I and with g 2 F outside I, that is,

fIg(s) =

(
f(s) s 2 I
g (s) otherwise

In order to capture inertial behavior in terms of preferences over menus, we start by

de�ning the class of small events. According to De�nition 2 below, event I 2 2S is small if
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and only if a bet on I, fcI0g, cannot be perfectly substituted by the option to bet on any of
its strict subsets, fcI 00 jI 0 � I g. Intuitively, event I is small if and only if the DM considers

all states in I possible and can foresee learning at least one signal � that does not rule out

any of those states.

De�nition 2. Event I � S is small if for some c > 0,

fcI0g � fcI 00 jI 0 � I g :

Note that contingent on any signal � with rs (�) = 0, the act c (In fsg) 0 is as good
as cI0. Consequently, if for every foreseen signal � there is at least one state s 2 I with
rs (�) = 0, then fcI0g � fcI 00 jI 0 � I g. That is, fcI 00 jI 0 � I g is a perfect substitute for
fcI0g. Conversely, if the DM considers all states in I possible and can foresee a signal �

with rs (�) > 0 for all s 2 I,7 then contingent on learning �, the act cI0 does strictly better
than any act in fcI 00 jI 0 � I g, and thus fcI0g � fcI 00 jI 0 � I g.
Let F+ := ff 2 F jf (s) > 0 for all s 2 S g be the collection of acts with strictly positive

payo¤s in all states. Under very mild assumptions, it is su¢ cient to impose our main axiom

only for acts in F+, since F+ is dense in F with respect to the Euclidean metric (viewing

acts as vectors in [0; 1]jSj). Con�ning attention to F+ is convenient in writing De�nition 3
and Axiom 1 below.

De�nition 3. For a small event I and acts f; g 2 F+ with f (s) 6= g (s) only if s 2 I; de�ne
�I by

f �I g , ff; gg � ffg [ f0 fsg g js 2 I g :

According to De�nition 3, f �I g describes the property that f is better than g as long
as no state in I has been ruled out. To see this, note that g 2 F+ and hence for any signal �
and s 2 I such that rs (�) > 0, g is better than 0 fsg g. Therefore, the DM will be indi¤erent

between ff; gg and ffg[ ffg[ f0 fsg g js 2 I g upon learning � only if he expects to choose
f from ff; gg. At the same time, for any signal � such that rs (�) = 0 for some s 2 I, the
DM will be indi¤erent between choosing from ff; gg and choosing from ffg [ f0 fsg gg.

Axiom 1 (Inertial behavior). For any small event I and acts f; g 2 F+ with f (s) 6= g (s)
only if s 2 I;

ffg � fgg ) f �I g:
7Formally, all states in I should not be null in the sense of Savage (1954), i.e., for every s it is not the

case that ffg � ff fsg gg for all f and g. Clearly, if s 2 I is null, then c (In fsg) 0 is as good as cI0; and
hence fcI0g � fcI 00 jI 0 � I g, that is, fcI 00 jI 0 � I g is a perfect substitute for fcI0g.
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The axiom captures our interpretation of inertial behavior: the ranking of two acts that

di¤er only on event I does not change as long as no state in I has been ruled out.

It is worth mentioning that Axiom 1 is consistent with the possibility that the DM has

strict preference for �exibility, in the sense that it does not preclude the ranking ff; gg �
ffg � fgg : That is, while given I the DM would prefer f to g when no states in I have been

ruled out, it may well be that for some � with rs (�) = 0 for some s 2 I; g is better than f .

2.3. Generalized Partition Representation

The following utility function over menus incorporates the notion of a generalized partition.

De�nition 4. The pair (�; �) is a generalized-partition representation if (i) � : S ! [0; 1] is

a probability measure; (ii) � : 2supp(�) ! [0; 1] is a generalized partition of supp (�); and (iii)

V (F ) =
P

I22supp(�) max
f2F

�P
s2If (s)� (s)

�
� (I)

represents �.

According to De�nition 4, the DM behaves as if he (i) has prior beliefs � over the state

space; and (ii) perceives a generalized partition that determines which event he will learn

contingent on the true state. Upon learning event I, the DM calculates posterior beliefs

using Bayes�law, which leads him not to shift weights; he excludes all states that are not in

I and keeps the relative likelihood of the remaining states �xed. He then chooses from the

menu the act that maximizes the corresponding expected utility.

The two parameters of the generalized partition representation, the prior � on S and

the generalized partition �, are independent, in the sense that the de�nition places no joint

restriction on the two.8 In other words, a generalized-partition representation accommodates

any prior beliefs the DM might have about the objective state space, combined with any

information structure that can be described as a generalized partition. It is evident from

the description of the model that the information structure in De�nition 4 is not objectively

given. Instead, the generalized-partition should be derived from choice behavior.

Our representation theorem builds on the notion of a subjective-learning representation

of �, introduced in DLST

8The only role of the restriction that � be a generalized partition of supp(�) rather than S is to facilitate
the statement of the identi�cation result in Theorem 1: which event is reported contingent on states the
DM considers impossible has no behavioral implications, and hence the value of � would not be identi�ed
on subsets of Snsupp(�).
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De�nition 5. A subjective-learning representation is a function V : K (F)! R, such that

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ; (2)

where p (�) is a probability measure on �(S), the space of all probability measures on S.

The interpretation of a subjective-learning representation is that the DM behaves as if

he has beliefs over the possible posterior distributions that he might face at the time of

choosing from the menu. For each posterior � 2 �(S), he expects to choose from the

menu the act that maximizes the corresponding expected utility. As established by DLST

(Theorem 1 in their paper), the axioms that are equivalent to the existence of a subjective-

learning representation are familiar from the literature on preferences over menus of lotteries

�Ranking, vNM Continuity, Nontriviality, and Independence �adapted to the domainK (F),
in addition to Dominance, which implies monotonicity in payo¤s, and Set Monotonicity,

which captures preference for �exibility. DLST further show that the function p (�) in (2) is
unique.

Theorem 1. Suppose that the relation � admits a subjective-learning representation (as

in (2)). Then � satis�es Axiom 1 if and only if it has a generalized-partition representation,
(�; �). Furthermore, the pair (�; �) is unique.

Proof. See Appendix B.
One immediate implication of a subjective-learning representation (2), is that a forward

looking DM with any updating rule can be thought of as Bayesian, where the prior that

governs the ranking of singletons is simply the expectation over posteriors. Non-shifting

weights further requires this prior to agree with each posterior on the relative weights of all

states that have not been ruled out. In the previous section we veri�ed that this requirement

implies that the information structure must be a generalized partition. That is, a forward

looking DM who displays inertial behavior (as in Axiom 1) can always be thought of as being

rational given some generalized partition.

Compared to the information structures permitted by a subjective-learning representation

(as captured by the function p (�) in (2)) a generalized partition (De�nition 1) rules out
information structures in which two distinct states can generate the same signal but with

di¤erent probabilities. For example, consider a defendant who is on a trial. Generalized

partition is inconsistent with a setting in which there are two states of nature, guilty (G) or

innocent (I), and two signals, guilty (g) and innocent (i), such that Pr (g jG) > Pr (g jI ) >
0 and Pr (i jI ) > Pr (i jG) > 0. Obviously, generalized partition is consistent with the
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familiar set-partition where signals are deterministic contingent on the state, but it also

accommodates many other plausible learning processes. In the next section we provide

examples, as well as a full characterization, of those learning processes that give rise to

generalized partitions.

In terms of behavior, the following is a simple example of a pattern which our axioms

and representation accommodate, but would be precluded if anticipated signals were deter-

ministic. Consider the state space fs1; s2g and the menu f(1; 0) ; (0; 1) ; (1� "; 1� ")g, which
contains the option to bet on either state, as well as an insurance option that pays reasonably

well in both states. A DM who is uncertain about the information he will receive by the time

he has to choose from the menu may strictly prefer this menu to any of its subsets (for "

small enough). For instance, an investor may value the option to make a risky investment in

case he understands the economy well, but also value the option to make a safe investment in

case uncertainty remains unresolved at the time of making the investment choice. Our model

accommodates this ranking. In contrast, such a ranking of menus is ruled out if signals are

deterministic. If the DM expects to learn the true state, then preference for �exibility stems

exclusively from the DM�s prior uncertainty about the true state and the insurance option

is irrelevant, that is, f(1; 0) ; (0; 1) ; (1� "; 1� ")g � f(1; 0) ; (0; 1)g. And if the DM does not

expect to learn the true state, then, for " small enough, he anticipates choosing the insurance

option with certainty, that is, f(1; 0) ; (0; 1) ; (1� "; 1� ")g � f(1� "; 1� ")g.

3. A Characterization of Generalized Partitions

In this section we characterize the types of learning processes that can give rise to a gener-

alized partition, by identifying all sets of events that support such an information structure.

Formally, we characterize the setn
	 � 2S0

���there is a generalized partition � : 2S0 ! [0; 1] with supp (�) = 	
o
:

It is worth mentioning that the analysis in this section does not have any decision theoretical

aspect and it also does not depend on the distinction between observable and unobservable

information.

De�nition 6. A collection of events 	 � 2S is a uniform cover of a set S 0 � S, if (i)

S 0 =
S
I2	I; and (ii) there is a function � : 	 ! Z+ and a constant k � 1, such thatP

I2	js2I � (I) = k for all s 2 S 0.

To better understand the notion of a uniform cover, consider the following example. Sup-

pose S = fs1; s2; s3g. Any partition of S, for example ffs1g ; fs2; s3gg, is a uniform cover of S
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(with k = 1). A set that consists of multiple partitions, for example ffs1g ; fs2; s3g ; fs1; s2; s3gg,
is a uniform cover of S (in this example with k = 2). The set 	 = ffs2; s3g ; fs1; s2; s3gg is
not a uniform cover of S, because

P
Ijs12I � (I) <

P
Ijs22I � (I) for any � : 	! Z+. The set

ffs2; s3g ; fs1g ; fs2g ; fs3gg, however, is a uniform cover of S with

� (I) =

(
2 if I = fs1g
1 otherwise

:

Lastly, the set ffs1; s2g ; fs2; s3g ; fs1; s3gg is a uniform cover of S (with k = 2), even though
it does not contain a partition.9

An empirical situation that gives rise to a uniform cover consisting of two partitions is an

experiment that reveals the state of the world if it succeeds, and is completely uninformative

otherwise. For a concrete example that gives rise to a uniform cover that does not contain a

partition, consider the sequential elimination of n candidates, say during a recruiting process.

If k candidates are to be eliminated in the �rst stage, then the resulting uniform cover is the

set of all (n� k)-tuples.

Theorem 2. A collection of events 	 is a uniform cover of S 0 � S if and only if there is a
generalized partition � : 2S

0 ! [0; 1] with supp (�) = 	.

Proof. See Appendix C
The �only if�part in the proof of Theorem 2 amounts to �nding a solution to a system

of linear equations, showing that any uniform cover can give rise to a generalized partition.

To illustrate the idea, consider the collection ffs1g ; fs2; s3g ; fs1; s2; s3gg discussed above,
which consists of multiple partitions and is a uniform cover with k = 2. An information

structure r that can be described as a generalized partition

� : ffs1g ; fs2; s3g ; fs1; s2; s3gg ! (0; 1]

should satisfy two conditions. First, rs (I) �the probability of receiving the signal I given

state s �should be positive and identical for any s 2 I, that is,

rs1 (fs1g) =: � (fs1g) > 0
rs2 (fs2; s3g) = rs3 (fs2; s3g) =: � (fs2; s3g) > 0

rs1 (fs1; s2; s3g) = rs2 (fs1; s2; s3g) = rs3 (fs1; s2; s3g) =: � (fs1; s2; s3g) > 0
9The notion of uniform cover is closely related to that of balanced collection of weights, which Shapley

(1967) introduces in the context of cooperative games.
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and 0 otherwise. Second, each rs (�) must be a probability measure, that is,

rs1 (fs1g) + rs1 (fs1; s2; s3g) = 1
rs2 (fs2; s3g) + rs2 (fs1; s2; s3g) = 1
rs3 (fs2; s3g) + rs3 (fs1; s2; s3g) = 1

The solutions of this system are given by � (fs1; s2; s3g) = � and � (fs1g) = � (fs2; s3g) =
1� �, for any � 2 (0; 1).
Theorem 2 characterizes the types of learning that can be accommodated by a generalized

partition. To illustrate it, let us consider a speci�c example. An oil company is trying to

learn whether there is oil in a particular location. Suppose the company can perform a

test-drill to determine accurately whether there is oil, s = 1, or not, s = 0. In that case, the

company learns the uniform cover 	 = ff0g ; f1gg that consists of a partition of the state
space, and � (f0g) = � (f1g) = 1 provides a generalized partition. Now suppose that there
is a positive probability that the test may not be completed (for some exogenous reason,

which is not indicative of whether there is oil or not). The company will either face the

trivial partition ff0; 1gg, or the partition ff0g ; f1gg, and hence 	 = ff0; 1g ; f0g ; f1gg.
Suppose the company believes that the experiment will succeed with probability q. Then

� (f0; 1g) = 1� q and � (f0g) = � (f1g) = q provides a generalized partition.
We can extend the previous example and suppose the company is trying to assess the

size of an oil �eld by drilling in l proximate locations, which means that the state space is

now f0; 1gl. As before, any test may not be completed, independently of the other tests.
This is an example of a situation where the state consists of l di¤erent attributes (i.e., the

state space is a product space), and the DM may learn independently about any of them.

Such learning about attributes also gives rise to a uniform cover that consists of multiple

partitions and can be accommodated.

To �nd a generalized partition based on (i) a uniform cover 	 of a state space S, for which

there is a collection � of partitions whose union is 	; and (ii) a probability distribution q

on �, one can set � (I) =
P

P2�jI2P q (P). We refer to the pair (q;�) as a random partition.
A di¤erent situation in which the DM e¤ectively faces a random partition, (q;�), is one

where learning is governed by a given �ltration of S, but the speed of learning is uncertain.

In that case, distinct partitions in � simply correspond to the information the DM might

have at the time of choice, and should thus be ordered by �neness. In that case, q (P)
captures the probability of arriving at P by the time of choice.
Lastly, reconsider the example of sequential elimination of candidates outlined above.

Suppose that one out of three candidates will be selected. Write the corresponding state

space as S = fs1; s2; s3g. If one candidate will be eliminated in the �rst round, then the

12



uniform cover of events the DM might learn is given by 	 = ffs1; s2g ; fs2; s3g ; fs1; s3gg.
Suppose that, contingent on person i being the best candidate, the DM considers any order

of elimination of the other candidates as equally likely. This corresponds to the generalized

partition with � (I) = 0:5 for all I 2 	 and � (I) = 0 otherwise.
Each of the generalized partitions discussed in this section can be coupled with any prior

beliefs � to generate a generalized-partition representation (�; �).

4. Other Interpretations of Generalized Partitions

So far we have assumed the analyst is completely unaware of the underlying information

structure. However, in many applications, the analyst will have at least some knowledge

of the true information structure, which may be inconsistent with the generalized partition

that explains the observed behavior according to Theorem 1. To reconcile this gap, we

now investigate two di¤erent protocols that may lead the DM to subjectively perceive a

generalized partition (and to display inertial behavior) even if the true information structure

is not.

The �rst protocol is based on the psychological notion of cognitive inertia. The second

protocol is inspired by a concept from social psychology, called construal level theory, which

contends that the closer in time a situation is, the more easily and concretely it will be

thought of. Applied to our context, we study a boundedly rational agent who is constrained

in his ability to directly assess probabilities for the outcome of random variables that resolve

in the distant future, and tries to behave rationally given this constraint.

4.1. Cognitive Inertia

Behavioral psychologists use the notion of cognitive inertia to describe the �tendency for

beliefs or sets of beliefs to endure once formed�.10 For instance, one explanation for the

di¢ culties of implementing organizational change is that managers fail to update and re-

vise their understanding of a situation even when the environment changes, say when new

technologies emerge (Tripsas and Gavett 2000). This impedes their ability to adjust their

actions in response to relevant information, and may lead to inertial behavior.

Theorem 1 does not preclude the interpretation that our DM �su¤ers� from cognitive

inertia, but implies that it is restrictive. In our formal environment, we interpret cognitive

inertia to mean that the only information the DM reacts to is which states have conclusively

been ruled out, and that this information is taken into account following Bayes�law. Our

result then establishes that, for a forward looking DM (for whom the expectation over

10https://en.wikipedia.org/wiki/Cognitive_inertia
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posteriors coincides with the prior), cognitive inertia can explain behavior only if the true

information structure is such that the biased one � which is derived from the true one by

ignoring all information about relative weights � is a generalized partition. In this case it

is unnecessary to model the DM as biased, even if he is subject to cognitive inertia; learning

by generalized partition provides a rational as if model of his behavior.

4.2. Shortsighted Rationality

This section considers a DM who receives a partial (but accurate) description of the true

information structure, namely for each event the probability that it will be ruled out in the

�rst stage, and who interprets these probabilities as being generated by some generalized

partition as well as a probability distribution over the state space.

While the constraint on the DM�s knowledge could be exogenous, we will interpret it as a

bound on the horizon up to which the DM can independently form beliefs about his uncertain

environment. We call such a DM shortsighted. Speci�cally, in our model uncertainty about

the payo¤ relevant state resolves in two stages, and we assume that the shortsighted DM

can only directly assign probabilities to uncertainty that resolves in the �rst stage. This

constraint has two consequences. First, the DM does not initially hold beliefs over the �nal

states, but only over the signals he might learn in the �rst period. Second, he is oblivious to

possible correlation in the resolution of uncertainty across periods. In particular, he cannot

tell apart two signals with the same support that induce di¤erent posterior probabilities over

the states (see, for example the defendant example in Section 2.3). Since the DM has no

perception of correlation, it is without loss to treat those two signals as the same and to

identify each signal with the event consisting of those states that are not ruled out by it.

Being otherwise rational, the shortsighted DM would like to infer the distribution over

states, as well as the underlying information structure, from his beliefs over �rst period

events. Since he does not perceive any correlation between events and states (beyond his

understanding of which states have been ruled out), it seems natural that he will consider

only information structures that likewise feature no correlation, that is, he will try to �nd

a generalized partition. We call this protocol for inference shortsightedly rational, and ask

whether following the protocol is always possible. The next result answers this question in

the a¢ rmative: it establishes that the DM can always �nd a pair of prior and generalized

partition that jointly generate the given distribution over events.11

11Once more, Theorem 3 and Theorem 4 below are not restricted to the analysis of a boundedly rational
DM, but can be more broadly applied whenever the DM receives a partial description of the true information
structure, in the form of the probability distribution over events it induces.
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Theorem 3. Let � be a probability measure over 2Sn;. There exists � 2 �(S) and a

generalized partition � on 2�(�) such that � (I)� (I) = � (I) for all I 2 2�(�):

A proof is in Appendix D. Observe that such � and � exist if and only if for any s 2 S
either � (s) = 0 or

P
fI22�(�)js2I g� (I) =

P
fI22�(�)js2I g

�(I)
�(I)

= 1 holds. We establish that a

solution to this non-linear system of equations exists via a �xed point theorem. In light of

Theorem 2, it is clear that the support of � must be such that the support of � constitutes

a uniform cover of it.

The pair (�; �) in the theorem may not be unique: Suppose, for example, that for all

I 2supp(�) it is the case that s 2 I if and only if s0 2 I. Then the relative weight � assigns
to s versus s0 can not be identi�ed. However, as the following result shows, uniqueness

is guaranteed if the DM can conceive of learning the state already in the �rst stage (i.e.,

� (fsg) > 0 for all s 2 S).

Theorem 4. Let � be a probability measure over 2Sn; with � (fsg) > 0 for all s 2 S.

If � 2 �(S) and � is a generalized partition on 2�(�) such that � (I)� (I) = � (I) for all

I 2 2�(�); then for any other (�0; �0) with this feature, �0 = � and �0 = �.

A proof is in Appendix E. To recapitulate, Theorem 3 implies that a shortsighted DM

who follows the protocol described above will display cognitive inertia for any information

structure he faces. Suppose the analyst happens to know the true information structure and

that the condition in Theorem 4 is met. If the analyst is also willing to assume that the DM

is shortsightedly rational, then the theorem implies that he can determine the information

structure inferred by the DM, without relying on any choice data.

5. Related Literature

Our model builds on a general subjective-learning representation of preferences over menus of

acts, which identi�es signals with posterior distributions over states (De�nition 5 in Section

2.3). Such representation was �rst derived in DLST. They further derived a partitional

learning representation, in which signals correspond to events that partition the state space.

Partitional learning is also studied in De Oliveira et al. (2016), who adopt the same menu

choice approach but, unlike us, allow the DM to choose his information structure, and in Lu

(2015), who uses the random choice approach to elicit information. A dynamic version of

partitional learning appears in Dillenberger, Krishna, and Sadowski (2016).

In terms of generality, the generalized partition representation lies in between the two

extreme cases studied in DLST. For a Bayesian DM, a salient feature of partitional learning
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is that the relative weights of states in the learned event do not shift. In this paper we

show that this non-shifting-weights property corresponds to inertial behavior, which links

ex ante and ex post rankings of acts. We then identify the least restrictive model with

this property. Sections 2.3 and 3 demonstrate the merit of the generality permitted by our

model (over partitional learning). In Appendix A we show how one can strengthen our main

axiom to give a di¤erent characterization of partitional learning then the one provided in

the aforementioned papers.

Starting with Sims (1998, 2003), numerous models of rational inattention were suggested

to explain and match the inertia found in macroeconomic data, such as sluggish adjustment

of prices in reaction to demand shocks (see, among many others, Mackowiak and Wiederholt

2009 and 2015; Steiner, Stewart, and Matµejka 2016; and the empirical �ndings in Ander-

sen et al. 2015). These models are based on the assumption that economic agents have

limited attention which they allocate optimally, leading them to update their beliefs only

infrequently. The inertia addressed by these models is, then, a delay in the reaction to new

information. In contrast, inertial behavior in our paper captures immediate but potentially

incomplete adjustment. Another related model, though one without any information arrival,

is proposed in Vega-Redondo (1993). In his model, risk averse agents have precise percep-

tions of the consequences associated with the action they are currently performing, but only

imprecise perceptions of all other actions, leading to status quo bias (which he refers to as

inertial behavior).

Our notion of inertial behavior resembles the following familiar requirement, which is

often referred to as dynamic consistency in the context of objective information: the ex

ante comparison of alternatives that di¤er only on some event I � S is the same as the ex
post comparison of those alternatives, contingent upon learning that event I has occurred.12

Breaking this requirement into two parts, violations of the axiom might emerge from either

(i) an inconsistency between ex ante preferences and anticipated ex post preferences, or (ii)

an inconsistency between anticipated ex post preferences and actual ex post preferences.

Siniscalchi (2011), for example, explicitly focusses on (ii).13 Importantly, in Siniscalchi�s

paper the information structure is objective �modeled as a �xed �ltration, or partition if

restricted to two stages �and signals are observable, so that it is possible to elicit antici-

pated ex post preferences by directly asking the DM whether he prefers to receive act f or

g contingent on learning event I, while otherwise receiving the same act h in either case. In

contrast, in our paper information is subjective, and hence inertial behavior rules out (i),

but must be silent on (ii).

12See, for example, Axiom 2 in Ghirardato (2002).
13Siniscalchi refers to anticipated ex post preferences as conjectural ex post preferences.
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Appendices

A. Comparison with Partitional Learning

We now show how Axiom 1 can be modi�ed to capture the idea of deterministic signals and

thereby to characterize partitional learning. The axiomatization here is di¤erent than the

one provided in DLST.

Axiom 2 (Partition). For any two acts f; g 2 F+ and small event I � S,

ffI0g � fgI0g ) ffI0; gI0g � ffI0g :

In the words of Kreps (1979), Axiom 2 can be viewed as a requirement of strategic

rationality given an event. Recall that if I is small then the DM can foresee learning an

event J that (weakly) contains I. If signals are deterministic and I is small, then there is no

I 0 � I the DM also foresees learning. It is thus obvious why for a Bayesian DM partitional

learning satis�es this property; fI0 and gI0 agree outside I, and if fI0 does better on I,

it will do better on any superset of I. Conversely, if information in the subjective-learning

representation of De�nition 5 is not partitional, then there are two posteriors �; �0 2 supp(p),
such that supp(�) = I, supp(�0) = I 0; I 6= I 0, and I\I 0 6= �. Let f = c and g = c+". Without
loss of generality, suppose I \ I 0 6= I. If " > 0 and small enough, then ffI0g � fg (I \ I 0) 0g
while, since g (I \ I 0) 0 does better than fI0 conditional on I 0, ffI0; g (I \ I 0) 0g � ffI0g.
Since larger sets are better (preference for �exibility), ffI0g [ fgI 00 jI 0 � I g � ffI0g :

Further, by payo¤ domination, ffI0; gI0g � ffI0g [ fgI 00 jI 0 � I g. Therefore, Axiom 2

implies Axiom 1, while, as is obvious from our results, the converse is false.

B. Proof of Theorem 1

Necessity: Suppose � admits a generalized partition representation (�; �), that is,

V (F ) =
P

I22supp(�) max
f2F

�P
s2If (s)� (s)

�
� (I)

represents �.

Claim 1. Event I � S is small if and only if � (J) > 0 for some J � I:
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Proof. This follows immediately from the following two observations:

1. For any J with J \ I 6= I,

max
f2fcI00jI0�I g

�P
s2Jf (s)� (s)

�
= c
P

s2J\I� (s) =
P

s2JcI0 (s)� (s) ;

2. For any J � I; maxf2fcI00jI0�I g
�P

s2Jf (s)� (s)
�
< c
P

s2I� (s) =
P

s2JcI0 (s)� (s) :

Consider a small event I and two acts f; g 2 F+: According to the generalized partition
representation,

ffI0g � fgI0g ,
P

s2I
�
f (s)� (s)

P
I�S�s (I)

�
�
P

s2I
�
g (s)� (s)

P
I�S�s (I)

�
Since � is a generalized partition,

P
I�S�s (I) = 1 for all s 2supp(�), and hence ffI0g �

fgI0g ,
P

s2If (s)� (s) �
P

s2Ig (s)� (s). Therefore, ffI0g � fgI0g implies that for any
event J � I with J 2supp(�) we have

max
f 02ffI0;gI0g

�P
s2Jf

0 (s)� (s)
�
= max

�P
s2If (s)� (s) ;

P
s2Ig (s)� (s)

�
=

=
P

s2If (s)� (s) = max
f 02ffI0g[fgI00jI0�I g

�P
s2Jf

0 (s)� (s)
�

and also implies that for any event J 2supp(�) with J \ I 6= I we have

max
f 02ffI0;gI0g

�P
s2Jf

0 (s)� (s)
�
= max

f 02ffI0g[fgI00jI0�I g

�P
s2Jf

0 (s)� (s)
�
:

Therefore, ffI0g � fgI0g ) ffI0; gI0g � ffI0g [ fgI 00 jI 0 � I g :

Su¢ ciency: Suppose that � admits a subjective learning representation and satis�es

Axiom 1. For each s 2 S; let � (s) =
R
supp(p)

� (s) dp (�) : Since the measure p over �(S) in a

subjective-learning representation is unique, so is �. It is easy to see that � is a probability

measure and that for each g; f 2 F , ffg � fgg ,
P

s2Sf (s)� (s) >
P

s2Sg (s)� (s).

Let:

�0 :=

�
�

����9s; s0 2 supp (�) \ supp (�) with � (s)� (s0)
6= � (s)

� (s0)

�
and for " > 0

�" :=

�
�

����9s; s0 2 supp (�) \ supp (�) with � (s)� (s0)
� (1 + ") � (s)

� (s0)

�
:
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Finally, for any s; s0 2 S let

�s;s0;" :=

�
�

����s; s0 2 supp (�) \ supp (�) and � (s)� (s0)
� (1 + ") � (s)

� (s0)

�
:

Claim 2. If p (�0) > 0, then there exist s; s0 2supp(�) and " > 0, such that p (�s;s0;") > 0.

Proof. First note that there exists " > 0 such that p (�") > 0: If it was not the case, then
there would be ("n) # 0 such that

p

��
�

����9s; s0 2 supp (�) \ supp (�) with � (s)� (s0)
=2
�
(1� "n)

� (s)

� (s0)
; (1 + "n)

� (s)

� (s0)

���
= 0

for all n. But for any s; s0 we would have
�
(1� "n) �(s)�(s0) ; (1 + "n)

�(s)
�(s0)

�
! �(s)

�(s0) and therefore

p (�0) = 0, which is a contradiction.

Second, since S is �nite (and thereby also supp(�), and supp(�)�supp(�)) we can write
p (�") =

P
s;s02supp(�)�supp(�)p (�s;s0;") : This immediately implies that at least for one pair

s; s0 we must have p (�s;s0;") > 0:

Now �x s; s0 such that p (�s;s0;") > 0. Let f := 1
2
, and for 
; � > 0 such that �



2�

�(s)
�(s0) ; (1 + ")

�(s)
�(s0)

�
; de�ne an act g by

g (bs) :=
8><>:

1
2
+ 
 bs = s

1
2
� � bs = s0
1
2

otherwise

Note that for any I with s; s0 2 I

� 2 �s;s0;" )
1

2
<
X
bs2I g (bs)� (bs) ; and (3i)

1

2
>
X
bs2I g (bs)� (bs) : (3ii)

Let �s;s0;" (s) :=
R
�s;s0;"

� (s) dp (�). We now argue that there exists a small I �supp(�s;s0;")
such that

(a) f �I g;

(b) ffI0g � fgI0g :

First, s; s0 2supp(�) for every � 2 �s;s0;". Because S is �nite, �s;s0;" can be partitioned
into �nitely many sets of posteriors, where � and �0 are in the same cell of the partition if
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and only if they have the same support. At least one of these cells must have positive weight

under p. Choose I to be such a cell. By (3i), we have ffI0; gI0g � ffI0g [ fgI 00 jI 0 � I g,
or f �I g: This establishes part (a). Part (b) is immediately implied by (3ii).
The combination of (a) and (b) constitutes a violation of Axiom 1. Therefore p (�0) = 0,

that is, for all but a measure zero of posteriors, � 2supp(p) and I � S imply that

� (s) =

(
�(s)
�(I)

s 2 I
0 otherwise

Note that this result implies that if �; �0 2supp(p) are such that � 6= �0 then supp(�) 6=supp(�) :
Therefore, we can index each element � 2supp(p) by its support supp(�) 2 2supp(�) and de-
note a typical element by � (� jI ), where � (s jI ) = 0 if s =2 I 2 2supp(�). There is then a
unique measure bp such that for all F 2 K (F)

V (F ) =
P

I22supp(�) max
f2F

�P
s2Sf (s)� (s jI )

� bp (I) ; (3)

and � (s) =
P

Ijs2I � (s jI ) bp (I).
We have already established that � (s jI ) = �(s)

�(I)
for all s 2 I 2supp(bp) : De�ne � (I) :=bp(I)

�(I)
and substitute � (s) � (I) for � (s jI ) bp (I) in (3). Bayes�law implies that

�s (I) :=

(
� (I) if s 2 I
0 if s =2 I

is indeed a probability measure for all s.

C. Proof of Theorem 2

(if) Let 	 be a uniform cover of S 0. Let k � 1 be the smallest number of times that S 0 is
covered by 	. Set � (I) = �(I)

k
for all I 2 	.

(only if) Suppose that � : 2S0 ! [0; 1] is a generalized partition, with supp(�) = 	. In

addition to � (I) = 0 for I =2 	, the conditions that � should satisfy can be written as

A�	 = 1, where A is a jS 0j � j	j matrix with entries ai;j =
(
1 s 2 I
0 s =2 I

�����, �	 is a j	j-
dimensional vector with entries (� (I))I2	, and 1 is a jS 0j-dimensional vector of ones.
Suppose �rst that � (I) 2 Q\ (0; 1] for all I 2 	. Rewrite the vector �	 by expressing all

entries using the smallest common denominator, � 2 N+. Then 	 is a generalized partition of
size �. To see this, let � (I) := ��(I) for all I 2 	. Then

P
I2	js2I � (I) =

P
I2	js2I �� (I) = �

for all s 2 S 0.
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It is thus left to show that if �	 2 (0; 1]j	j solves A�	 = 1, then there is also �0	 2
[Q \ (0; 1]]j	j such that A�0	 = 1.
Let bP be the set of solutions for the system A�	 = 1. Then, there exists X 2 Rk (with

k � j	j) and an a¢ ne function f : X ! Rj	j such that c�	 2 bP implies c�	 = f (x) for some
x 2 X. We �rst make the following two observations:
(i) there exists f as above, such that x 2 Qk implies f (x) 2 Qj	j

;

(ii) there exists an open set eX � Rk such that f (x) 2 bP for all x 2 eX
To show (i), apply the Gauss elimination procedure to get f and X as above. Using the

assumption thatA has only rational entries, the Gauss elimination procedure (which involves

a sequence of elementary operations on A) guarantees that x 2 Qk
implies f (x) 2 Qj	j

.

To show (ii), suppose �rst that �� 2 bP \ (0; 1)j	j and ��	 =2 Qj	j. By construction,
��	 = f (x�), for some x� 2 X. Since ��	 2 (0; 1)

j	j and f is a¢ ne, there exists an open

ball B" (x�) � Rk such that f (x) 2 bP \ (0; 1)j	j for all x 2 B" (x
�), and in particular

for x0 2 B" (x
�) \ Qk

(6= �). Then �0	 = f (x0) 2 [Q \ (0; 1]]j	j. Lastly, suppose that

��	 2 bP \ (0; 1]j	j and that there are 0 � l � j	j sets I 2 	, for which � (I) is uniquely
determined to be 1. Then set those l values to 1 and repeat the above procedure for the

remaining system of j	j �l linear equations.

D. Proof of Theorem 3

First observe that such � and � exist if, and only if, for any s 2 S either � (s) = 0 orP
fI22�(�)js2I g� (I) =

P
fI22�(�)js2I g

�(I)
�(I)

= 1 holds. If � (s) > 0, then � (I) � � (I) for any
set I 2 2S. Consequently, let

L =
�
� 2 �(S)

��� (I) � � (I) for all I 2 2S 	
Claim 3. The set L is nonempty, closed, and convex.

Proof of Claim 3: To see that L is nonempty, consider the measure � over S de�ned by
� (si) =

P
fIjsi2I and sj =2I for j<ig� (I) : Clearly � (si) 2 [0; 1] for all i and

P
i�i =

P
fI22Sn;g� (I) =

1: Furthermore, if we let iI = min fi jsi 2 I g ; then � (I) = � (siI ) and thus � (I) =P
s2I � (s) � � (I) ; so � 2 L: For convexity, take �; �0 2 L: Since �(S) is a mixture

space, �� + (1 � �)�0 2 �(S) : And since � (I) � � (I) and �0 (I) � � (I) for all I 2 2S;
(��+ (1� �)�0) (I) = ��(I) + (1� �)�0(I) � � (I) and hence �� + (1� �)�0 2 L. Lastly,
L is closed since it is the intersection of closed half-spaces with the closed set �(S). �
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De�ne f : L ! RjSj by

[f�] (s) =

(
0 if � (s) = 0

� (s)�
hP

fI2supp(�)js2I g
�(I)
�(I)

i
otherwise

Claim 4. f (�) 2 L and f is continuous.

Proof of Claim 4: To see that f (�) 2 L, pick � 2 L. We �rst show that f (�) 2 �(S) :
To see this, note that [f�] (s) � 0 and that

P
s2S [f�] (s) =

P
s2S� (s)�

�P
fI2supp(�)js2I g

� (I)

� (I)

�
=
P

I

P
s2I� (s)�

�
� (I)

� (I)

�
=
P

I

�
� (I)

� (I)

�P
s2I� (s)

=
P

I

�
� (I)

� (I)

�
� (I) =

P
I� (I) = 1:

Now pick I 0 2supp(�) and note that

P
s2I0 [f�] (s) =

P
s2I0� (s)�

�P
fI2supp(�)js2I g

� (I)

� (I)

�
�
P

s2I0� (s)�
� (I 0)

� (I 0)
= � (I 0)

hence f (�) 2 L:
For continuity, observe that f is obviously continuous on int(L) :Also notice that � (fsg) >

0 implies � (s) > 0 for all � 2 L. Let S 0 = fs 2 S j� (fsg) = 0g � S: Let h�ki 2int(L) be
such that �k ! �; where � (s) = 0 if, and only if s 2 J , for some J � S: For any s 2 J we
have

[f�k] (s) = � (s)�
�P

fI2supp(�)js2I g
� (I)

�k (I)

�
= �k (s)�

�P
fI2supp(�), I�S0js2I g

� (I)

�k (I)
+
P

fI2supp(�), I"S0js2I g
� (I)

�k (I)

�
= �k (s)�

�
0 +

P
fI2supp(�), I"S0js2I g

� (I)

�k (I)

�
and

lim
�(s)!0

� (s)�
P

fI2supp(�), I"S0js2I g
� (I)

� (I)
= 0:

Clearly [f�k] (s)! [f�] (s) for any s =2 J: Therefore, f is continuous. �
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From the two claims above, we conclude that f is a continuous function from a convex

compact subset of RjSj to itself. By Brouwer�s �xed-point theorem, f has a �xed point, ��.
But note that if �� is a �xed point of f and �� (s) > 0, then

P
fI22Sn;js2I g

�(I)
��(I) = 1, and thus

the pair (��; �) with � (I) = �(I)
��(I) satis�es all the requirements. �

E. Proof of Theorem 4

Suppose, contrary to the theorem, that � 6= �0 (otherwise � = �0 follows immediately.)

Without loss, order states such that for some l and j with k � j > l we have �0 (si) > � (si)
if and only if i 2 f1; :::; lg, and � (si) > �0 (si) if and only if i 2 fk � j; :::; kg.
Let �0 = �; s0 = s1, and s0 = sk. De�ne inductively �t (I) :=

�(I)
�t(I)

, ��t (s) = �t (s) �
�0 (s),

�t+1 (s) :=

8><>:
�t (s) s =2 fst; stg

�t (s) + min (j��t (st)j ; j��t (st)j) s = st

�t (s)�min (j��t (st)j ; j��t (st)j) s = st

st := argmin
s:�t(s)<�0(s)

X
I:s2I

�t (I) ; and st := argmax
s:�t(s)>�0(s)

X
I:s2I

�t (I). Note that there is �nite T with

�T = �0, at which point the process terminates. Hence, if we establish that �t is never a

generalized partition for t > 0, we are done.

Claim 5 (Induction beginning). �1 is not a generalized partition. In particular

1.
X
I:s12I

�1 (I) < min

(
1;mins 6=s1

(X
I:s2I

�1 (I)

))

2.
X
I:sk2I

�1 (I) > max

(
1;maxs 6=sk

(X
I:s2I

�1 (I)

))
.

Proof of Claim 5: �1 (I) � � (I) if and only if s1 2 I, with strict inequality for s2 =2 I.
Part 1 then follows immediately, and part 2 is analogous. �
Induction hypothesis. �t is not a generalized partition. In particular

1. There is st with � (st) > �t (st) and 1 <
X
I:st2I

�t (I) � maxs 6=st
(X
I:s2I

�t (I)

)
.

2. There is st with � (st) < �t (st) and 1 >
X
I:st2I

�t (I) � mins 6=st

(X
I:s2I

�t (I)

)
:

Claim 6 (Induction step). If �t and �t satisfy the hypothesis, then so do �t+1 and �t+1.
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Proof of Claim 6: Note that (i) �t+1 (I) > �t (I) if and only if st 2 I and st =2 I (and in
particular for fstg) and (ii) �t+1 (I) < �t (I) if and only if st 2 I and st =2 I.
Suppose, contrary to the claim, that �t+1 is a generalized partition. Then it must be thatX

I:st2I

�t+1 (I) = 1. But by (1) of the hypothesis, 1 <
X
I:st2I

�t (I) �
X
I:st2I

�t (I) and then by (i)X
I:st2I

�t+1 (I) < 1. Hence, �t+1 is not a generalized partition. In particular, due to (i) and the

choice of st,
X
I:st2I

�t+1 (I) <
X
I:s2I

�t+1 (I) for all s with �t+1 (s) < �0 (s), and hence (1) of the

claim holds. (2) follows analogously. �
This establishes the Theorem. �
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