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1 Introduction

Rational inattention is a model where rational agents will optimally acquire information
by considering the benefits and costs of information acquisition. Since a seminal work of
Sims [8], the implications of this model has been studied in much of the literature. The
existing literature typically assumes the agent to maximize net benefits from information
minus costs. This formulation implicitly requires that the cost depends on the experiment,
but is independent of the benefit from the experiment. However, in some instances, the
cost of information acquisition may be payoff-dependent.

Higashi, Hyogo, and Takeoka [5] (henceforth HHT) axiomatize a general payoff-dependent
cost function for information acquisition. To see their result formally, consider the following
choice environment: let Ω be a finite set of objective states and X be a set of lotteries. A
function f : Ω → X is called an act. We consider a finite subset F of acts, called a menu,
as a choice object. That is, we take preference ≿ over those menus as primitive.

Suppose that the agent has an expected utility function u : X → R and an initial
prior p over Ω. Before choosing from a menu F , the agent may conduct an additional
experiment or engage in information acquisition, which generates signals about states. The
agent updates his prior and makes a choice from the menu contingent upon posteriors.
Formally, information acquisition is interpreted as a choice of an information structure
π ∈ ∆(∆(Ω)), whose prior coincides with p.

Given each menu F , the benefit of information of π is defined as

buF (π) ≡
∫ (

max
f∈F

∑
ω

u(f(ω))p(ω)

)
dπ(p). (1)

After choosing the information structure, the agent observes a signal and updates his prior
belief to the posterior p. Given the posterior belief p, the agent chooses an act f from a
menu F to maximize the expected utility. The benefit of information is computed as the
expectation of these maximum values with respect to the distribution over signals, given
by π.

HHT propose the following representation: A preference ≿ over menus admits a costly
subjective learning (CSL) representation if there exist an expected utility function u : X →
R, a prior belief p over Ω, a function W (π, t), interpreted as a net benefit function of
information acquisition, such that

U(F ) = max
π∈Π(p)

W (π, buF (π)) (2)

represents ≿, where Π(p) is the set of information structures consistent with the prior.
This representation is given as an indirect utility function of the maximization, where the
agent optimally chooses an information structure by considering the benefits and costs
of acquiring information. The function W satisfies several properties, which justify an
interpretation of W being a net benefit of information acquisition.
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In the CSL representation, costs for information acquisition are implicitly incorporated
into W . To formulate this cost explicitly, (2) is rewritten as

U(F ) = max
π∈Π(p)

{buF (π)− C(π, buF (π))}, (3)

where C(π, t) := t − W (π, t). That is, (3) is regarded as a model of a general payoff-
dependent cost function. If C(π, t) is payoff-independent and written as c(π), the CSL
model is reduced to the standard model for information acquisition,

U(F ) = max
π∈Π(p)

{buF (π)− c(π)}, (4)

which is axiomatized by de Oliveira, Denti, Mihm, and Ozbek [4].
The purpose of this paper is to axiomatize an alternative specification of the payoff-

dependent cost representation (3). A preference ≿ over menus admits a homogeneous cost
representation if there exist a tuple (u, p, γs), where u : X → R is an unbounded expected
utility function with u(X) = R, p is the initial prior, γs : Π(p) → R+ is a payment rate
function depending on s =sign of buF (π) such that ≿ is represented by

U(F ) = max
π∈Π(p)

{buF (π)− γs(π)|buF (π)|}. (5)

Moreover, γ+(π) ∈ [0, 1]. It is easy to see that this is a special case of (3) in that C(π, t) =
γs(π)|t| where s is the sign of t. In this model, a cost for information acquisition depends
not only on an information structure but also on the benefit of information proportionally.
In particular, when payoffs are positive, (5) is reduced to the discounted utility form:

U(F ) = max
π∈Π(p)

β(π)buF (π),

where β(π) = 1− γ+(π) ∈ [0, 1].
To axiomatize (5), we borrow techniques from the literature on choice under ambi-

guity. The CSL representation is a counterpart of the uncertain averse representation of
Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [2], which nests two representa-
tions as special cases. One is the variational representation of Maccheroni, Marinacci, and
Rustichini [7], which satisfies the property, called translation invariance, and has a paral-
lel relationship with (4). The other is the confidence representation of Chateauneuf and
Faro [3], which satisfies homotheticity and has a parallel relationship with the homogeneous
cost representation (5).

1.1 Motivating example

We illustrate a type of behavior that cannot be explained by the payoff-independent cost
model, but can be explained by the homogeneous cost model. For simplicity, assume that
the objective state space is given by Ω = {ω1, ω2}. In this illustration, an act is a function
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defined on Ω, which pays a positive payoff according to a realization of states. Hence, an
act is identified with (x1, x2), where xi ∈ R is a payoff when ωi is realized, and is interpreted
as an investment. Payoffs are interpreted as either utils or monetary prizes, assuming the
agent is risk neutral.

Imagine an agent facing a decision about investment opportunities, which are considered
as menus of acts. The agent has preference over menus of acts.

Suppose that
{(100, 0)} ∼ {(0, 100)} ∼ {(50, 50)}.

The first indifference ranking implies that the agent’s prior over states is given by (1
2
, 1
2
).

The second indifference ranking suggests that his willingness to pay to each act is 50.
Now consider a bigger menu {(100, 0), (0, 100)}, which allows the agent to postpone

his investment decision in the future. Presumably, facing this menu, the agent optimally
solves the problem of costly information acquisition and will make a choice from the menu
contingent upon the arrival of new information. Thus, the agent will exhibit preference for
flexibility such as

{(60, 60)} ∼ {(100, 0), (0, 100)} ≻ {(100, 0)} ∼ {(0, 100)}.
The first indifference suggests that the agent’s willingness to pay to the bigger menu is
given as the payoff of 60. Therefore, the net benefit of optimal information acquisition
compared with the prior being adopted is 60− 50 = 10.

Let us consider an implication of the payoff-independent cost model given in (4). As
the payoff-independent cost model satisfies the property, called translation invariance, for
all positive payoff m,

{(60 +m, 60 +m)} ∼ {(100 +m,m), (m, 100 +m)}.
This ranking means that the agent’s willingness to pay to the menu increases exactly by
m after adding m throughout. Again, the net benefit of optimal information acquisition at
{(100+m,m), (m, 100+m)} compared with that of the prior is given as (60+m)−(50+m) =
10. As the net benefit of information acquisition is invariant with m, an optimal level of
information acquisition should be invariant among all those menus.

However, a level of common payoff m may affect the incentive for costly information
acquisition. When m is sufficiently large, the significance of the state-dependent payoff of
100 relative to the constant payoff m seems to diminish. This may make the agent more
reluctant to acquire information. The payoff-independent cost model fails to capture the
effect of such payoff changes on the incentives to acquire information.

On the other hand, if the costs for information acquisition are payoff-dependent and
homogeneous, as the common payoff m increases, information acquisition costs also in-
crease proportionally, in contrast to payoff-independent costs, which makes the agent more
reluctant to acquire information. The impact on the incentives appears in preference over
menus as a deviation from translation invariance, as follows:

{(60 +m, 60 +m)} ≻ {(100 +m,m), (m, 100 +m)}
for large m > 0.
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2 Homogeneous cost representation

2.1 Primitives

We consider the following as primitives of the model: these primitives are exactly the same
as in HHT and de Oliveira, Denti, Mihm, and Ozbek [4].

• Ω = {ω1, ..., ωn}: the (finite) objective state space

• X: outcomes, consisting of simple lotteries on a set of deterministic prizes

• f : Ω → X: an (Anscombe-Aumann) act

• F : the set of all acts

• F ⊂ F : a non-empty finite set of acts, called a menu

• F: the set of all menus

• Preference ≿ over F

2.2 Preliminaries

Let p ∈ ∆(Ω) be the agent’s prior belief. A probability distribution π ∈ ∆(∆(Ω)) is
interpreted as an information structure or a signal structure about Ω. For each π, the
initial prior pπ ∈ ∆(Ω) associated with π is defined as

pπ(ω) =

∫
∆(Ω)

p(ω) dπ(p)

for each ω. We impose a restriction on the relationship between the prior belief and
subjectively possible information structures. We say that π satisfies a martingale property
or a Bayesian plausibility constraint (Kamenica and Gentzkow [6]) if

pπ = p. (6)

That is, the initial prior associated with π exactly coincides with the agent’s prior belief p.
Define

Π(p) = {π ∈ ∆(∆(Ω)) | pπ = p},

which is weak* closed and convex.
Given u : X → R and a menu F , a benefit of information of π ∈ Π(p), denoted by

buF (π), is defined as in (1). In particular, for any singleton menu {f} and π ∈ Π(p), we
have

bu{f}(π) =
∑
Ω

u(f(ω))p(ω),
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that is, the benefit of information exactly coincides with the expected utility of f under
the prior if the agents makes a commitment.

To capture the benefits from information acquisition, we introduce the Blackwell order,
which gives a partial order on ∆(∆(Ω)) in terms of informativeness of signals.

Definition 1 A signal π ∈ ∆(∆(Ω)) is Blackwell more informative than a signal ρ ∈
∆(∆(Ω)), denoted π ⊵ ρ, if∫

∆(Ω)

φ(p) dπ(p) ≥
∫
∆(Ω)

φ(p) dρ(p)

for every convex continuous function φ : ∆(Ω) → R.

As maxf∈F (
∑
u(f(ω))p(ω)) is convex and continuous in p, we have buF (π) ≥ buF (ρ)

whenever π is Blackwell more informative than ρ.

2.3 Homogeneous payoff-dependent costs

We start with the definition of our representation.

Definition 2 A homogeneous cost representation is a tuple (u, p, γs), where u : X → R
is an unbounded expected utility function with u(X) = R, p is the initial prior, γs is a
payment rate function such that ≿ is represented by

U(F ) = max
π∈Π(p)

{buF (π)− γs(π)|buF (π)|}. (7)

The term γs(π) represents a rate of payment for experiment π per the size of payoff. The
payment rate can be different depending on whether the benefit of information is positive or
negative. We assume the payment rate function γs(π) to satisfy the following properties: (i)
γs is quasi-convex and lower semi-continuous, (ii) γ+(π) ∈ [0, 1] and γ−(π) ≥ 0, (iii) if there
is no information acquisition, there is no cost: γs(δp) = 0 for the initial prior p, and (iv) a
more informative experiment is more costly: for all π, ρ ∈ Π(p), π ⊵ ρ =⇒ γs(π) ≥ γs(ρ).

One simple observation is that (7) is a special case of the CSL representation when its
payoff-dependent cost C(π, t) satisfies homogeneity of degree one, that is, for all π, t, and
λ > 0,

C(π, λt) = λC(π, t).

This homogeneity implies that the cost function is proportional to the gross benefit of
information. Indeed, C(π, t) = tC(π, 1) for t > 0 and C(π, t) = |t|C(π,−1) for t < 0.
Thus, the payoff-dependent cost is written as C(π, t) = γs(π)|t|, where s = sgn(t), γ+(π) =
C(π, 1), and γ−(π) = C(π,−1). All the properties of γs(π) stated above are inherited from
the properties of the net benefit function W (π, t) (see HHT for more details).
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2.3.1 Reduced form representation

The homogeneous cost representation admits a convenient reduced form. If buF (π) ≥ 0, the
net benefit of π is written as (1− γ+(π))b

u
F (π) ≥ 0, while if buF (π) < 0, the net benefit of π

is written as (1 + γ−(π))b
u
F (π) < 0. Thus, (1 − γ+) and (1 + γ−) are multipliers for gross

benefits of information. Define

β+(π) = 1− γ+(π), and β−(π) = 1 + γ−(π).

To rewrite the functional form in Definition 2, define

Π+(F ) = {π ∈ Π(p) | buF (π) ≥ 0}.

Note that Π+(F ) ̸= ∅ if buF (π) ≥ 0 for some π, and Π+(F ) = ∅ if buF (π) < 0 for all π. Then,
(7) can be rewritten as

U(F ) =

{
maxπ∈Π(p) β+(π)b

u
F (π) ≥ 0 if Π+(F ) ̸= ∅,

maxπ∈Π(p) β−(π)b
u
F (π) < 0 if Π+(F ) = ∅. (8)

In the gain frame (or Π+(F ) ̸= ∅), U(F ) admits a discounted utility form. On the other
hand, in the loss frame (or Π+(F ) = ∅), the representation is written as

U(F ) = − min
π∈Π(p)

β−(π)|buF (π)|.

That is, the agent chooses an experiment to minimize losses amplified by the multipliers
β−(π).

The function β+ : Π(p) → [0, 1] is called a discounting function, and the properties of
γ+ are translatred to those of β+ as follows:

(i) β+ is quasi-concave and upper semi-continuous.

(ii) β+(δp) = 1 for the initial prior p.

(iii) For all π, ρ ∈ Π(p), π ⊵ ρ =⇒ β+(π) ≤ β+(ρ).

Part (i) is a technical condition to ensure a well-defined optimization problem of in-
formation acquisition. Part (ii) states that there is no cost (no discounting) if the prior
information is chosen. Part (iii) states that if a more informative signal structure is chosen,
then the benefit of information is more discounted.

The function β− : Π(p) → [1,∞], which is applied to negative benefits or losses of
information, is called a premium function.1 The properties of γ− are translatred to those
of β− as follows:

1An information structure π with β−(π) = ∞ is not relevant since it is too costly and never chosen in
the information acquisition stage.
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(i) β− is quasi-convex and lower semi-continuous.

(ii) β−(δp) = 1 for the initial prior p.

(iii) For all π, ρ ∈ Π(p), π ⊵ ρ =⇒ β−(π) ≥ β−(ρ).

Parts (i) and (ii) are symmetric to those of the discounting function. Part (iii) states
that if a more informative signal structure is chosen, then the decision maker has to pay
more premium.

3 Behavioral foundation

3.1 Axioms

The first five axioms, referred to as the basic axioms, are consistent with any type of costly
information acquisition.

Axiom 1 (Order) ≿ satisfies completeness and transitivity.

For all F,G, and α ∈ [0, 1], define a mixture of F and G by

αF + (1− α)G = {αf + (1− α)g | f ∈ F, g ∈ G} ∈ F,

where αf + (1− α)g ∈ F is defined by the state-wise mixture between f and g.

Axiom 2 (Mixture Continuity) For all menus F,G, and H, the following sets are
closed:

{α ∈ [0, 1] |αF + (1− α)G ≿ H} and {α ∈ [0, 1] |H ≿ αF + (1− α)G}.

Axiom 3 (Preference for Flexibility) For all menus F and G, if G ⊂ F , then F ≿ G.

This axiom states that a bigger menu is always weakly preferred.

Axiom 4 (Dominance) For all menus F and acts g, if there exists f ∈ F with {f(ω)} ≿
{g(ω)} for all ω ∈ Ω, then F ∼ F ∪ {g}.

As F ⊂ F ∪ {g}, the latter menu is weakly preferred by preference for flexibility.
However, if {f(ω)} ≿ {g(ω)} for all ω ∈ Ω, for all states, f gives a more preferred lottery
than g does. In this sense, g is dominated by f . Irrespective of the belief the agent has on
the states, g should not be chosen over f . Thus, adding g to F does not provide a strictly
higher value of flexibility than F .

Axiom 5 (Two-Sided Unboundedness) There are outcomes x, y ∈ X with {x} ≻ {y}
such that for all α ∈ (0, 1), there are z, z′ ∈ X satisfying

{αz′ + (1− α)y} ≻ {x} ≻ {y} ≻ {αz + (1− α)x}.
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This axiom implies the unbounded range of a utility function over outcomes X.2

The next axiom is a weak form of Independence, which is imposed only on singleton
menus.

Axiom 6 (Singleton Independence) For all acts f , g, h, and α ∈ (0, 1),

{f} ≿ {g} ⇐⇒ α{f}+ (1− α){h} ≿ α{g}+ (1− α){h}.

If the agent makes a commitment to a singleton menu {f}, there is no role for infor-
mation acquisition after menu choice. Thus, the commitment rankings reflect the agent’s
prior belief over states. Singleton Independence implies that the agent follows the subjective
expected utility to evaluate acts with commitment according to his prior belief.

Formally, the next axiom requires quasi-convexity of preference.

Axiom 7 (Aversion to Contingent Planning) For all menus F , G, and α ∈ (0, 1),

F ∼ G =⇒ F ≿ αF + (1− α)G.

Note that αF + (1 − α)G is the menu of contingent plans of the form αf + (1 − α)g,
where f ∈ F and g ∈ G. If the agent has αF + (1− α)G, the randomization α is realized
after the agent makes a choice from αF + (1− α)G. Thus, information acquisition cannot
be completely tailored for F and G. The axiom states that the agent avoids contingent
planning.

Higashi, Hyogo, and Takeoka [5] show the following result.

Theorem 1 (Higashi, Hyogo, and Takeoka [5]) Preference ≿ satisfies the basic ax-
ioms, Singleton Independence, and Aversion to Contingent Planning if and only if it admits
a CSL representation (u, p,W ).

The homogeneous cost representation is a special case of the CSL representation. We
need an additional axiom for its characterization. A salient feature of (7) is “scale-
independence”. Let x0 ∈ X denote a lottery whose size of payoff is zero. We call x0 a
neutral outcome. A mixture αF +(1−α){x0}, simply denoted by αF , is interpreted as the
menu obtained from scaling down all the acts in F by α toward the zero payoff. Given (7),
it is easy to see that U(αF ) = αU(F ). A behavioral counterpart of the scale-independence
is the independence axiom imposed only when menus are mixed with the neutral outcome.

Let x0 ∈ X be a neutral outcome, which is related to the next axiom.

Axiom 8 (Neutral Outcome Independence) For all menus F,G, and α ∈ (0, 1),

F ≿ G⇐⇒ αF + (1− α){x0} ≿ αG+ (1− α){x0}.

This axiom requires that mixing menus with a neutral outcome should not affect the
optimal choice of experiments.

2de Oliveira, Denti, Mihm, and Ozbek [4] assume one-sided unboundedness: There are outcomes x, y ∈
X with {x} ≻ {y} such that for all α ∈ (0, 1), there is z ∈ X satisfying either {αz + (1 − α)y} ≻ {x} or
{y} ≻ {αz + (1− α)x}.
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3.2 Representation result

We are ready to state our main theorem in this paper.

Theorem 2 Suppose that preference ≿ admits a CSL Representation. Then ≿ satisfies
Neutral Outcome Independence if and only if it admits a homogeneous cost representation
(u, p, β+, β−). Moreover, discounting and premium functions are obtained as

β+(π) = inf
{F∈F | buF (π)>0}

u(xF )

buF (π)
, (9)

and

β−(π) = sup
{F∈F | buF (π)<0}

u(xF )

buF (π)
, (10)

where xF ∈ X is a lottery equivalent of F , that is, {xF} ∼ F .

One additional axiom, Neutral Outcome Independence, guarantees that a CLS Repre-
sentation is homogeneous. The homogeneous payoff-dependent cost representation has a
parallel relationship with the confidence representation of Chateauneuf and Faro [3], which
satisfies homogeneity.

The expressions of β+ and β− provide an explicit formula for eliciting the discounting
and premium functions. If u and xF are elicited from the agent’s preference, β+(π) and
β−(π) can be computed according to formulae (9) and (10), respectively.

To obtain an intuition behind the formula (9), take any π and menu F . The homoge-
neous cost representation implies that if buF (π) > 0,

U(F ) = max
ρ∈Π(p)

β+(ρ)b
u
F (ρ) ≥ β+(π)b

u
F (π),

which implies, for all such π,

β+(π) ≤
U(F )

buF (π)
.

Thus, β+(π) is a lower bound of U(F )
buF (π)

among menus F with buF (π) > 0. In particular, if π

is an optimal information structure at F , the above inequality holds with equality. Hence,
β+(π) can be derived as the infimum of u(xF )

buF (π)
among all menus F with buF (π) > 0.

The symmetric argument is applicable for elicitation of β−. Take any F such that
buF (π) < 0 for all π. According to the representation,

U(F ) = max
ρ∈Π(p)

β−(ρ)b
u
F (ρ) ≥ β−(π)b

u
F (π).

As buF (π) < 0,

β−(π) ≥
U(F )

buF (π)
,

where the equality holds if π is an optimal information structure at F . Hence, β−(π) can

be derived as the supremum of u(xF )
buF (π)

among all menus F with buF (π) < 0.
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3.3 Uniqueness

The next theorem shows the uniqueness property of the homogeneous cost representation.

Theorem 3 Assume that there are two homogeneous cost representations (ui, pi, β+,i, β−,i),
i = 1, 2 that represent the same preference ≿ on F. Then, there exists α > 0 such that
u2 = αu1, p1 = p2, β+,1 = β+,2, and β−,1 = β−,2.

As ≿ is represented by a subjective expected utility over acts, the uniqueness about ex-
pected utility and prior directly follows from the uniqueness of Anscombe and Aumann [1].
As we assume that ui(x0) = 0 for all i, we have u2 = αu1. Moreover, by (9) of Theorem 2,
for any π ∈ Π(p),

β+,2(π) = inf
{F∈F | bu2F (π)>0}

u2(xF )

bu2
F (π)

= inf
{F∈F | bu1F (π)>0}

αu1(xF )

αbu1
F (π)

= β+,1(π).

Similarly, by (10),

β−,2(π) = sup
{F∈F | bu2F (π)<0}

u2(xF )

bu2
F (π)

= sup
{F∈F | bu1F (π)<0}

αu1(xF )

αbu1
F (π)

= β−,1(π).

3.4 Proof sketch of Theorem 2

The following is a proof sketch of the sufficiency. Up to the middle step, we follow the
construction of the CSL representation in HHT. By Singleton Independence and the basic
axioms, ≿ on acts is represented by a subjective expected utility with an expected utility
function u : X → R with u(X) = R and a prior p over Ω. This utility function can be
extended to the whole domain F because each menu admits its lottery equivalent xF ∈ X
with {xF} ∼ F . Let U denote this representation.

For any F ∈ F, a support function for F is defined as, for any posterior p ∈ ∆(Ω),

φF (p) = max
f∈F

∑
Ω

u(f(ω))p(ω). (11)

The support function identifies the menu up to indifference: φF = φG =⇒ F ∼ G. Let
ΦF = {φF |F ∈ F} ⊂ C(∆(Ω)) be the set of all support functions. Given the above identi-
fication, we can induce the functional V : ΦF → R by V (φF ) = U(F ). The functional V is
extended to the set of all continuous functions C(∆(Ω)), preserving the desired properties.
HHT show that V is rewritten as

V (φ) = max
π∈∆(∆(Ω))

W (π, ⟨φ, π⟩),

where W (π, t) is a net benefit function and ⟨φ, π⟩ =
∫
φ(p) dπ(p). Moreover, when u(X) =

R, the martingale property is proved, that is, the above maximum is achieved within the
subset Π(p) ⊂ ∆(∆(Ω)).
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Using an additional axiom, we show that the above representation can be transformed
into the desired form. As u : X → R is an expected utility, we can assume u(x0) = 0, where
x0 is a neutral outcome. As ≿ satisfies Neutral Outcome Independence, we can show that
V is positively homogeneous, which in turn implies that W (π, t) is homogeneous of degree
one in t. By defining β+(π) = W (π, 1) and β−(π) = −W (π,−1), V can be rewritten as

V (φ) = max
π∈Π(p)

[β+(π)(⟨φ, π⟩)+ − β−(π)(⟨φ, π⟩)−],

where (t)+ = max{0, t} and (t)− = max{0,−t} for all t ∈ R. This type of specification ofW
has a counterpart in decision making under ambiguity, which is called the confidence model
(Chateauneuf and Faro [3]). Finally, we show that discounting and premium functions, β+
and β−, satisfy the desired properties.

4 Interpersonal comparison

Consider two agents i = 1, 2 having preferences ≿i on F. The following condition is a
behavioral comparison in terms of attitude toward flexibility.

Definition 3 ≿1 is more averse to commitment than ≿2 if for all F ∈ F and f ∈ F ,

F ≿2 {f} =⇒ F ≿1 {f}.

We have the following characterization:

Theorem 4 Assume that ≿i, i = 1, 2 satisfy the axioms of Theorem 2. ≿1 is more
averse to commitment than ≿2 if and only if there exists a homogeneous cost represen-
tation (u, p, β+,i, β−,i) represents ≿i, i = 1, 2, and

β+,1(π) ≥ β+,2(π), and β−.1(π) ≤ β−,2(π)

for all π.

This theorem provides a characterization about aversion to commitment. Agent 1 has
a discounting function and a premium function which are closer to one than agent 2 does,
that is, agent 1 has lower costs for any information structure than agent 2.

Proof. It is easy to see that if ≿1 is more averse to commitment than ≿2, then for all
f, g ∈ F , {f} ≿1 {g} if and only if {f} ≿2 {g}, that is, the two preferences are identical
on singleton menus. Hence, we can assume that u1 = u2 = u and p1 = p2 = p.

Take any F ∈ F. Let xiF be agent i’s lottery equivalent of F , that is, {xiF} ∼i F . Since
≿1 is more averse to commitment than ≿2, F ∼2 {x2F} implies F ≿1 {x2F}. Therefore, we
have u(x1F ) = U1(F ) ≥ u(x2F ) = U2(F ) for all F .
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Take any π and F with buF (π) > 0. By the representation, for i = 1, 2,

u(xiF ) = Ui(F ) = max
π′∈Π(p)

β+,i(π)b
u
F (π

′) ≥ β+,i(π)b
u
F (π) > 0.

Therefore,

β+,1(π) = inf
{F | buF (π)>0}

u(x1F )

buF (π)
≥ inf

{F | buF (π)>0}

u(x2F )

buF (π)
= β+,2(π).

Take any F with u(x1F ) < 0. By the above observation, u(x2F ) ≤ u(x1F ) < 0, that is,
{F |u(x1F ) < 0} ⊂ {F |u(x2F ) < 0}. Moreover, u(x1F ) < 0 implies that buF (π) < 0 for all
π ∈ Π(p). Thus, by Lemma 11,

β−,1(π) = sup
{F |u(x1

F )<0}

u(x1F )

buF (π)
≤ sup

{F |u(x2
F )<0}

u(x2F )

buF (π)
= β−,2(π),

as desired.

Appendix

A Preliminaries

Following de Oliveira, Denti, Mihm, and Ozbek [4], we introduce some notions and math-
ematical preliminaries needed for the subsequent analysis. The proofs are omitted.

• C(∆(Ω)): the set of all real-valued continuous functions over ∆(Ω) with the supnorm

• ca(∆(Ω)): the set of all signed measures over ∆(Ω) with the weak∗ topology

• ca+(∆(Ω)): the set of all positive measures over ∆(Ω)

• For φ ∈ C(∆(Ω)) and π ∈ ca(∆(Ω)), define

⟨φ, π⟩ =
∫
∆(Ω)

φ(p)dπ(p).

For a subset Ψ of C(∆(Ω)), we say that a function V : Ψ → R is normalized if V (α) = α
for each constant function α ∈ Ψ; monotone if V (φ) ≥ V (ψ) for all φ, ψ ∈ Ψ with φ ≥ ψ;
convex if αV (φ) + (1− α)V (ψ) ≥ V (αφ+ (1− α)ψ) for all φ, ψ ∈ Ψ and α ∈ (0, 1); quasi-
convex if V (φ) ≥ V (αφ + (1 − α)ψ) for all φ, ψ ∈ Ψ with V (φ) ≥ V (ψ) and α ∈ (0, 1);
positively homogeneous if V (αφ) = αV (φ) for all φ ∈ Ψ and α ≥ 0.

• Φ: the set of convex functions in C(∆(Ω))
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• For any expected utility function u and any menu F ∈ F, let

φF (p) = max
f∈F

∑
Ω

u(f(ω))p(ω)

• ΦF(ΦF ,ΦX): the set of functions φF (φ{f}, φ{x})

Note that u(X) = ΦX ⊂ ΦF ⊂ ΦF ⊂ Φ. Moreover, ΦF is convex because αφF + (1 −
α)φG = φαF+(1−α)G.

Assume that u(X) = R. Then we have the following properties of ΦF:

(i) ΦF ⊂ Φ

(ii) ΦF + R = ΦF

(iii) αφF ∈ ΦF for every α ≥ 0

(iv) The set ΦF is dense in Φ.

B Proof of Theorem 2

B.1 CSL representations

Theorem 1 of HHT shows that if ≿ satisfies the basic axioms, Singleton Independence, and
Aversion to Contingent Planning if and only if it admits a subjective learning represen-
tation. Below, we briefly explain the only if part as an intermediate result for our main
theorem in the present paper.

First, we derive a utility representation U : F → R and define the functional V : ΦF → R
as in de Oliveira, Denti, Mihm, and Ozbek [4]. By Singleton Independence and the basic
axioms, ≿ over acts admits a subjective expected utility representation. There exists an
expected utility function u : X → R with unbounded range and a prior probability measure
p over Ω such that the preference≿ over F is represented by the function U : F → R defined
by

U(f) =
∑
Ω

u(f(ω))p(ω).

Since every menu F has a certainty equivalent xF ∈ X such that {xF} ∼ F , we can extend
U : F → R to F by U(F ) = U(xF ). This extension U : F → R represents ≿. By Two-Sided
Unboundedness, U(F) = R.

Define the functional V : ΦF → R by V (φF ) = U(F ). They show that V is well-defined
because φF = φG implies F ∼ G. By Lemma 1 of HHT, V : ΦF → R is monotone,
normalized, quasi-convex, and continuous.
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Define an extension of V to C(∆(Ω)) by

V (φ) = inf{V (φF )|φF ∈ ΦF, φF ≥ φ} (12)

for all φ ∈ C(∆(Ω)). Lemmas 2 and 3 of HHT shows that V : C(∆(Ω)) → R is a well-
defined extension of V : ΦF → R. Moreover, V is monotone, normalized, quasi-convex, and
continuous.

For all π ∈ ca+(∆(Ω)) and t ∈ R, define

B(π, t) = {φ ∈ C(∆(Ω)) | ⟨φ, π⟩ ≥ t}, and
W (π, t) = inf

φ∈B(π,t)
V (φ). (13)

Since all constant functions belong to C(∆(Ω)), B(π, t) ̸= ∅ for all π and t. Thus,W (π, t) <
∞ for all (π, t), but it is possible that W (π, t) = −∞ for some (π, t).

By Lemma 6 of HHT, V is written as

V (φ) = max
π∈∆(∆(Ω))

W (π, ⟨φ, π⟩).

HHT shows that W satisfies the following properties:

Lemma 1 (1) For any π ∈ ∆(∆(Ω)), W (π, t) is nondecreasing in t.

(2) W (π, t) is quasi-concave in (π, t) ∈ ∆(∆(Ω))× R.

(3) W (π, t) is upper semi-continuous in (π, t) ∈ ∆(∆(Ω))× R.

(4) W (δp, t) = t.

(5) If π ⊵ ρ, W (π, t) ≤ W (ρ, t) for all t.

Define
Π = {π ∈ ∆(∆(Ω)) |W (π, t) > −∞ for some t}. (14)

By Lemma 1 (4) implies δp ∈ Π. In particular, Π ̸= ∅. Moreover, Lemma 12 of HHT shows
that Π ⊂ Π(p). Since any π /∈ Π never achieves the maximum of W , the representation U
is rewritten as

U(F ) = V (φF ) = max
π∈Π(p)

W (π, ⟨φF , π⟩) = max
π∈Π

W (π, ⟨φF , π⟩), (15)

which is a costly subjective learning representation.
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B.2 Sufficiency

We show that if ≿ satisfies Neutral Outcome Independence in addition, then (15) is written
as a homogeneous cost representation.

Recall V : ΦF → R defined as in Section B.1. Since u on X is mixture linear, without
loss of generality, we can assume u(x0) = 0 where x0 is a neutral outcome.

Lemma 2 V : ΦF → R is positively homogeneous.

Proof. We show positive homogeneity of V . For α ∈ [0, 1],

V (αφF ) = V (αφF + (1− α)0) = V (φαF+(1−α){x0})

= U(αF + (1− α){x0}) = U(α{xF}+ (1− α){x0})
= αU({xF}) + (1− α)0 = αV (xF ).

The second equality follows from linearity of φ. The forth equality follows from Neutral
Outcome Independence.

For α ∈ (1,∞), denote φG = αφF ∈ ΦF. By the above property,

V (φF ) = V (
1

α
φG) =

1

α
V (φG) =

1

α
V (αφF ),

as desired.

As in (12), V is extended to C(∆(Ω)).

Lemma 3 V : C(∆(Ω)) → R is positively homogeneous.

Proof. We show that V satisfies positive homogeneity. First of all, as V is normalized, if
α = 0, V (αφ) = V (0) = 0 = αV (φ) for all φ, as desired.

For every φ ∈ C(∆(Ω)) and α > 0, note that

{φF ∈ ΦF |φF ≥ φ} = {αφF ∈ ΦF |αφF ≥ φ for some φF ∈ ΦF}.

Indeed, take any φF from the left-hand side. Since ΦF is a cone, φF

α
∈ ΦF. Thus, α(

φF

α
) =

φF ≥ φ. By definition, φF = α(φF

α
) belongs to the right-hand side. Conversely, take any

αφF from the right-hand side. Since αφF ∈ ΦF and αφF ≥ φ, by definition, αφF belongs
to the left-hand side, as desired.

For all φ ∈ C(∆(Ω)) and α > 0, the above observation implies that

V (αφ) = inf {V (φF )|φF ∈ ΦF, φF ≥ αφ}
= inf {V (αφF )|φF ∈ ΦF, αφF ≥ αφ}
= inf {αV (φF )|φF ∈ ΦF, φF ≥ φ} = αV (φ).

Recall W : ∆(∆(Ω))× R → R ∪ {−∞} defined as in (13).
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Lemma 4 For all π ∈ ∆(∆(Ω)), W (π, t) is homogeneous of degree one in t, that is, for
all α > 0, W (π, αt) = αW (π, t).

Proof. (i) By Lemma 4 of HHT and positive homogeneity of V ,

W (π, αt) = inf
φ∈B(π,αt)

V (φ) = inf
φ∈αB(π,t)

V (φ) = inf
φ∈B(π,t)

V (αφ)

= α inf
φ∈B(π,t)

V (φ) = αW (π, t).

For notational convenience, given π ∈ ∆(∆(Ω)), we define a scalar function defined for
all t ∈ R by Wπ(t) = W (π, t). Since our concern is the infimum, let

domWπ = {t ∈ R |Wπ(t) > −∞}.

Define Π as in (14).

Lemma 5 For all π ∈ Π, either domWπ = R or domWπ = R+.

Proof. Take any π ∈ Π. Assume that there exists t∗ < 0 such that W (π, t∗) > −∞.
By Lemma 1 (1), W (π, t) ≥ W (π, t∗) > −∞ for all t ≥ t∗. On the other hand, for all
t < t∗ < 0, by Lemma 4,

W (π, t) = W (π,
t

t∗
t∗) =

t

t∗
W (π, t∗) > −∞.

Hence, domWπ = R.
Next, assume that there exists no t < 0 such that W (π, t) > −∞. That is, W (π, t) =

−∞ for all t < 0. Since π ∈ Π, there exists t∗ ≥ 0 such that W (π, t∗) > −∞. If t∗ = 0, by
Lemma 1 (1), W (π, t) ≥ W (π, 0) > −∞ for all t ≥ 0. Thus, domWπ = R+. If t∗ > 0, by
Lemma 4, for all t > 0,

W (π, t) = W (π,
t

t∗
t∗) =

t

t∗
W (π, t∗) > −∞.

Moreover, since W (π, t) is upper semi-continuous in t,

W (π, 0) = lim
t↘0

W (π, t) = lim
t↘0

t

t∗
W (π, t∗) = 0 > −∞.

Hence, domWπ = R+.

By Lemmas 4 and 5, W (π, t) can be rewritten as follows: for all π ∈ Π and t > 0,

W (π, t) = W (π, t · 1) = tW (π, 1) = β+(π) · t,
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where β+(π) := W (π, 1). Similarly, for all π ∈ Π with domWπ = R and t < 0,

W (π, t) = W (π, (−t) · −1) = −tW (π,−1) = β−(π) · t,

where β−(π) := −W (π,−1). If domWπ = R+, define β−(π) = ∞. Thus, for t ̸= 0, W (π, t)
is written as

W (π, t) = β+(π)(t)
+ − β−(π)(t)

−, (16)

where for t ∈ R, (t)+ = max{0, t} and (t)− = max{0,−t} and −∞×0 = 0 with convention.
In particular, since W (δp, t) = t by Lemma 1 (4), domWδp = R, which implies

β+(δp) = β−(δp) = 1. (17)

Lemma 6 For all π ∈ Π, β+(π) is real-valued, and β+(π) ≥ 0. If domWπ = R, β−(π) is
real valued, and β−(π) ≥ 0.

Proof. Since W (π, t) is real-valued for any π ∈ Π and t > 0, β+(π) is real-valued. Next,
we show that for all π ∈ Π, β+(π) ≥ 0. Suppose contrary that there exists π ∈ Π such that
β+(π) = W (π, 1) < 0. For t > 1, W (π, t) = W (π, 1) · t < W (π, 1). This contradicts the
fact that W (π, t) is nondecreasing in t, shown in Lemma 1 (1).

Similarly, since W (π, t) is real-valued for any π ∈ Π with domWπ = R, β−(π) is real-
valued. Finally, we show that for all such π, β−(π) ≥ 0. Since ⟨φ{x0}, π⟩ = ⟨0, π⟩ ≥ −1, we
have W (π,−1) ≤ 0. Hence, β−(π) = −W (π,−1) ≥ 0.

The following lemma provides the case of t = 0.

Lemma 7 For any π ∈ Π, W (π, 0) = 0.

Proof. By Lemma 6, W (π, t) = β+(π)t for all t > 0 and π ∈ Π. Since W (π, t) is upper
semi-continuous in t,

W (π, 0) = lim
t↘0

W (π, t) = lim
t↘0

β+(π)t = 0.

Lemma 8 Π is closed and convex.

Proof. To show that Π is closed, let πn → π with πn ∈ Π. By Lemma 7, W (πn, 0) ≥ 0.
Since W : ∆(∆(Ω)) × R → R is upper semi-continuous by Lemma 1 (3), W (π, 0) ≥ 0,
which implies W (π, 0) > −∞ at π. Hence, π ∈ Π, as desired.

To show that Π is convex, take π1, π2 ∈ Π and α ∈ [0, 1]. There exist ti, i = 1, 2, such
that W (πi, ti) > −∞. Since W is quasi-concave in (π, t) by Lemma 1 (2),

W (απ1 + (1− α)π2, αt1 + (1− α)t2) ≥ min[W (π1, t1),W (π2, t2)] > −∞.

Thus, απ1 + (1− α)π2 ∈ Π.
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By Lemma 7, (16) holds for all t ∈ R. Now, we obtain that

V (φ) = max
π∈Π

[β+(π)(⟨φ, π⟩)+ − β−(π)(⟨φ, π⟩)−]. (18)

Note that V (φ) ≥ 0 is equivalent to ⟨φ, π⟩ ≥ 0 for some π ∈ Π, and V (φ) < 0 is equivalent
to ⟨φ, π⟩ < 0 for all π ∈ Π.

It follows from (18) that ≿ is represented by

U(F ) = V (φF ) = max
π∈Π

[β+(π)(⟨φF , π⟩)+ − β−(π)(⟨φF , π⟩)−]. (19)

To obtain a more explicit form of β+ and β−, we prepare the following lemma.

Lemma 9 For all π ∈ Π,

β+(π) = inf
{F∈F | buF (π)>0}

u(xF )

⟨φF , π⟩
.

Proof. SinceW (π, α) is homogeneous in α, for all π ∈ Π and α > 0,W (π, α) = αW (π, 1) =
αβ(π). By Lemma 9 of HHT, for any π ∈ Π and α ∈ R

W (π, α) = inf
φ∈B(π,α)

V (φ) = inf
φF∈B(π,α)

V (φF ) = inf
{F |⟨φF ,π⟩≥α}

u(xF ).

We will claim that for any π ∈ Π and α ∈ R,

inf
{F |⟨φF ,π⟩≥α}

u(xF ) = inf
{F |⟨φF ,π⟩=α}

u(xF ). (20)

Take any F with ⟨φF , π⟩ > α. For any λ ∈ (0, 1), let λF + (1 − λ){x0} be denoted by
λF . Since ⟨φλF , π⟩ = λ⟨φF , π⟩, for any λ sufficiently close to one, ⟨φF , π⟩ > ⟨φλF , π⟩ > α.
Moreover, since V is positively homogeneous,

u(xF ) = V (φF ) > λV (φF ) = V (λφF ) = V (φλF ) = u(xλF ).

That is, if F satisfies ⟨φF , π⟩ > α, u(xF ) is not a lower bound of {u(xF ) | ⟨φF , π⟩ ≥ α}.
Thus, (20) holds.

By the above observations,

inf
{F∈F | buF (π)>0}

u(xF )

⟨φF , π⟩
= inf

α>0

(
inf

{F |⟨φF ,π⟩=α}

u(xF )

α

)
= inf

α>0

1

α

(
inf

{F |⟨φF ,π⟩=α}
u(xF )

)
= inf

α>0

1

α
W (π, α) = β+(π),

as desired.

Lemma 10 For all π ∈ Π with domWπ = R,

β−(π) = sup
{F∈F | buF (π)<0}

u(xF )

⟨φF , π⟩
= sup

{F∈F |u(xF )<0}

u(xF )

⟨φF , π⟩
.
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Proof. Note that for all π ∈ Π with domWπ = R and α < 0, W (π, α) = −αW (π,−1) =
−αγ(π). As in Lemma 9, we have

sup
{F∈F|⟨φF ,π⟩<0}

u(xF )

⟨φF , π⟩
=sup

α>0

(
sup

{F∈F | ⟨φF ,π⟩=−α}

u(xF )

−α

)
= sup

α>0
− 1

α

(
inf

{F∈F | ⟨φF ,π⟩=−α}
u(xF )

)
=sup

α>0

(
− 1

α
W (π,−α)

)
= −W (π,−1) = β−(π).

From the functional form, β−(π) ≥ 0 for any π ∈ Π implies that V (φF ) < 0 is equivalent
to ⟨φF , π⟩ < 0 for all π ∈ Π. Hence, u(xF ) < 0 is equivalent to ⟨φF , π⟩ < 0 for all π ∈ Π.
This implies that {F ∈ F|⟨φF , π⟩ < 0, u(xF ) < 0} = {F ∈ F|u(xF ) < 0}. Moreover, if
⟨φF , π⟩ < 0, u(xF ) < 0, ⟨φG, π⟩ < 0, and u(xG) ≥ 0, then

u(xF )

⟨φF , π⟩
> 0 ≥ u(xG)

⟨φG, π⟩
.

Thus, we have that

β−(π) = sup
{F∈F|⟨φF ,π⟩<0}

u(xF )

⟨φF , π⟩
= sup

{F∈F|⟨φF ,π⟩<0,u(xF )<0}

u(xF )

⟨φF , π⟩
= sup

{F∈F|u(xF )<0}

u(xF )

⟨φF , π⟩
.

As shown in Section B.1, Π ⊂ Π(p). Let

ΠR = {π ∈ Π | domWπ = R}.

Note that β+ is a real-valued function defined on Π, while β− is a real-valued function
defined on ΠR. Note also that ΠR ̸= ∅. In fact, if ΠR = ∅, W (π, t) = −∞ for all t < 0 and
π ∈ Π. But, since V is normalized, for all t < 0,

t = V (t1) = max
π∈Π

W (π, ⟨t1, π⟩) = max
π∈Π

W (π, t) = −∞,

which is a contradiction. Moreover, ΠR is convex. Take any π, π′ ∈ ΠR and α ∈ [0, 1].
Since W (π, t) is quasi-concave in (π, t),

W (απ + (1− α)π′,−1) ≥ min[W (π,−1),W (π′,−1)] > −∞,

which implies domWαπ+(1−α)π′ = R. Thus, απ + (1− α)π′ ∈ ΠR.
Extend β+ : Π → R+ and β− : ΠR → R+ to Π(p) by

β∗
+(π) := inf

{F∈F | ⟨φF ,π⟩>0}

u(xF )

⟨φF , π⟩
(21)

and

β∗
−(π) := sup

{F∈F | ⟨φF ,π⟩<0}

u(xF )

⟨φF , π⟩
. (22)
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By Lemmas 9 and 10, β∗
+ = β+ on Π and β∗

− = β− on ΠR. Moreover, for all π ∈ Π(p) \ Π,
by definition of β∗

+,U(F ) ≥ β∗
+(π)b

u
F (π) for all F with buF (π) > 0, and for all π ∈ Π(p) \ΠR,

U(F ) ≥ β∗
−(π)b

u
F (π) for all F with buF (F ) < 0. Hence, β∗

+ on Π(p) \Π and β∗
− on Π(p) \ΠR

are in fact irrelevant for the representation. It follows from (19) that the representation
U(F ) is rewritten as

U(F ) = V (φF ) = max
π∈Π(p)

[β∗
+(π)(⟨φF , π⟩)+ − β∗

−(π)(⟨φF , π⟩)−].

Finally, we show that β∗
+ and β∗

− have the desired properties.

Lemma 11

β∗
−(π) = sup

{F∈F |u(xF )<0}

u(xF )

⟨φF , π⟩
.

Proof. The proof is the same as in Lemma 10. Since β∗
−(π) ≥ 1 > 0, the representation

implies that V (φF ) < 0 is equivalent to ⟨φF , π⟩ < 0 for all π ∈ Π(p). Hence, u(xF ) < 0
is equivalent to ⟨φF , π⟩ < 0 for all π ∈ Π. This implies that {F ∈ F|⟨φF , π⟩ < 0, u(xF ) <
0} = {F ∈ F|u(xF ) < 0}.

Lemma 12 β∗
+ is upper semi-continuous and β∗

− is lower semi-continuous.

Proof. For each fixed F with ⟨φF , π⟩ > 0, u(xF )
⟨φF ,π⟩ is continuous in π. Since the infimum

function among upper semi-continuous functions is also upper semi-continuous, β∗
+ is upper

semi-continuous in π.
Similarly, since the supremum function among lower semi-continuous functions is also

lower semi-continuous, β∗
− is lower semi-continuous in π.

Lemma 13 β∗
+ is quasi-concave and β∗

− is quasi-convex.

Proof. By (21),
1

β∗
+(π)

=
1

infF
u(xF )
⟨φF ,π⟩

= sup
F

⟨φF , π⟩
u(xF )

.

Since ⟨φF , π⟩ is linear in π,

sup
F

⟨φF , απ + (1− α)π′⟩
u(xF )

≤ α sup
F

⟨φF , π⟩
u(xF )

+ (1− α) sup
F

⟨φF , π
′⟩

u(xF )
,

that is, 1/β∗
+ is convex. Since the reciprocal of a quasi-convex function is quasi-concave,

β∗
+ is quasi-concave.3

3If f is quasi-concave, f(π′) ≥ f(π) =⇒ f(απ + (1− α)π′) ≥ f(π) for all α ∈ [0, 1]. This implies that

1

f(π′)
≤ 1

f(π)
=⇒ 1

f(απ + (1− α)π′)
≤ 1

f(π′)

for all α ∈ [0, 1]. Thus, 1/f is quasi-convex. The converse also holds.
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By (22),
1

β∗
−(π)

=
1

supF
u(xF )
⟨φF ,π⟩

= inf
F

⟨φF , π⟩
u(xF )

.

Since ⟨φF , π⟩ is linear in π,

inf
F

⟨φF , απ + (1− α)π′⟩
u(xF )

≥ α inf
F

⟨φF , π⟩
u(xF )

+ (1− α) inf
F

⟨φF , π
′⟩

u(xF )
,

that is, 1/β∗
− is concave. Since the reciprocal of a quasi-concave function is quasi-convex,

β∗
− is quasi-convex.

Lemma 14 For all π ∈ Π(p), β∗
+(π) ≤ 1 and β∗

−(π) ≥ 1.

Proof. Take any lottery x ∈ X with u(x) > 0. Then, φ{x} satisfies ⟨φ{x}, π⟩ = u(x) for all
π. By definition of β∗

+,

β∗
+(π) ≤

u(x)

⟨φ{x}, π⟩
= 1.

Take any lottery x ∈ X with u(x) < 0. By definition of β∗
−,

β∗
−(π) ≥

u(x)

⟨φ{x}, π⟩
= 1.

Lemma 15 β∗
+(δp̄) = β∗

−(δp̄) = 1

Proof. Since β∗
+(δp̄) = β+(δp̄) and β

∗
−(δp̄) = β−(δp̄), the result follows from (17).

Lemma 16 For all π, ρ ∈ Π(p), π ⊵ ρ =⇒ β∗
+(π) ≤ β∗

+(ρ) and β
∗
−(π) ≥ β∗

−(ρ).

Proof. If π ⊵ ρ, {F ∈ F | buF (ρ) > 0} ⊆ {F ∈ F | buF (π) > 0} and ⟨φF , π⟩ ≥ ⟨φF , ρ⟩. By
definition of β∗

+, we have β∗
+(π) ≤ β∗

+(ρ).
If π ⊵ ρ, it follows from definition of β∗

− that only the denominator, which is negative,
becomes greater. Hence, we obtain β∗

−(π) ≥ β∗
−(ρ).

Consequently,

U(F ) = V (φF ) = max
π∈Π(p)

[β∗
+(π)(⟨φF , π⟩)+ − β∗

−(π)(⟨φF , π⟩)−]

= max
π∈Π(p)

[β∗
+(π)(b

u
F (π))

+ − β∗
−(π)(b

u
F (π))

−]

is a homogeneous cost representation.
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B.3 Necessity

Since the homogeneous cost representation is a special case of the costly subjective learning
representation, it is enough to check Neutral Outcome Independence.

Take any F ∈ F and α ∈ (0, 1). Since bu{x0}(π) = u(x0) = 0,

U(αF + (1− α){x0})
= max

π∈Π
[β+(π)(b

u
αF+(1−α){x0}(π))

+ − β−(π)(b
u
αF+(1−α){x0}(π))

−]

= max
π∈Π

[β+(π)(αb
u
F (π) + (1− α)b{x0}(π))

+ − β−(π)(αb
u
F (π) + (1− α)b{x0}(π))

−]

= max
π∈Π

[β+(π)(αb
u
F (π))

+ − β−(π)(αb
u
F (π))

−]

= αmax
π∈Π

[β+(π)(b
u
F (π))

+ − β−(π)(b
u
F (π))

−] = αU(F ).

Take any F,G ∈ F and α ∈ (0, 1). By the above observation,

U(αF + (1− α){x0}) ≥ U(αG+ (1− α){x0})
⇐⇒ αU(F ) ≥ αU(G)

⇐⇒ U(F ) ≥ U(G),

that is, the preference U represents satisfies Neutral Outcome Independence.
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