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We explore the set of preferences defined over temporal lotteries in an infinite horizon

setting. We provide utility representations for all preferences that are both recursive and

monotone. Our results indicate that the class of monotone recursive preferences includes

Uzawa and risk-sensitive preferences, but leaves aside several of the recursive models suggested

by Epstein and Zin (1989). Our representation result is derived in great generality using

Lundberg (1982, 1985)’s work on functional equations.
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1 Introduction

Intertemporal decisions lie at the heart of many applied economic problems. It is well un-

derstood that the analyses of such problems and the related policy recommendations depend

critically on the structure of the intertemporal utility functions, and therefore on the under-

lying decision theoretic assumptions. A popular assumption, first introduced by Koopmans

(1960) in a deterministic setting, is stationarity. It implies that an agent can, at all dates,

evaluate future prospects using the same history and time-independent preference relation and

be time-consistent. In the presence of uncertainty, stationarity is most often complemented

by the assumption of recursivity, allowing one to preserve time consistency and history inde-

pendence. Recursivity is moreover extremely useful in applications, as it permits the use of
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dynamic programming methods. The assumptions of stationarity and recursivity, although

of a different nature, are so often coupled together that the single adjective “recursive” is

typically used to describe their conjunction.

The so-called recursive preferences are the object of analysis in the current paper. More

precisely, we study recursive preferences that satisfy another popular assumption, monotonic-

ity, resulting in the class of monotone recursive preferences. As is best explained in Chew

and Epstein (1990, p. 56), monotonicity (called “ordinal dominance” in their paper) roughly

“states that if two random sequences, C and C ′, are such that in every state of the world,

the deterministic consumption stream provided in C is weakly preferred to that provided in

C ′, then C should be weakly preferred to C ′.” Thus, monotonicity requires that a decision

maker would never choose an action if another available action is preferable in every state of

the world.

The additively separable expected utility model with exponential discounting, by far the

most widely used model of intertemporal choice, is a particular case of monotone recursive

preferences. This model has however been criticized for its lack of flexibility and in particular

for being unable to disentangle risk aversion from the degree of intertemporal substitution.

The search for greater flexibility has led researchers to consider either non-recursive or non-

monotone preferences. For example, Chew and Epstein (1990, p. 56) explain that “given the

inflexibility of the [intertemporal expected utility function] we are forced to choose which

of recursivity and ordinal dominance to weaken,” with non-recursive preferences explored in

Chew and Epstein (1990) and non-monotone preferences explored in Epstein and Zin (1989).

The latter article has provided a widespread alternative to the standard model of intertemporal

choice.

The current paper explores if and how flexibility can be obtained within the set of mono-

tone recursive preferences. The core of the analysis is developed in the risk setting, where

preferences are defined over temporal lotteries.1 Our main finding is that recursive preferences

are monotone if and only if they admit a recursive utility representation Ut = W (ct, I[Ut+1])

with a time aggregator W and a certainty equivalent I belonging to one of the following two

cases:2

– W (c, x) = u(c) + βx and I is translation-invariant, or

– W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant.
1Section A of the Appendix extends the analysis to a setting of subjective uncertainty.
2From the perspective of period t, the continuation utility Ut+1 may be random. A certainty equivalent I

provides a general way of computing the “expected value” of Ut+1. This expected value is then combined with
current consumption ct via the time aggregator W in order to compute Ut. Formal definitions are given in
Section 4.1.

2



We should emphasize that these restrictions are derived in great generality. In particular,

we do not assume any form of separability of ordinal preferences except the kind implied by

stationarity.3

Our results contribute to a growing literature that seeks to understand how alternative

models of intertemporal choice differ in their predictions. Notably, the specifications we

derive constrain both ordinal preferences and risk preferences. Regarding ordinal preferences,

Koopmans (1960), whose analysis was restricted to a deterministic setting, showed that any

monotone time aggregatorW generates a stationary preference relation. Here, we obtain that

only ordinal preferences that can be represented by affine time aggregators can be extended

to monotone recursive preferences once risk is introduced. Moreover, the restrictions related

to the certainty equivalent I drastically reduce the set of admissible risk preferences. A direct

consequence of our results is that the specifications suggested by the general recursive approach

of Epstein and Zin (1989) are monotone only in very specific cases.4 In particular, the most

widely used isoelastic Epstein-Zin specification is not monotone, unless it reduces to the

standard additively separable model of intertemporal choice or the elasticity of intertemporal

substitution is assumed to be equal to one.

As a corollary of our main result, we obtain novel characterizations of two models that

have featured prominently in applied work. We do so by restricting attention to preferences à

la Kreps and Porteus (1978) or alternatively by imposing additional but familiar restrictions

on the individual’s attitudes toward the timing of resolution of uncertainty. In each case,

we find that preferences admit a representation fulfilling one of the following two recursive

equations:

– Ut = u(ct)− β 1
k log(E[e−kUt+1 ]), or

– Ut = u(ct) + b(ct)E[Ut+1].

The first case corresponds to the risk-sensitive preferences of Hansen and Sargent (1995),

while the second case corresponds to the class of Uzawa (1968) preferences, axiomatized in

discrete time by Epstein (1983). With Uzawa preferences, the degree of risk aversion cannot be

modified without affecting ordinal preferences. In contrast, it is known from Chew and Epstein

(1991) that the parameter k that enters the recursion defining risk-sensitive preferences has a

direct interpretation in terms of risk aversion: the greater the value of k, the greater the risk

aversion. In particular, we reach the conclusion that risk-sensitive preferences are the only
3Ordinal preferences are preferences over deterministic consumption paths.
4Epstein and Zin (1989) consider utility representations fulfilling the recursion Ut = (cρ + β(I[Ut+1])ρ)

1
ρ .

To make the link with our paper more explicit, consider the renormalized utility function Vt =
U
ρ
t
ρ
, which

fulfills the recursion Vt = cρ

ρ
+ β
ρ

(I[(ρVt+1)
1
ρ ])ρ. It follows from our results that these preferences are monotone

if and only if the certainty equivalent µ→ 1
ρ
(I((ρµ)

1
ρ ))ρ is translation-invariant.
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Kreps-Porteus preferences that admit a separation of risk and intertemporal attitudes, while

being monotone.

The proof of our main result employs powerful techniques that may be of interest outside

the scope of this paper. Namely, we show that combining stationarity, recursivity and mono-

tonicity is only possible if the utility function satisfies a system of generalized distributivity

equations. Such equations were studied by Aczél (1966) and solved in great generality by

Lundberg (1982, 1985) with methods imported from group theory and the study of iteration

groups in particular.5 Our proof shows how to apply these methods to the study of recursive

utility. In the process, we provide a brief introduction to these methods as well as several

extensions.

The remainder of the paper is organized as follows. Section 2 introduces our choice

setting and Section 3 our axioms. Section 4 presents our main representation result and

its corollaries. Section 5 develops some intuition for our main result. In Section 6, we use

a consumption-savings example to contrast the consequences of using monotone and non-

monotone preferences. Section 7 concludes the paper and discusses several venues for future

work.

2 Choice setting

Time is discrete and indexed by t = 0, 1, . . . For the sake of simplicity, we assume that

per period consumption lies in a compact interval C = [c, c] ⊂ R where 0 < c < c. The

infinite Cartesian product C∞ represents the space of deterministic consumption streams.

To introduce uncertainty, we follow Epstein and Zin (1989) and construct a space of infinite

temporal lotteries. We should note that our account of the construction is brief and at times

heuristic; the reader is referred to Epstein and Zin (1989) and Chew and Epstein (1991) for

the formal details. To proceed, we need a few mathematical preliminaries. The Cartesian

product of topological spaces is endowed with the product topology. Given a topological space

X, the Borel σ-algebra on X is denoted B(X). The space of Borel probability measures on

X is denoted M(X) and endowed with the topology of weak convergence. As is typical, we

identify each x ∈ X with the Dirac measure on x. When convenient, we can therefore view

X as a subset of M(X).

We define the space D of temporal lotteries in two steps. First, let D0 := C∞ and for all

t ≥ 1, let Dt := C ×M(Dt−1). For each t, Dt is the set of temporal lotteries for which all
5The key results trace back to the relationship between solutions of the translation equation –i.e., bivariate

functions that solve f(f(x, y), z) = f(x, y + z)– and iteration groups. See Aczél (1966, Chap. 6). Lund-
berg (1982, 1985, 2005) proved that these results can be used to solve the so-called distributivity equation
f(g(x, y), z) = f(g(x, z), g(y, z)) as well as some more general versions thereof.
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uncertainty resolves in or before period t. The second step is to define temporal lotteries for

which the uncertainty may resolve only asymptotically. To that end, note that each temporal

lottery in Dt+1, t > 0, can be projected into a temporal lottery in Dt by assuming that all

the uncertainty that resolves in period t+ 1 resolves in period t instead. We can then define

the space D of all temporal lotteries as the projective limit of the sequence (Dt)t. The space

D serves as the choice domain in this paper. One can visualize its elements as potentially

infinite probability trees, each branch of which is a consumption stream in C∞. As a subset

of D0 ×D1 × . . ., the set D inherits the appropriate relative topology.6

It is known from Epstein and Zin (1989) that the set D is homeomorphic to C ×M(D).

Subsequently, we write (c,m) for a generic temporal lottery in D. There is clear intuition for

this homeomorphism: Each temporal lottery can be decomposed into a pair (c,m) where c ∈ C
represents initial consumption, which is certain, and m ∈M(D) represents uncertainty about

the future, that is, about the temporal lottery to be faced next period. Since we identify D

with a subset ofM(D), we can also write (c0, (c1,m)) ∈ D for a temporal lottery that consists

of two periods of deterministic consumption, c0 and c1, followed by the lottery m ∈ M(D).

More generally, for any consumption vector ct = (c0, . . . , ct−1) ∈ Ct and m ∈ M(D), the

temporal lottery (c0, (c1, (c2, (. . . , (ct−1,m))) . . .) ∈ D is one that consists of t periods of

deterministic consumption followed by the lottery m. For simplicity, we shorten the last

expression by writing (ct,m) ∈ D.

Being a space of probability measures, M(D) is a mixture space in the sense of Herstein

and Milnor (1953). We write πm⊕ (1−π)m′ ∈M(D) for the mixture of m,m′ ∈M(D) given

π ∈ [0, 1].7 The mixture of n lotteries (mi)1≤i≤n with a probability vector (πi)1≤i≤n will be

denoted
⊕n

i=1 πimi.

3 Axioms

The behavioral primitive in this paper is a binary relation � on the space D of temporal

lotteries. In this section, we introduce the main axioms we impose on this relation. The first

two are standard.

Axiom 1 (Weak order) The binary relation � is complete and transitive.

6Each set Dt is homeomorphic to a subset of D, with the homeomorphism defined as follows: for
any mt ∈ Dt, let mk, k ≤ t, be the projection of mt onto Dk and identify mt with the sequence
(m0, . . . ,mt−1,mt,mt,mt, . . .) ∈ D ⊂ ×t′Dt′ . As is usual, we do not distinguish between the set Dt and
its embedding in D.

7In particular, πm ⊕ (1 − π)m′ is the probability measure in M(D) such that [πm ⊕ (1 − π)m′](B) =
πm(B) + (1− π)m′(B) for every Borel subset B of D.
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Axiom 2 (Continuity) For all (c,m) ∈ D, the sets {(c′,m′) ∈ D|(c′,m′) � (c,m)} and

{(c′,m′) ∈ D|(c,m) � (c′,m′)} are closed in D.

The next axiom, Recursivity, ensures that ex-ante choices remain optimal when they are

evaluated ex-post.

Axiom 3 (Recursivity) For all n, t > 0, consumption vectors ct ∈ Ct, temporal lotteries

(ci,mi), (c
′
i,m

′
i) ∈ D, i = 1, 2, . . . , n, and (π1, . . . , πn) ∈ (0, 1)n such that

∑
i πi = 1, if for

every i = 1, . . . , n: (
ct, (ci,mi)

)
�
(
ct, (c′i,m

′
i)
)
,

then (
ct,

n⊕
i=1

πi(ci,mi)
)
�
(
ct,

n⊕
i=1

πi(c
′
i,m

′
i)
)
. (1)

Moreover, the latter ranking is strict if, in addition, one of the former rankings is strict.

The next two axioms, History Independence and Stationarity, are complementary assump-

tions expressing Koopmans’ (1960, p. 294) idea that “the passage of time does not have an

effect on preferences.”

Axiom 4 (History Independence) For all c, c′ ∈ C and m,m′ ∈ M(D), (c,m) � (c,m′)

if and only if (c′,m) � (c′,m′).

Axiom 5 (Stationarity) For all c0 ∈ C and (c,m), (c′,m′) ∈ D,

(c0, (c,m)) � (c0, (c
′,m′)) if and only if (c,m) � (c′,m′).

Following Chew and Epstein (1991), we refer to preferences satisfying Axioms 1 through

5 as recursive preferences.8

The next axiom requires that in the absence of uncertainty higher consumption is always

better. To state it, let ≥ denote the usual pointwise order on C∞.

Axiom 6 (Monotonicity for deterministic prospects) For all c∞, c′∞ ∈ C∞, if c∞ ≥
c′∞, then c∞ � c′∞. Moreover, the latter ranking is strict whenever c∞  c′∞.

The next and final axiom is central to the analysis of this paper.
8Unlike us, Chew and Epstein (1991) adopt M(D) as the domain of choice for their work on recursive

preferences. The difference is immaterial since any recursive preference relation on D extends uniquely to a
recursive preference relation on M(D). We should note however that if we had chosen M(D) as the domain
of choice, then History Independence and Stationarity could have been combined into a single assumption
stating that for all m,m′ ∈ M(D) and all c ∈ C, m � m′ if and only if (c,m) � (c,m′). It is for this reason
that we often use the term “stationarity” to mean the conjunction of Axioms 4 and 5.
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Axiom 7 (Monotonicity) For all n, t > 0, consumption vectors ct, c′t ∈ Ct, consumption

streams c∞i , c
′∞
i ∈ C∞, i = 1, 2, . . . , n, and (π1, . . . , πn) ∈ [0, 1]n such that

∑
i πi = 1, if for

every i = 1, . . . , n: (
ct, c∞i

)
�
(
c′t, c′∞i

)
,

then (
ct,

n⊕
i=1

πic
∞
i

)
�
(
c′t,

n⊕
i=1

πic
′∞
i

)
. (2)

Monotonicity corresponds to the notion of Ordinal Dominance in Chew and Epstein (1990).

It is noteworthy that if the consumption levels during the first t periods are identical, that

is, if ct = c′t, then the requirement in equation (2) is implied by Recursivity. Monotonicity

extends the requirement to the case when ct 6= c′t. Another important observation is that, as

in the statement of Recursivity, the consumption streams
(
ct, c∞i

)
and

(
c′t, c′∞i

)
are mixed at

the same date t on both sides of equation (2). This explains why this notion of monotonicity

allows for non-trivial attitudes toward the timing of resolution of uncertainty and, hence, for

the separation of risk and intertemporal attitudes. See Sections 4.2 and 4.3 for a detailed

discussion of this point.

Monotonicity is a consistency requirement between preferences over temporal lotteries and

preferences over deterministic consumption streams. The preference relation over D induces a

preference relation over C∞. Axiom 7 stipulates that a temporal lottery be preferred whenever

it provides a better consumption stream in every state of the world. Monotonicity is satisfied

by the standard additively separable model of intertemporal choice and more generally by

the recursive preferences of Epstein (1983), as a direct consequence of the von-Neumann

Morgenstern independence axiom. Monotonicity is also assumed in Chew and Epstein (1990).

In a setting of subjective uncertainty, the axiom is found in Epstein and Schneider (2003b),

Maccheroni, Marinacci, and Rustichini (2006), and Kochov (2015). It is noteworthy that in

those papers a stronger version of the axiom is actually used. See Axiom A.7 in Appendix A

and the discussion therein. By comparison, the models introduced in the seminal papers of

Selden (1978) and Kreps and Porteus (1978) are typically non-monotone, an aspect which is

not discussed in these papers.9

9This deviation from Monotonicity is directly related to the way the independence axiom is formalized in
Selden (1978) and Kreps and Porteus (1978). For example, Kreps and Porteus (1978) assume that (ct,m1) �
(ct,m′1) implies that (ct, πm1⊕ (1−π)m2) � (ct, πm′1⊕ (1−π)m2) for any temporal lottery m2, the ordering
being strict when (ct,m1) � (ct,m′1) and 0 < π < 1. Another possible assumption would have been to state
that (ct,m1) � (c′t,m′1) and (ct,m2) � (c′t,m′2) implies that (ct, πm1 ⊕ (1− π)m2) � (c′t, πm′1 ⊕ (1− π)m′2),
with moreover a strict ordering when (ct,m1) � (c′t,m′1) or (ct,m2) � (ct,m′2). In an atemporal setting, where
we would simply mix lotteries with no initial vector of deterministic consumption, both assumptions would be
equivalent. This is why the literature on atemporal lotteries did not have to worry about the choice between
one formulation or the other. But when mixtures are not always possible, these definitions are no longer
equivalent. The first one, chosen by Kreps and Porteus (1978), is weaker and does not imply Monotonicity,
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We should stress that Monotonicity, as well as Recursivity, implies indifference to some

forms of uncertainty, reflecting the underlying separability properties implied by these as-

sumptions. Consider for example the case of two different consumption streams (c, c∞1 ) and

(c, c∞2 ), such that (c, c∞1 ) ∼ (c, c∞2 ). Note that these consumption streams start with the

same first period consumption c. If Monotonicity or Recursivity (or both) holds, we have

(c, πc∞1 ⊕ (1−π)c∞2 ) ∼ (c, c∞1 ) for every π ∈ (0, 1). Thus, there is indifference between a risky

temporal lottery and a degenerate lottery, whatever the agent’s degree of risk aversion. This

may of course be seen as disputable: one may argue that an agent who strongly dislikes risk

should strictly prefer the deterministic consumption stream (c, c∞1 ) to the temporal lottery

(c, πc∞1 ⊕ (1− π)c∞2 ), which allows for future, per period consumption levels to be uncertain.

Aversion to such risk is however ruled out whenever Monotonicity or Recursivity is assumed.

A similar feature also appears when Monotonicity is used in a static setting with a set of

outcomes that is not totally ordered (meaning that indifference between different outcomes

is possible). For example, consider applying the expected utility theory of von Neumann and

Morgenstern to a setup where outcomes are multidimensional consumption bundles. Then,

the degree of concavity of the utility index does not reflect the aversion to inequalities in

possible outcomes, but the aversion to inequalities in the welfare levels associated with the

possible outcomes. More generally, Monotonicity implies that substituting a possible outcome

of a lottery with another outcome which is considered equally good leaves the evaluation of the

lottery unaffected. But, as soon as the set of outcomes is not totally ordered, this requirement

embeds a non-trivial separability property.10 Our axiom makes no exception in this respect.

As with any separability assumption, one may wonder whether Monotonicity is appealing

or excessively restrictive. Our aim is not to take a position on this point but to explore the

flexibility that remains when Monotonicity is introduced. The current paper contributes to

the literature by fully characterizing the class of monotone recursive preferences. We should

also mention that there has been little discussion of the implications of Monotonicity within

the type of specific intertemporal decision problems that arise in applications. This is in

spite of the fact, which is made clear by our results, that Monotonicity is a key difference

between some of the main utility specifications used in practice. For example, the problem

of saving under uncertainty has been addressed with monotone specifications in Drèze and

Modigliani (1972) and Kimball (1990), and with non-monotone preferences in Kimball and

Weil (2009), but there is no discussion on the potential impact of monotonicity breakdowns.

Section 6 provides insights into the role of Monotonicity in a standard consumption-savings

while the second one does impose Monotonicity.
10This is also the case when Monotonicity is formulated in a setting of subjective uncertainty, à la Savage,

with a set of consequences that is not totally ordered. A particular example is the setting of Anscombe and
Aumann (1963), in which the set of consequences is that of roulette lotteries.
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problem. The discussion illustrates that the restrictions imposed by Monotonicity come with

the advantage of providing unambiguous and intuitive conclusions about the role of risk

aversion.

As formulated above, Monotonicity is restricted to temporal lotteries that resolve in a

single period of time. Bommier and LeGrand (2014) show that a stronger notion of mono-

tonicity can be formulated, extending the consistency requirement to lotteries that resolve

sequentially over many periods. This stronger notion builds on the work of Segal (1990), who

provides such an extension for lotteries that resolve in two periods of time. We decided not

to pursue this direction here since the extension is quite involved and since our main results

can be obtained using only the weaker axiom. We should stress however that every preference

relation that satisfies Axioms 1 through 7 is monotone in the stronger sense of Bommier and

LeGrand (2014).

In the remainder of the paper, we refer to preferences satisfying Axioms 1 through 7 as

monotone recursive preferences.

4 Representation results

4.1 Monotone recursive preferences

Our main representation result uses the notion of a certainty equivalent. Formally, a certainty

equivalent I is a mapping from M(R+) into R+ which is continuous, increasing with respect

to first-order stochastic dominance, and such that I(x) = x for every x ∈ R+.11 Informally,

one can think of I as specifying an ‘expected value’ to each probability distribution over the

reals.

Two additional properties of certainty equivalents play a major role in the subsequent

analysis. For every x ∈ R+ and µ ∈M(R+), let µ+ x be the probability measure in M(R+)

such that [µ + x](B + x) = µ(B) for every set B ∈ B(R+). Similarly, for every λ ∈ R+

and µ ∈ M(R+), let λµ be the probability measure such that [λµ](λB) = µ(B) for every

B ∈ B(R+).12 In words, µ + x is obtained from µ by adding x to each y in µ’s support,

while λµ is obtained from µ by scaling each y in µ’s support by λ. A certainty equivalent

I is translation-invariant if I(x + µ) = x + I(µ) for all x ∈ R+ and µ ∈ M(R+). It is

scale-invariant if I(λµ) = λI(µ) for all λ ∈ R+ and µ ∈ M(R+). Translation invariance has

an obvious analogue in the notion of constant absolute risk aversion, while scale invariance is

related to the notion of constant relative risk aversion. In what follows, however, certainty

equivalents are applied to distributions of utility levels rather than consumption levels. Thus,
11Recall that we abuse notation and identify a degenerate probability distribution on x with x itself.
12As is standard, B + x denotes the set {y + x : y ∈ B}, and λB denotes the set {λy : y ∈ B}.
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the two invariance properties have no direct implications in terms of risk attitudes with respect

to consumption.

We proceed by recalling an important result from Chew and Epstein (1991). It delivers a

representation for the class of all recursive preferences. Given a function U : D → [0, 1] and

a probability measure m ∈M(D), define the image measure m ◦ U−1 ∈M([0, 1]) by letting:

[m ◦ U−1](B) := m
(
{(c′,m′) ∈ D|U(c′,m′) ∈ B}

)
, ∀B ∈ B([0, 1]). (3)

The following result holds:

Lemma 1 (Chew and Epstein, 1991) A binary relation � on D satisfies Axioms 1 through

5 if and only if it can be represented by a continuous utility function U : D → [0, 1] such that

for all (c,m) ∈ D,

U(c,m) = W (c, I(m ◦ U−1)), (4)

where I : M(R+) → R+ is a certainty equivalent and W : C × [0, 1] → [0, 1] is a continuous

function, strictly increasing in its second argument.

We call the representation in (4), which we denote as (U,W, I), a recursive representation

for �. The function W is called a time aggregator and I a certainty equivalent. Faced with

a temporal lottery (c,m), the individual first evaluates the uncertain future by assigning

the value I(m ◦ U−1) to the distribution m ◦ U−1 of continuation utilities; this value is then

combined with current consumption c viaW , so as to compute the overall utility of the lottery

(c,m).

We are ready to state the main result of our paper. It delivers a representation for the

class of monotone recursive preferences.

Proposition 1 A binary relation � on D is a monotone recursive preference relation if and

only if it admits a recursive representation (U,W, I) such that either:

1. W (c, x) = u(c) + βx and I is translation-invariant, where β ∈ (0, 1) and u : C → [0, 1]

is a continuous, strictly increasing function such that u(c) = 0 and u(c) = 1− β, or

2. W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant, where u, b : C → [0, 1]

are continuous functions such that b(C) ⊂ (0, 1), the functions u and u+ b are strictly

increasing, and u(c) = 0, u(c) = 1− b(c).

The formal proof of Proposition 1 is given in Appendix B. Some intuition is provided in

Section 5. Here, we can mention one of the main lessons of our result. The work of Chew

and Epstein (1991) facilitated the construction of recursive intertemporal utility functions
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by allowing one to select a certainty equivalent I from the large literature on atemporal,

non-expected utility preferences and integrating it into an intertemporal utility function via

the recursion in (4). However, the question arose as to which specifications of the certainty

equivalent I, and of the time aggregator W should be used, and what their implications for

intertemporal behavior would be. The literature on this matter is active and growing. In

their comments to Backus, Routledge and Zin (2005), a paper that surveys the literature on

recursive utility, both Hansen and Werning focus on this problem, with Werning in particular

emphasizing the need for more work aimed at discriminating among alternative utility specifi-

cations. Proposition 1 shows that Monotonicity greatly restricts the admissible specifications

and is thus a powerful criterion to consider.

We conclude this section with a few remarks about the uniqueness of the representa-

tions introduced in this section. First, note that utility has so far been normalized so that

U(D) = [0, 1], which provides a simple way to express Axiom 6 in terms of the representa-

tion.13 Uniqueness results can however be stated even if we drop this normalization. Doing

so leaves the definition of a recursive representation (U,W, I) essentially unchanged: the only

difference is that W becomes a function from C × U(D) into U(D). So long as the time

aggregator W is restricted to be affine, the specific representations obtained in Proposition

1 have sharp uniqueness properties.14 In the first case, these properties are familiar: the

discount factor β is unique and the instantaneous utility function u : C → R is unique up

to positive affine transformations. While the certainty equivalent I is not unique, the extent

of the non-uniqueness is well understood from the literature on ambiguity aversion, in which

translation-invariant certainty equivalents have played a prominent role. We refer the reader

to Maccheroni, Marinacci, and Rustichini (2006) and Cerreia-Vioglio, Maccheroni, Marinacci,

and Rustichini (2015). Regarding the second case, we can show that the function b : C → (0, 1)

is unique, the certainty equivalent I is unique, and the utility function U : D → R is unique

up to positive affine transformations. This result is proved in our companion paper, Bommier,

Kochov, and LeGrand (2016).
13When utility is normalized so that U(D) = [0, 1], Axiom 6 becomes equivalent to the restriction that the

functions u and u+ b be strictly increasing. If we drop the normalization, there is no simple way of expressing
Axiom 6 in terms of the representation. See Lemma 17 in the Appendix for details.

14If we do not constrain the time aggregator to be affine, then there are no straightforward uniqueness
results. It is actually known that the general recursive representation obtained in Lemma 1 is not unique:
for every (continuous) utility function U ′ : D → R, there exists a recursive representation (U ′,W ′, I ′). This
implies that the properties of the certainty equivalent I cannot be interpreted independently of the structure
assumed for the time aggregator W .
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4.2 Risk-sensitive preferences

This section considers three additional properties of recursive preferences and their represen-

tations: (i) preference for early resolution of uncertainty, (ii) betweenness of the certainty

equivalent I, and (iii) the ability to disentangle risk aversion from the degree of intertemporal

substitution. All three properties have received attention in the literature and are commonly

assumed in practice. We show that within the class of monotone recursive preferences, only

the risk-sensitive preferences of Hansen and Sargent (1995) possess all three. The result

complements the work of Strzalecki (2011) who provides a different axiomatization of these

preferences. First, we recall the definition of preference for early resolution of uncertainty

from Kreps and Porteus (1978).

Definition 1 A binary relation � on D exhibits a preference for early resolution of uncer-

tainty if for all n > 0, c0, c1 ∈ C, (mi) ∈ (M(D))n, and (πi) ∈ [0, 1]n such that
∑n

i=1 πi = 1

we have:

A := (c0,
n⊕
i=1

πi(c1,mi)) � (c0, (c1,
n⊕
i=1

πimi)) =: B. (5)

If the above ranking is one of indifference, then � exhibits indifference toward the timing of

the resolution of uncertainty.

Lotteries A and B in equation (5) deliver identical and certain consumption levels in

periods t = 0, 1. At the same time, there is uncertainty about the continuation lottery that

will prevail in period t = 2. The two lotteries differ in the way this uncertainty resolves. If

A is chosen, the uncertainty resolves gradually: in period t = 1 the agent learns mi ∈M(D);

in period t = 2 she learns the outcome of mi. If B is chosen, the same uncertainty resolves

at once, in period t = 2. The ranking in (5) indicates that early resolution of uncertainty is

beneficial.

A certainty equivalent I satisfies betweenness if for all µ1, µ2 ∈ M(R+) and π ∈ [0, 1],

I(µ1) = I(µ2) implies that I(πµ1 ⊕ (1 − π)µ2) = I(µ1), that is, if I has linear, but not

necessarily parallel, indifference curves.15 Certainty equivalents of this form have proved

useful in econometric work: they lead to first order conditions that are linear in probabilities

and, hence, can be estimated by the method of moments. Details can be found in Epstein

and Zin (2001) and Backus, Routledge and Zin (2005, p. 338). From Chew and Epstein

(1991), it is also understood that such certainty equivalents have clear implications for the

agent’s attitudes toward the timing of the resolution of uncertainty. Consider equation (5) and
15The notion of betweenness was first introduced by Chew (1983, 1989) and Dekel (1986) in the context

of atemporal choice under risk. Accordingly, certainty equivalents that satisfy betweenness are often called
Chew-Dekel certainty equivalents.
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suppose that (c1,mi) ∼ (c1,mj) for every i, j = 1, 2, . . . , n, i.e., that all continuation lotteries

mi yield the same expected utility. The benefits of early resolution are then less apparent and

it is more plausible that the agent will be indifferent between lotteries A and B in (5). If �
is a recursive preference relation with representation (U,W, I), then such indifference obtains

if and only if I satisfies betweenness.

Turning to the separation of risk and intertemporal attitudes, it is helpful to recall another

result from Chew and Epstein (1991). If �1 and �2 are two recursive preferences, then �1 is

more risk averse than �2 if and only if we can find representations (U1,W1, I1) and (U2,W2, I2)

such that U1|C∞ = U2|C∞ (same ordinal preferences), W1 = W2 (same time aggregator), and

I1 ≤ I2. The result shows that within the class of recursive preferences, a partial separation

of risk and intertemporal attitudes is achieved: one can vary the degree of risk aversion by

changing the certainty equivalent I without affecting the ranking of deterministic consump-

tion streams. The class of Uzawa preferences can be obtained by considering an affine time

aggregator and letting I = E, where E is the standard expectation operator.16 This class,

which includes the standard additively separable model of intertemporal choice, is notable for

the fact that it affords no separation of risk and intertemporal attitudes: an Uzawa prefer-

ence relation � on D is fully determined by its restriction to the space C∞ of deterministic

consumption streams.17 In practice, it is common to work with recursive preferences that

are at least as risk averse as some Uzawa preference relation. For example, this assumption

ensures that a high level of risk aversion can coexist with a high elasticity of intertemporal

substitution, which, as the empirical literature on asset returns has emphasized, is needed to

reconcile the high equity premium and the low risk-free rate. So long as the time aggregator

W is restricted to be affine (which by Proposition 1 is possible for the class of monotone

recursive preferences), the assumption is naturally expressed by the inequality I ≤ E, which

we maintain in our next result.18

Proposition 2 Consider a monotone recursive preference relation � with a representation

(U,W, I) as in Proposition 1. Suppose I satisfies betweenness and I ≤ E. Then, � exhibits

a preference for early resolution of uncertainty if and only if the representation (U,W, I) is

such that either
16For any µ ∈ M(R+), we define E[µ] =

´
R+ xµ(dx). More generally for any strictly increasing function φ,

we define φ−1E φ as: for any µ ∈M(R+),
(
φ−1E φ

)
[µ] = φ−1

(´
R+ φ(x)µ(dx)

)
.

17This interdependence is particularly sharp when W (c, x) = u(c) + βx and u is of the CRRA form. As is
well known, the coefficient of relative risk aversion is then equal to the inverse of the elasticity of intertemporal
substitution.

18When discounting is exogenous, that is, when W (c, x) = u(c) + βx, one can replace I ≤ E with the
assumption of intertemporal autocorrelation aversion. When discounting is endogenous, the behavioral impli-
cation of I ≤ E can be related to a more sophisticated notion of intertemporal hedging, that we will detail in
our companion paper, Bommier et al. (2016).
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1. Risk-sensitive case: W (c, x) = u(c) + βx and I = φ−1E φ where φ(x) = − exp(−kx),

k ∈ R+, β ∈ (0, 1) and u : C → [0, 1] is a continuous, strictly increasing function such

that u(c) = 0 and u(c) = 1− β, or

2. Uzawa case: W (c, x) = u(c) + b(c)x and I = E, where u, b : C → [0, 1] are continuous

functions such that b(C) ⊂ (0, 1), the functions u and u+ b are strictly increasing, and

u(c) = 0, u(c) = 1− b(c).

It is important to observe that of the two cases obtained in Proposition 2, only the first

affords a separation of risk and intertemporal attitudes. In the risk-sensitive case, one can vary

the parameter k so as to change risk aversion, without affecting the elasticity of intertemporal

substitution.

The proof of Proposition 2, which we provide in Appendix C, consists of two steps. First,

we use a result from Grant, Kajii, and Polak (2000) to show that the certainty equivalent

I must be of the expected utility form, that is, there is a function φ : R → R such that

I = φ−1E φ.19 The second step uses the properties of I which we derived in Proposition

1: Because I is translation-invariant, the function φ must be exponential. If I is also scale-

invariant, then φ must be linear.

The latter step can be used to deliver another result of interest. Observe first that if a

recursive preference relation � has a representation (U,W, I) where I is of the expected utility

form, then the same is true for all other representations (U ′,W ′, I ′) of �.20 Like betweenness,

having a certainty equivalent of the expected utility form is thus a restriction on behavior.

Recursive preferences that fulfill this restriction were introduced by Kreps and Porteus (1978)

and are often referred to as Kreps-Porteus preferences. It follows from the analysis so far that

if a Kreps-Porteus preference relation � is monotone, then it has a representation (U,W, I)

where W is affine, I is of the expected utility form, and I has the invariance properties

derived in Proposition 1. As in the proof of Proposition 2, we deduce that Uzawa and the

risk-sensitive preferences of Hansen and Sargent (1995) are the only Kreps-Porteus preferences

that are monotone.
19It is worth noting that the results of Grant et al. (2000) are not directly applicable due to differences

in the domain of choice: in their paper consumption takes place at a single, terminal point in time, whereas
in this paper consumption takes place in every period. As we explain in Section 5, however, if Monotonicity
holds, then the agent behaves as if she identifies each temporal lottery with a compound lottery over lifetime
utility. Intuitively, we can then apply the results in Grant et al. (2000) to the latter domain. Although the
formal proof of Proposition 2, which we provide in Appendix C, is not written this way, the reader will notice
that the proof relies on the invariance properties of I derived in Proposition 1 and therefore on Monotonicity.

20Suppose � has a representation (U, I,W ) where I = φ−1E φ. Let f : R→ R be a strictly increasing
function. Then the utility function U ′ := f ◦ U is part of the recursive representation (U ′,W ′, I ′) where
W ′(c, x) := fW (c, f−1(x)), I ′ := ψ−1Eψ and ψ := φ ◦ f−1.
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4.3 Time-dependent risk attitudes

In their seminal contribution, Kreps and Porteus (1978) briefly mention that it is possible to

make a link between the agent’s attitudes toward the timing of resolution of uncertainty and

how risk aversion changes with time distance. In this section, we provide several results that

elaborate on this point. Even though the results are rather immediate, or known from previous

contributions, they serve several purposes. First, they clarify the behavioral implications of

having a scale-invariant certainty equivalent I, which is the main difference between the two

cases obtained in Proposition 1. Second, they facilitate the discussion in Section 5.2 in which

we provide some intuition behind Proposition 1. Lastly, the results help clarify a link between

our paper and the recent work of Strzalecki (2013), where a setting of subjective uncertainty

is adopted.

We begin by introducing a definition similar to Definition 1, but where the lotteries (mi) ∈
(M(D))n are constrained to be deterministic consumption streams.

Definition 2 A binary relation � on D exhibits a degree of risk aversion that increases

with time distance if for all n > 0, c0, c1 ∈ C, (c∞i ) ∈ (C∞)n, and (πi) ∈ [0, 1]n such that∑n
i=1 πi = 1 we have:

A := (c0,
n⊕
i=1

πi(c1, c
∞
i )) � (c0, (c1,

n⊕
i=1

πic
∞
i )) =: B. (6)

If the above ranking is one of indifference, then � exhibits time-independent risk attitudes.

The temporal lotteries A and B in (6) present a simple tradeoff: either all uncertainty

is resolved in period t = 1 or in period t = 2. One can thus view the ranking in (6) as

indicative of an agent who exhibits greater risk aversion toward uncertainty resolving at the

later date. Of course, the same ranking can also be viewed as a special instance of preference

for early resolution of uncertainty. Definition 2 adopts different terminology so as to avoid

any confusion with Definition 1. As the next result shows, the two definitions are in general

not equivalent.

Proposition 3 Consider a monotone recursive preference relation � with representation

(U,W, I) as in Proposition 1. Then:

– � exhibits indifference toward the timing of resolution of uncertainty if and only if I = E;

– if I is scale-invariant, then � exhibits time-independent risk attitudes. The converse is

true if I is concave in prizes;
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– if � is a Kreps-Porteus preference relation, that is, if the certainty equivalent I is of the

expected utility form, then a degree of risk aversion that increases with time distance is

equivalent to a preference for early resolution of uncertainty.

Proof. The first point is proved in Chew and Epstein (1991). The second is proved in

Strzalecki (2013).21 As for the Kreps-Porteus case, we know that the certainty equivalent

is given by I = φ−1E φ where φ(x) = − exp(−kx) for some k ∈ R. One can easily check

that a degree of risk aversion that increases with time distance is equivalent to having k ≥ 0.

From Kreps and Porteus (1978), this is known to imply a preference for early resolution of

uncertainty.

The first part of Proposition 3 shows that a separation of risk and intertemporal attitudes

is possible only if the temporal resolution of uncertainty matters.22 The significance of this

point, which we discuss further in Section 7, has been recently emphasized by Epstein, Farhi,

and Strzalecki (2014). Another lesson from Proposition 3 is that it is possible for a monotone

recursive preference relation � to exhibit time-independent risk attitudes without exhibiting

indifference toward the timing of resolution of uncertainty. A simple example is obtained by

adopting a certainty equivalent I based on the dual approach of Yaari (1987). The final part

of Proposition 3 shows that this possibility disappears if we restrict I to be of the expected

utility form.

We can use Proposition 3 to highlight an important lesson from Strzalecki (2013) regard-

ing the domain of choice. The point is that in a setting of subjective uncertainty, such as the

one we use in Section A, there is no appropriate analogue of Definition 1. Instead, attitudes

toward the timing of uncertainty resolution are defined by rankings analogous to those in Def-

inition 2, which means that indifference toward the timing of uncertainty resolution becomes

an effectively weaker requirement. In particular, to model such indifference in a subjective

setting, one is free to choose any translation- and scale-invariant certainty equivalent I. The

parallel result in a setting of risk is provided by the second point of Proposition 3, which

shows that such certainty equivalents imply time-independent risk attitudes. Unless we have

I = E, however, they do not imply indifference toward the timing of uncertainty resolution

in the strong sense of Definition 1.
21Strzalecki (2013) proves these results when discounting is exogenous, that is, when W (c, x) = u(c) + βx.

Extending his results to the case of endogenous discounting is not difficult.
22The result in Chew and Epstein (1991) is in fact stronger: it shows that Uzawa preferences are the

only recursive preferences that exhibit indifference toward the timing of resolution of uncertainty. In partic-
ular, recursive preferences that exhibit indifference to the timing of resolution of uncertainty are necessarily
monotone.
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5 Intuition behind Proposition 1

This section provides intuition behind Proposition 1, our main result. First, we show that

any monotone recursive preference relation can be represented by two distinct recursions. The

compatibility of the two recursions restricts the time aggregatorW to be affine, after a suitable

renormalization of utility. Second, we use the structure of W to deduce the restrictions on

the certainty equivalent I obtained in Proposition 1. We should note that Monotonicity and

Stationarity play the most important role in the subsequent discussion. The other axioms are

assumed to hold, but we do not mention them explicitly.

5.1 Monotonicity and Stationarity: Two different recursive representa-
tions

Recursive representation related to Monotonicity. We explain here that Monotonicity

implies a recursive representation whose form is different from the one deduced in Lemma 1.

As there is no need to be fully rigorous in this section, we restrict the demonstration to the

case of temporal lotteries that resolve in at most two periods of time and have finite support,

that is, to temporal lotteries of the form:

(c0,
⊕
i

πi(ci,
⊕
j

πijc
∞
ij )) ∈ D2, (7)

where ci ∈ C , c∞ij ∈ C∞, πi, πij ∈ (0, 1), such that
∑

i πi = 1 and, for all i,
∑

j πij = 1.

This includes the case where all the uncertainty resolves in the first period (the index j being

irrelevant) and the case where all the uncertainty resolves in the second period (the index i

being irrelevant).

A recursive preference relation � on D induces a preference relation on C∞. Let V :

C∞ → Im(V ) ⊂ R be a continuous function representing the latter. First focus on the case

where all the uncertainty resolves in the first period, that is, on temporal lotteries of the form:

(c0,
⊕
i

πi(ci, c
∞
i )) ∈ D1. (8)

Each such temporal lottery can be associated with a lottery
⊕

i πiV (c0, ci, c
∞
i ) ∈Mf (Im(V )),

where Mf (Im(V )) is the set of finite-support lotteries with outcomes in Im(V ). More-

over, because of Monotonicity, if two temporal lotteries as in (8) induce the same lottery in

Mf (Im(V )), they have to be equally preferred. One can therefore use the preference relation

� on D to define a preference relation �1 on Mf (Im(V )).23 Let I1 : Mf (Im(V )) → Im(V )

23To be fully precise, for domain reasons, the preference relation � generates a preference relation �1 on a
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be a continuous function representing �1 such that I1(x) = x for all x ∈ Im(V ). Monotonic-

ity requires I1 to be increasing with respect to first-order stochastic dominance. Thus, in our

terminology, I1 is a certainty equivalent.

Next, consider the case where all the uncertainty resolves in the second period of time. Ev-

ery temporal lottery (c0, (ci,
⊕

j πijc
∞
ij )) can be associated with a lottery

⊕
j πijV (c0, ci, c

∞
ij ) ∈

Mf (Im(V )). As above, the preference relation � over D generates a preference relation �2

over Mf (Im(V )), which can be represented by a certainty equivalent I2. Remark that none

of our assumptions constrains �1 and �2 to be identical. The certainty equivalents I1 and I2
may therefore be different.

Turning to the general case, consider a temporal lottery as in (7). For any i, there exists

c∞i ∈ C∞ such that:

(c0, (ci,
⊕
j

πijc
∞
ij )) ∼ (c0, (ci, c

∞
i )). (9)

In terms of utility, equation (9) can be expressed as:

I2(
⊕
j

πijV (c0, ci, c
∞
ij )) = V (c0, ci, c

∞
i ). (10)

Consider another temporal lottery (c′0,
⊕

i π
′
i(c
′
i,
⊕

j π
′
ijc
′∞
ij )) as in (7) and construct c′∞i as in

(9). The following equivalences hold:

(c0,
⊕
i

πi(ci,
⊕
j

πijc
∞
ij )) � (c′0,

⊕
i

π′i(c
′
i,
⊕
j

π′ijc
′∞
ij ))

⇔(c0,
⊕
i

πi(ci, c
∞
i )) � (c′0,

⊕
i

π′i(c
′
i, c
′∞
i )) (because of Recursivity)

⇔I1(
⊕
i

πiV (c0, ci, c
∞
i )) ≥ I1(

⊕
i

π′iV (c0, c
′
i, c
′∞
i )) (by definition of I1)

⇔I1(
⊕
i

πiI2(
⊕
j

πijV (c0, ci, c
∞
ij ))) ≥ I1(

⊕
i

π′iI2(
⊕
j

π′ijV (c0, c
′
i, c
′∞
ij ))) (see eq. (10))

We thus observe that using the ex-post lifetime utility function V and the certainty equivalents

I1 and I2 in a recursive way affords a utility representation for temporal lotteries that resolve

in two periods of time.

The procedure can be extended to temporal lotteries that resolve in t periods of time, that

is, to elements of Dt. We eventually find that, given a utility representation V for preferences

on C∞, there corresponds a utility representation for preferences on Dt, which is given by the

subset ofMf (Im(V )). This preference relation �1 can however be extended to the whole domainMf (Im(V )).
The formal proof of Proposition 1 addresses these technicalities.
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endpoint V0 of the recursion:Vτ = V (c0, c1, . . . , ct, . . .) for τ = t,

Vτ = Iτ+1([Vτ+1]) for all τ < t.
(11)

In words, a temporal lottery can be associated with a compound lottery over lifetime utilities,

which is then evaluated recursively as in Segal (1990), using a sequence I1, I2, . . . of certainty

equivalents. Time-dependent risk attitudes are obtained whenever the Iτ depend on τ .

Here, it may be helpful to contrast the above recursion with what Kreps and Porteus

(1978) call the standard “pay-off vector approach” for evaluating temporal lotteries. The

latter approach consists in first computing a compound lottery over lifetime utility, and then

evaluating this lottery using the reduction of compound lottery axiom. The recursion in (11)

requires one to preserve the first step of the pay-off vector approach, but not the latter, since

the compound lottery over lifetime utility is evaluated recursively without reducing it to a

one-stage lottery.

Recursive representation related to Stationarity. While Monotonicity is related to

the recursion in (11), Stationarity requires preferences to admit a recursive representation:

Uτ = W (cτ , I[Uτ+1]), (12)

where the time aggregator W and the certainty equivalent I are independent of τ .24 In

other words, with Stationarity, a temporal lottery can be evaluated by first computing the

expected value of the continuation utilities Uτ+1 and then aggregating this value with current

consumption cτ , using a time and history invariant time aggregatorW . In a sense, aggregation

across states precedes aggregation across time, while the aggregation has to occur in the reverse

order to get Monotonicity.

Reconciling the two recursions constrains ordinal preferences. Based on the pre-

ceding discussion, the recursions in (11) and (12) may appear quite antagonistic. They are

however not incompatible: the standard model of intertemporal choice is a well-known ex-

ample when both recursions hold. Proposition 1 characterizes all preferences that can be

represented by each of the two recursions. The compatibility of the two recursions is also the

key to the proof of Proposition 1. In Appendix B, we show that combining (11) and (12)

leads to a system of generalized distributivity equations, which we solve using the work of
24This recursion is exactly the same as the recursion in (4). To simplify notation, however, we now write

Uτ+1 for the image measure mτ ◦U−1. In essence, we are identifying a random variable with its distribution.
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Lundberg (1982, 1985). After a suitable monotone transformation of utility, fulfilling these

distributivity equations restricts the time aggregator W to be affine, that is, of the form

W (c, x) = u(c) + b(c)x.25 In Section 5.2 below, we use this fact to explain why Stationarity

and Monotonicity restrict the certainty equivalents Iτ used in recursion (11). In turn, these

restrictions translate directly into restrictions on the certainty equivalent I used in recursion

(12) and in the formulation of our results.

5.2 Risk aversion, time discounting and attitudes toward the timing of
resolution of uncertainty

Consider an agent comparing temporal lotteries that provide the same consumption profile

(c0, . . . , cN−1) during the first N > 0 periods of time, but may differ thereafter. On the one

hand, with stationary preferences, the N initial periods of consumption do not matter and

the ranking has to be independent of (c0, . . . , cN−1). On the other hand, Monotonicity implies

that future risks are evaluated in terms of their impact on lifetime utility, which includes the

utility derived from the first N periods. To see how this tension can be resolved, first consider

the case of a time aggregator W (c, x) = u(c) + βx. Then, the first N periods impact lifetime

utility through an additive term,
∑N−1

i=0 βiu(ci), and a factor βN that multiplies continuation

utility. Changing the consumption levels c0, . . . , cN−1 impacts the additive term, shifting

lifetime utility by a constant. For the ranking of temporal lotteries sharing the same history

(c0, . . . , cN−1) to be independent of that history, preferences must exhibit constant absolute

risk aversion with respect to lifetime utility, that is, the certainty equivalents Iτ have to be

translation-invariant.

Next, consider an increase in N , the number of initial periods. This has two effects.

First, because of the discount factor βN , the utility risk stemming from future consumption

is scaled down. Second, the resolution of that risk is postponed. The two effects generate a

break-down of Stationarity, unless they are both separately neutralized or they cancel each

other out. The first possibility involves assuming constant relative risk aversion with respect

to lifetime utility, which neutralizes the scaling effect, and a degree of risk aversion that is

independent of time distance, which neutralizes the postponement of uncertainty resolution.

Formally, the certainty equivalents Iτ have to be scale-invariant and independent of τ . The

second possibility is to let the certainty equivalents Iτ depend on τ in a manner that offsets

the scaling effect due to time discounting. To be more precise, this amounts to using certainty
25The existence of an affine time aggregator W imposes non-trivial restrictions on ordinal preferences. It is

known that preferences that admit such a time aggregator comprise a much smaller class than the stationary
preferences of Koopmans (1960): the former exhibit a strong form of impatience, which fails generically within
the broader class. See Koopmans, Diamond, and Williamson (1964) and Epstein (1983) for details.
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equivalents Iτ that are related via the equation:

Iτ (µ) = βτI
( 1

βτ
µ
)
, for all µ ∈M(R+). (13)

Notably, the Iτ are derived by combining a certainty equivalent I (independent of τ) with an

amplification of the risk µ by the factor 1
βτ . This amplification offsets the decrease of utility

due to the discount factor βτ .

The risk-sensitive preferences of Hansen and Sargent (1995) provide one example in which

Stationarity is preserved via the “amplification mechanism” in equation (13). In this case,

the equation (13) takes on a more concrete interpretation as well. First, recall that the class

of risk-sensitive preferences is obtained by letting the certainty equivalent I in (12) take the

form I = φ−1Eφ, where φ(x) = − exp(−kx). Suppose k > 0, so that risk aversion is greater

than what one can attain using a standard expected utility specification, that is, by letting

I = E. Then, both the certainty equivalent I and the certainty equivalents Iτ are concave

in prizes. It follows that Iτ  Iτ+1. But, given equation (11), this means that risk aversion

increases with time distance. In particular, to preserve Stationarity and attain a separation

of risk and intertemporal attitudes (k > 0), one needs strict preference for early resolution of

uncertainty. Another lesson to keep in mind is that this interplay arises because one has to

counteract the effects of discounting (β < 1). We return to this observation in Section 7.

When the time aggregator is of the Uzawa kind, W (c, x) = u(c) + b(c)x, that is, when the

function b is non-constant, the contribution of the first N periods to lifetime utility is slightly

more complex, involving both an additive term
∑N−1

i=0 u(cii)Π
i−1
j=0b(cj) and a term ΠN−1

j=0 b(cj)

that multiplies continuation utility.26 For a given N , it is possible to change the consumption

levels c0, . . . , cN−1, so as to impact the additive term, without changing the multiplicative

one.27 As in the previous case, we can thus deduce that for the ranking of temporal lotter-

ies to be independent of the history (c0, . . . , cN−1) the certainty equivalents Iτ have to be

translation-invariant. More generally, changes in (c0, . . . , cN−1) will affect the multiplicative

term ΠN−1
j=0 b(cj) as well. For this new effect to be neutralized, the certainty equivalents Iτ

have to be scale-invariant. Finally, the postponement of the uncertainty associated with an

increase in N is once again countered if the certainty equivalents Iτ are independent of τ .

The other option, which involved using different Iτ with an amplification mechanism akin to

the one of equation (13), has no analogue in the present case.

Altogether, we observe that translation invariance of the certainty equivalents Iτ is always
26If W (c, x) = u(c) + b(c)x, then V (c0, c1, . . .) = u(c0) + b(c0)u(c1) + b(c0)b(c1)u(c2) + . . . The expressions

for the additive and multiplicative term follow directly from this formula.
27For example, one may consider permutations of the consumption levels during the first N periods: e.g.,

using (c1, c0, c2, . . . , cN−1) instead of (c0, c1, c2, . . . , cN−1).

21



required. Moreover, either scale invariance or a specific form of time-dependent risk attitudes,

as formalized in equation (13), are necessary for Stationarity to hold. Finally, knowing that the

time aggregator W is affine, all restrictions on the certainty equivalents Iτ translate directly

into restrictions on the certainty equivalent I used in recursion (12), which we employed in the

formulation of our results. Indeed, when the certainty equivalents Iτ are scale-invariant, one

can verify directly that Iτ = I for every τ . Thus, I inherits all the properties of the Iτ . When

the certainty equivalents Iτ are only translation-invariant and discounting is exogenous, the

relationship between the Iτ and I is given by equation (13). But then if the Iτ are translation-

invariant, so is I.

6 Monotonicity in a two-period consumption-savings problem

This section illustrates the implications of Monotonicity in the context of a standard consumption-

savings problem. One notable conclusion is that Monotonicity permits simple comparative

statics regarding the role of risk aversion on the optimal level of saving. We consider a two-

period economy. At date t = 0, the agent receives income y0 which is certain and which she

can allocate between consumption and savings. At date t = 1, one of two states, h or l, is

realized. The states occur with probabilities πh ∈ (0, 1) and πl = 1− πh, and determine both

the level of income at date t = 1, equal to yh1 or yl1, and the gross return on savings, equal to

Rh or Rl.

Throughout this section, we assume that preferences over deterministic consumption paths

are represented by the function U(c0, c1) = (cρ0 + βcρ1)
1
ρ , where 1 > ρ 6= 0 and β > 0. Risk

preferences will either be unspecified, though assumed to be monotone (for Lemma 2) or

preferences à la Epstein-Zin (for Lemma 3 and Figure 6), or risk-sensitive (for the monotone

case in Figure 6).

In the presence of uncertainty, the agent has to choose a level of savings before observing

the state of the world. We denote by c∗0 the optimal consumption at date t = 0 and by s∗ the

optimal level of savings. The budget constraints can be expressed as follows:

y0 − s∗ = c∗0 ≥ 0,

yκ1 +Rκs
∗ = c∗1,κ ≥ 0 for κ = h, l,

where c∗1,κ denotes consumption at date t = 1 if state κ occurs. We use sκ to denote the level

of savings chosen if the agent had perfect foresight, that is, if she knew that state κ would
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occur for sure. We have:

sκ =
y0 − yκ1 (βRκ)

1
ρ−1

1 +Rκ(βRκ)
1
ρ−1

for κ = h, l.

Lemma 2 (Savings with monotone preferences) Consider the savings problem described

above. If preferences are monotone, then min(sh, sl) ≤ s∗ ≤ max(sh, sl).

Proof. Assume that s∗ > max(sh, sl), the case s∗ < min(sh, sl) being completely symmetric.

Since ordinal preferences are strictly convex, choosing ŝ = max(sh, sl) provides higher utility

in both states of the world. This means that (y0− ŝ, yκ1 +Rκŝ) � (y0−s∗, yκ1 +Rκs
∗) for both

states κ = h, l, where � denotes the strict preference relation. Then, Monotonicity implies:

(y0 − ŝ, πl(yl1 +Rlŝ)⊕ πh(yh1 +Rhŝ)) � (y0 − s∗, πl(yl1 +Rls
∗)⊕ πh(yh1 +Rhs

∗)),

which contradicts the optimality of s∗.

The above result reflects the fact that with monotone preferences, an agent would never

choose a level of savings if another choice gives higher lifetime utility in both states of the

world.

The result does not extend to non-monotone preferences. Indeed, assume that preferences

can be represented by the function:

UEZ(c0, c̃1) =
(
cρ0 + β (E[c̃α1 ])

ρ
α

) 1
ρ
, (14)

where E is the standard expectation operator and α 6= 0 a parameter driving risk aversion,

with larger α indicating lower risk aversion. These preferences were one of the recursive

specifications introduced in Epstein and Zin (1989). Because they belong to the class of

Kreps-Porteus preferences as well, we know from the analysis in Section 4.2 that they are not

monotone whenever ρ 6= α. Let sEZ be the optimal level of savings for an agent with such

preferences, that is, let

sEZ = arg max
s∈(−min(

yl1
Rl
,
yh1
Rh

),y0)

UEZ(y0 − s, ỹ1 + R̃s), (15)

where ỹ1 and R̃ denote the state-contingent income and asset returns.

Lemma 3 (Savings with Epstein-Zin preferences) Consider the savings problem described

in equation (15). If ρ 6= α, there exist values of Rκ and yκ1 , κ = h, l, for which the agent

chooses a level of savings sEZ 6∈ [min(sh, sl),max(sh, sl)].
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Proof. Assume yh1 6= yl1 and Rκ = 1
β (

yκ1
y0

)1−ρ in state κ = h, l. In that case sh = sl = 0, so

that [min(sh, sl),max(sh, sl)] = {0}. However, we have

d

ds

(
logUEZ(y0 − s, ỹ1 + R̃s)

)∣∣∣
s=0

=
yρ−10

UEZ(y0 , ỹ1)

(
E[z̃1−

ρ
α ]

E[z̃]1−
ρ
α

− 1

)
, (16)

where z̃ = ỹα1 . Since ρ 6= 0 and ρ 6= α, the function x 7→ x1−
ρ
α is either strictly concave or

strictly convex. Using Jensen inequality, the derivative (16) cannot be equal to zero. Thus

sEZ 6= 0 and therefore sEZ 6∈ [min(sh, sl),max(sh, sl)]. Moreover, if the agent had perfect

foresight, choosing s = 0 would be preferred to choosing sEZ , no matter the state of the

world.

Lemma 3 shows that an agent endowed with non-monotone preferences may choose a level

of savings sEZ even though a different choice leads to higher lifetime utility in both states

of the world. To better understand the role of Monotonicity and the different conclusions of

Lemmas 2 and 3, note that the proof of Lemma 3 builds on the particular case where the

states h and l are such that, with perfect foresight, the saving decisions in both states would

be identical, that is, sl = sh. The lifetime utilities in those states are however different. An

agent, who lacks perfect foresight and has non-monotone preferences, may prefer to reduce

the difference in lifetime utilities even if this reduces lifetime utility in both states. The

saving decision sEZ then responds to uncertainty and depends on the probabilities πl and

πh. In contrast, Monotonicity implies that the willingness to reduce risk, no matter how

strong, cannot lead to a choice that reduces lifetime utility in all states of the world. In the

special case when sl = sh, this also means that the agent’s saving decision is unaffected by

the uncertainty.

Building on the two-period example in this section, we may also emphasize that, because of

the restrictions it imposes, Monotonicity affords an intuitive understanding of the role of risk

aversion and simple comparative statics. Indeed, choice under uncertainty can then be seen

as making a trade-off between state-specific utilities. If preferences are monotone and convex,

the agent’s optimal choice has to maximize a (possibly endogenous) convex combination of

ex-post lifetime utilities, just like a Pareto optimum has to maximize a convex combination of

individual utilities. Risk aversion is then reflected in the weights that appear in this convex

combination. In particular, stronger risk aversion requires that higher weights be assigned to

the “bad states.” Bommier, Chassagnon, and LeGrand, (2012) formalize this reasoning and

show that, whenever Monotonicity is assumed, simple dominance arguments make it possible

to derive general and intuitive conclusions about the role of risk aversion in many problems

of interest.
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A precautionary saving example. To illustrate the last point, consider a simpler version

of the above consumption-savings problem whereby only income is random with yh1 > yl1.

Since the asset return is the same in both states, we have c1,h > c1,l whatever the agent’s

saving decision. One can thus regard state h as the “good state” and state l as the “bad state.”

Saving choices are such that sh < sl. With monotone preferences, the optimal saving choice

has to lie in the interval (sh, sl). Moreover, as is demonstrated in Bommier, Chassagnon,

and LeGrand, (2012), an increase in risk aversion involves selecting a level of savings that

is closer to sl, the best response in the bad state. Intuitively, in the presence of income

uncertainty, saving provides an imperfect insurance device which is more intensively used

when the degree of risk aversion increases. Non-monotone preferences may deliver different

results: (i) the agent may choose to save more than she would if any of the states, including

the worst one, were to occur for sure, and (ii) the role of risk aversion may be non-monotonic.

Figure 6 illustrates the contrast between the saving patterns obtained with monotone and

non-monotone preferences.28

Figure 1: The relation between risk aversion and savings

28The graphs are built using risk-sensitive preferences, URS(c0, c̃1) = cρ0 −
β
k

log
(
E[e−kc̃

ρ
1 ]
)
, and Epstein-

Zin preferences (equation 14). We plot the optimal savings as a function of the risk aversion parameter, k or
−α. We use the following parameters: ρ = 1

2
, implying an intertemporal elasticity of substitution equal to 2,

Rl = Rh = β = 1, y0 = 100, yl1 = 100, yh1 = 125 and πh = 1 − πl = 5%. In other words, the agent has a
probability of 5% of earning a bonus equal to a quarter of the base wage in the next period. The amount of
savings sEU reported on the graphs corresponds to what is obtained with the standard additive model (i.e.
when α = ρ or when k = 0). The optimal amount of saving in the good state, sh, lies further below and is
not reported for reasons of scale.
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7 Discussion

Our contribution may provide insight into the difficult question about which preference spec-

ification to use when modeling dynamic choice. Of course, there is no simple take-home

message, as the answer may surely depend on the context. We may however stress some pros

and cons that emerge from our analysis. As we explain below, the choice of the domain is not

innocuous either.

First, the standard model of intertemporal choice, which is at the intersection of all models

we mentioned, is well-behaved in all aspects and very tractable. Its main drawback, which is

well-known, is its lack of flexibility. Risk aversion is indeed fully determined by the properties

of ordinal preferences.

Maintaining recursivity and stationarity leaves a few options to get flexibility. One is

to impose monotonicity, which leads to the preferences studied in this paper. If we restrict

the certainty equivalent to be of the expected utility form, then we arrive at the class of

risk-sensitive preferences. A particular feature of risk-sensitive preferences is that they are

not homothetic, unless the elasticity of substitution is equal to one.29 Homotheticity can be

achieved by adopting a certainty equivalent I that is both translation- and scale-invariant,

but is not of the expected utility form. Certainty equivalents based on the dual approach

of Yaari (1987) fall into this category. By Proposition 2, however, attitudes toward the

timing of uncertainty will be unstable: in some cases the agent will prefer early resolution of

uncertainty, in others late resolution. This may be deemed unappealing if one believes that

attitudes toward the timing of uncertainty are a fundamental trait of agent’s preferences, like

risk aversion.

Another option is to depart from monotonicity. The most popular specification from

the work of Epstein and Zin (1989), see equation (14), is homothetic and has a certainty

equivalent of the expected utility form. These preferences have proved to be very tractable

and have been used in a large number of studies. As we explain in Section 6, however, there

are applications in which abandoning monotonicity may result in comparative statics that are

difficult to interpret.

One can also gain flexibility, while preserving recursivity and monotonicity, by weakening

the notion of stationarity. One possibility, which maintains history independence, is to use

the recursion in (11) along with certainty equivalents Iτ that are translation-invariant but not

linked through the amplification mechanism of equation (13). The frameworks of Pye (1973)

and van der Ploeg (1993) fall into this category. One can go further and allow for history
29Homotheticity has well-known advantages. Recent contributions, however, have emphasized that departing

from homotheticity may help explain some empirical regularities such as the relationship between trade flows
and income per capita (Fieler, 2011) or between wealth and stock holdings (Wachter and Yogo, 2010).
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dependence, while preserving sufficient structure so as to maintain reasonable tractability.

A solution is to consider a time-additive function V : C∞ → R together with certainty

equivalents of the form Iτ = φ−1τ Eφτ . Though generating some history dependence, the

history can be summarized by a single variable, the stock of accumulated welfare. Economic

problems with such preferences can still be analyzed using standard dynamic programming

techniques, with the introduction of only one additional state variable.30

The last point we want to make is that the choice of domain deserves careful consider-

ation. Our findings about the relationship between risk aversion, time discounting, and the

agent’s attitudes toward the timing of resolution of uncertainty complete the initial results of

Koopmans (1960, 1965) by showing that key features of preferences become intertwined when

imposing stationarity in an infinite horizon setting. As is explained in Koopmans’ papers, the

infinite horizon setting constrains an agent with stationary preferences to exhibit a non-trivial

rate of time preference, an aspect which several authors, e.g. Ramsey (1928), considered eth-

ically indefensible. In comments that can be found in Koopmans (1965, pp. 298–300), Fisher

argues that one should rather depart from the infinite horizon setting, which was initially

introduced by Koopmans (1960, p. 287) so as “to avoid complications connected with the

advancing age and finite life span of the individual consumer,” than accept the existence of

time preferences.31 Following the same line of arguments, one might want to abandon the

infinite horizon setting, or the stationarity assumption, so as to avoid the intertwinement of

risk aversion, time preferences, and the agent’s attitudes toward the timing of uncertainty. A

possibility, while maintaining stationarity, is to replace the assumption of an infinite horizon

by that of a possibly uncertain (but always finite) time horizon. This is done in Bommier

(2013) who suggests a multiplicatively separable expected utility specification, which actually

corresponds to the risk-sensitive preferences discussed in the current paper, with β being set

to one. A simple separation between risk aversion and the elasticity of intertemporal substi-

tution is obtained, without introducing a preference for early or late resolution of uncertainty.

Interest in this approach is however restricted to cases where imposing strong asymptotic

constraints, which can be justified by the inevitability of death as in Bommier (2013) or

by the convergence to a maximal satisfaction level as in Ramsey (1928), may be considered

appealing.

30Bommier (2008) uses such preferences to study life-cycle behavior, while assuming indifference toward the
timing of the resolution of uncertainty (i.e., with functions φτ independent of τ) .

31According to Fisher, “The obvious conclusion from Koopmans’ paper, therefore, seems to me to be that
one ought to abandon the use of infinite horizons – not that one ought to abandon certain ethical notions.”
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Appendix

A Monotonicity in IID ambiguity models

In this section, we derive a result analogous to Proposition 1 in a stationary IID ambiguity

setting, similar to the one of Strzalecki (2013).32 By stationary IID ambiguity we mean (i):

restricting the analysis to cases where the passing of time has no impact on the structure of the

domain of choice; and (ii): introducing a set of assumptions implying that a decision maker

who uses, at all dates, the same history independent preference relation is time consistent.

Clearly, this is a restrictive approach, as it precludes the use of an arbitrary state space and

rules out non trivial belief updating. This framework has however proved very insightful

in several instances. The exploration of more general settings is left for further work.33

For mathematical rigor, we provide an axiomatic derivation using assumptions that parallel

Axioms 1 to 5 of the main body of the paper. This axiomatization implies a recursive utility

representation. The main contribution involves then showing that, like in the risk setting,

significant restrictions are further obtained when imposing monotonicity.

A.1 Setup

We consider a setup similar to that of Strzalecki (2013). Let S be a finite set representing

the states of the world to be realized in each period. We assume that S has at least three

elements and let Σ := 2S be the associated algebra of events. The full state space is Ω := S∞,

with a state ω ∈ Ω specifying a complete history (s1, s2, . . .).34 In each period t > 0, the

individual knows the partial history (s1, . . . , st). Such knowledge can be represented by a

filtration G = (Gt)t on Ω where G0 := {∅,Ω} and for every t > 0, Gt := Σt × {∅, S}∞. To

introduce the domain of choice, we again let C = [c, c] be the set of all possible consumption

levels. A consumption plan, or an act, is a C-valued, G-adapted stochastic process, that is, a

sequence h = (h0, h1, . . .) such that ht : Ω → C is Gt-measurable for every t. The set of all

consumption plans is denoted by H and endowed with the topology of pointwise convergence.

We consider a binary relation � on H and introduce a set of axioms similar to those of

Section 3. The axioms Weak order, Continuity, and Monotonicity for Deterministic Prospects
32The notion of IID ambiguity was first introduced in Epstein and Schneider (2003a) in the case of max-min

expected utility representation.
33An investigation of the role of Monotonicity in the subjective uncertainty of Ju and Miao (2012) can also

be found in Bommier and LeGrand (2014).
34By setting Ω = S∞ we constrain the state space to have a stationary structure (i.e., Ω = S × Ω). If

no such stationary structure were assumed, the passing of time would impact the structure of the preference
domain. This means that (independently of time consistency issues) the same preferences could not be used
at all dates. The domain of choice would simply change with time, which would require the use of different
preference relations.
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require no major modification. Below we state appropriate analogues for Axioms 3, 4, 5, and

7. Some notation is needed first. Given an act h ∈ H and state ω ∈ Ω, let h(ω) ∈ C∞ be the

deterministic consumption stream induced by h in state ω ∈ Ω, that is, h(ω) = (h0, h1(ω), . . .).

Moreover for any act h ∈ H and any s ∈ S we define the conditional act hs ∈ H by

∀ω = (s1, s2, . . .) ∈ Ω : hs(s1, s2, . . .) = h(s, s2, . . .) = (h0, h1(s, s2, . . .), h2(s, s2, . . .), . . .).

(17)

The act hs is therefore the act obtained from h when knowing that the first component of the

state of the world is equal to s ∈ S. It is noteworthy that hs(s1, s2, . . .) is independent of s1.

We can construct the continuation act hs,1 ∈ H from the conditional act hs by removing

the first period consumption. Formally, for any act h = (h0, h1, h2, . . .) ∈ H and any s ∈ S,
the continuation act hs,1 is given by

∀ω = (s1, s2, . . .) ∈ Ω : hs,1(s1, s2, . . .) = (h1(s, s2, . . .), h2(s, s2, . . .), . . .). (18)

The continuation act hs,1 can be viewed as the consumption plan implied by h starting at

date 1 (ignoring date 0 consumption) and where the information revealed at the beginning of

date 1 (i.e., s1) is equal to s.

Last, for any consumption c ∈ C and any act h ∈ H, we define the concatenated act

(c, h) ∈ H by

(c, h) : ω = (s1, s2, . . .) ∈ Ω 7→ (c, h)(ω) = (c, h(s2, . . .)) ∈ C∞. (19)

The notions of conditional, continuation and concatenated acts are related to each other.

In particular, the conditional act is the concatenation of first period consumption and the

continuation act. Formally:

h = (h0, h1, h2, . . .) ∈ H and s ∈ S ⇒ hs = (h0, h
s,1). (20)

Moreover, any concatenated act (c, h) has continuation h. In mathematical terms, for any

c ∈ C, h ∈ H and s ∈ S:
(c, h)s,1 = h. (21)

We can now state the axioms that parallel those given in the risk setting in Section 3.

Axiom A.3 For all acts h = (h0, h1, h2, . . .) and h′ = (h′0, h
′
1, h
′
2, . . .) in H such that h0 = h′0:(

∀s ∈ S, hs � h′s
)
⇒ h � h′.
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If, in addition, one of the former rankings is strict, then the latter ranking is strict as well.

Axiom A.3 can be viewed as a restricted notion of monotonicity that replicates the one of

Axiom 3. This axiom is a concise statement that embeds both a property of recursivity and

of state independence, the latter being implicit in the risk setting.35 To be precise, recursivity

alone would involve stating that for any h, h′ ∈ H and σ ∈ S such that h � h′, and hs = h′s

for all s 6= σ:

(
g ∈ H, g′ ∈ H, gσ = hσ, g′σ = h′σ and gs = g′s for all s 6= σ

)
⇒ g � g′.

Such a property of recursivity makes it possible to combine time consistency and conse-

quentialism in dynamic frameworks (see Johnsen and Donaldson, 1985). State independence

extends the requirement of having g � g′ to cases where there exists a state of the world

σ′ ∈ S (possibly different from σ) such that gσ′ = hσ, g′σ′ = h′σ and gs = g′s for all s 6= σ′.

When plugged into a dynamic framework, the state independence property translates into a

form of history independence, in the sense that preferences regarding the future have to be in-

dependent of which states realized in past periods. Many papers relax the state-independent

assumption allowing for non-trivial updating of beliefs. A prominent example is Hayashi

(2005), who provides axiomatic foundations for more general recursive preferences, in a more

complex setting that combines both objective and subjective uncertainty. As already men-

tioned, we leave for further work the exploration of the consequences of assuming Monotonicity

in such more general settings.

Axiom 4 rewrites as follows:

Axiom A.4 For all acts h = (h0, h1, h2, . . .) and h′ = (h0, h
′
1, h
′
2 . . .) in H, and h′0 ∈ C,

(h0, h1, h2, . . .) � (h0, h
′
1, h
′
2, . . .)⇔ (h′0, h1, h2, . . .) � (h′0, h

′
1, h
′
2, . . .).

Regarding stationarity, Axiom 5 becomes:

Axiom A.5 For all c ∈ C and h, h′ ∈ H,

(c, h) � (c, h′)⇔ h � h′.

This assumption basically states that the comparison of two acts that assume the same

deterministic consumption in period 0 and whose continuation acts are independent of the in-

formation revealed in the first period, can be done by comparing their respective continuation

acts (with the same preference relationship �).
35In the risk setting, state independence is readily imposed by the fact that preferences are defined over

lotteries, and not over random variables.
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To avoid confusion, we shall emphasize that our stationary assumption differs from that of

Kochov (2015). In Kochov’s paper, the information tree has an arbitrary exogenous structure,

which does not allow him to define stationarity in the same way as we do. Kochov’s station-

arity is a property of preference invariance when changing the timing of consumption, while

holding fixed the timing of resolution of uncertainty. In contradistinction, our stationarity

assumption (Axiom A.5) is a property of preference invariance when changing both the timing

of consumption and the timing of resolution of uncertainty. Indeed, for a given c ∈ C and a

given h ∈ H, the concatenated act (c, h), as defined in equation (19) is obtained by adding

one initial period consumption c and postponing the timing of resolution of uncertainty by

one period. For example, if h only depends on information revealed in the first period, then

(c, h) only depends on the information revealed in the second period. This simply aims at

reflecting that today is the day after yesterday. With respect to the mathematical formalism,

the difference between Kochov’s approach and ours lies in the way the concatenation opera-

tion is defined.36 This eventually leads to assumptions of different nature, unless the agent

exhibits indifference to the timing of uncertainty resolution.

Central to our analysis is the assumption of Monotonicity:

Axiom A.7 (Monotonicity) For any h and h′ in H:

(
h(ω) � h′(ω) for all ω ∈ Ω

)
⇒ h � h′. (22)

The above monotonicity axiom can be found in Epstein and Schneider (2003b), Mac-

cheroni, Marinacci, and Rustichini (2006), and Kochov (2015). It is important to note that

this axiom is “stronger” than the one we used in the risk setting. An exact analogue of the

risk axiom would restrict the acts h and g to depend on the uncertainty resolving in a single

period only. As the analysis in the risk setting suggests, the representation result we state in

Proposition 4 below would continue to hold even if we were to weaken Axiom A.7 accordingly.

We adopt Axiom A.7 because the axiom is standard in the literature on subjective uncertainty

and because we want to emphasize that the preferences we consider are in fact monotone in

the strong sense of Axiom A.7.37

As in the risk setting, we say that a binary relation � on H is a monotone recursive

preference relation if it satisfies Axioms 1, 2, A.3, A.4, A.5, 6, and A.7.
36In Kochov (2015) the concatenation (c, h) is defined by (c, h)(s1, s2, . . .) = (c, h(s1, s2, . . .)) which differs

from the definition introduced in equation (19).
37As already mentioned, the axiom employed in the risk setting can be strengthened so as to obtain an

analogue of Axiom A.7. The appropriate formulation is provided in Bommier and LeGrand (2014).
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A.2 Representation result

Let B0(Σ) be the set of simple, Σ-measurable simple functions from S into R+. The next

few definitions parallel those in Section 4.1. A certainty equivalent I : B0(Σ) → R+ is a

continuous, strictly increasing function such that I(x) = x for any x ∈ R+. A certainty

equivalent is translation-invariant if for all x ∈ R+ and f ∈ B0(Σ), I(x+ f) = x+ I(f). It is

scale-invariant if for all λ ∈ R+ and f ∈ B0(Σ), I(λf) = λI(f). Given a function U : H → R
and an act h ∈ H, we let U ◦ h1 denote the function s ∈ S 7→ U(hs,1). If U is a utility

function, then U ◦h1 is the state contingent profile of continuation utilities induced by the act

h in period t = 1. Letting W : C × [0, 1] → [0, 1] be a time aggregator as before, a recursive

representation for � is a tuple (U,W, I) such that the function U : H → R represents � and

satisfies the recursion:

U(h) = W (h0, I(U ◦ h1)), (23)

where: U ◦ h1 : s ∈ S 7→ U(hs,1).

It is relatively simple to show that Axioms 1, 2, A.3, A.4 and A.5 are necessary and sufficient

conditions for preferences to have a recursive representation (Lemma 19 in Appendix D). Our

contribution involves showing that further restrictions on the recursive representation appear

when assuming preference monotonicity.

Proposition 4 A binary relation � on H is a monotone recursive preference relation if and

only if it admits a recursive representation (U,W, I) such that either:

1. I is translation-invariant and W (c, x) = u(c) + βx satisfies the conditions listed in the

first case of Proposition 1, or

2. I is translation- and scale- invariant and W (c, x) = u(c) + b(c)x satisfies the conditions

listed in the second case of Proposition 1.

This proposition parallels Proposition 1 obtained in the risk setting. Its proof can be found

in Section D of the Appendix.

B Proof of Proposition 1

Necessity of the axioms is obvious. Proving sufficiency is a long task, but a good account

of the proof can be found by reading Section B.1 and the roadmap provided there. Before

getting to that section, we introduce some notational conventions. N denotes the set of natural

numbers including 0, while N+ denotes the set N \ {0}. A vector in a Euclidean space Rm is
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denoted as a tuple (x1, . . . , xm) or by using a bold faced symbol x,y, etc. The composition

of two functions f and g, when it is well defined, is denoted as fg or f ◦ g. Given n ∈ N
and a function f : X → X, fn denotes the nth-iterate of the function f . Thus, for example,

f2 stands for the function ff . In what follows, we often work with an ambient space X and

real valued functions f, f ′ that are defined on proper subsets of X. When we write f(x), it

is implicitly understood that x lies in the domain of f . Similarly, when we write f > f ′,

the expression is understood to hold for those x ∈ X for which the functions f, f ′ are both

defined.

B.1 Deriving a distributivity equation

Our first step is to show that under the axioms of Section 3 utility satisfies a distributivity

equation of the form studied Lundberg (1982).

From Lemma 1, the preference relation � has a recursive representation (U,W, I). It is

w.l.o.g. to assume that U(D) = [0, 1].38 Fix some m ∈ N+,m > 2. Let W0 := [0, 1]m and let

W1 := {(W (c, x1), . . . ,W (c, xm)) : c ∈ C, (x1, . . . , xm) ∈ W0},

W2 := {(W (c, x1), . . . ,W (c, xm)) : c ∈ C, (x1, . . . , xm) ∈ W1}.

Note that W0 ⊃ W1 ⊃ W2. Now fix a vector (π1, . . . , πm) ∈ (0, 1)m such that
∑

i πi = 1. For

every vector (x1, . . . , xm) ∈ [0, 1]m, let (π1, x1; . . . ;πm, xm) be the lottery in M([0, 1]) that

gives xk with probability πk. Define a function G0 :W0 → [0, 1] by letting

G0(x1, . . . , xm) := I((π1, x1; . . . ;πm, xm)) ∀(x1, . . . , xm) ∈ [0, 1]m. (24)

For k ∈ {1, 2}, define a function Gk :Wk → [0, 1] inductively by letting

Gk+1(W (c, x1), . . . ,W (c, xm)) := W (c,Gk(x1, . . . , xm)). (25)

The functions Gk, k ∈ {1, 2}, are well defined by Monotonicity. For every c ∈ C, let Fc denote

the function x 7→ W (c, x) from [0, 1] into [0, 1]. Each function Fc is continuous and strictly

increasing. With this notation, equation (25) becomes

Gk+1(Fc(x1), . . . , Fc(xm)) = FcGk(x1, . . . , xm)), (26)

38Lemma 1 is an immediate consequence of Theorem 3.1 in Chew and Epstein (1991). One minor difference
is that the latter paper studies preferences on M(D) while we study preferences on D. Observe however
that a recursive preference relation on D can be uniquely extended to M(D): fix some c ∈ C and for every
m,m′ ∈ M(D) let m �e m′ if (c,m) � (c,m′). By construction, �e is a recursive preference relation in the
sense of Chew and Epstein (1991). Theorem 3.1 in their paper delivers a representation for �e which is also
a recursive representation (U,W, I) for �.
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which holds for every c ∈ C, k ∈ {0, 1}, and (x1, . . . , xm) ∈ Wk. From (25), we need to derive

one more equation that plays a key role in the rest of the proof. To simplify our notation,

let β := W (c, 1). If Fc(0) > β, let c∗ be such that Fc∗(0) = β. Alternatively, if Fc(0) ≤ β,

let c∗ := c. In each case, we have F−1c [0, β] = [0, F−1c (β)] 6= ∅ for every c < c∗. For every

c < c∗, k ∈ {0, 1}, and (x1, . . . , xm) ∈ [0, F−1c (β)]m ∩Wk, we can apply F−1c to both sides of

(26) to deduce that

F−1c Gk+1(Fc(x1), . . . , Fc(xm)) = F−1c FcGk(x1, . . . , xm). (27)

Letting c = c, conclude that

F−1c Gk+1(Fc(x1), . . . , Fc(xm)) = Gk(x1, . . . , xm). (28)

Combining (27) and (28) gives

Gk(F
−1
c Fc(x1), . . . , F

−1
c Fc(xm)) = F−1c FcGk(x1, . . . , xm), (29)

which holds for all c < c∗, k ∈ {0, 1}, and (x1, . . . , xm) ∈ [0, F−1c (β)]m ∩Wk. To simplify the

exposition, let fc := F−1c Fc. With this change of notation, equation (29) becomes

Gk(fc(x1), . . . , fc(xm)) = fcGk(x1, . . . , xm). (30)

The latter is a distributivity equation of the form studied in Lundberg (1982). When such

an equation is specified, we say that fc solves the distributivity equation for Gk. When Gk is

clear from the context, we say simply that fc solves the distributivity equation.

Roadmap for the remainder of the proof. The proof of Proposition 1 exploits the three

distributivity equations obtained by setting k = 0, 1 and 2 in (30), and using (26) that relates

the solutions of these distributivity equations. The proof is long (sections B.2 to B.9), so a brief

roadmap may be helpful. In a first step (Sections B.2 and B.3), we follow Lundberg (1982)

to show that one can build a collection of functions, formally an iteration group {fα}α∈(−1,1),
such that (30) continues to hold when fc is replaced by fα for any α ∈ (−1, 1). One of

the difficulties we have to address is that the domains W1 and W2 of G1 and G2 are not

rectangles, which is a departure from Lundberg’s (1982) framework. Once the iteration group

{fα}α∈(−1,1) is constructed, we can use the associated Abel function (Lemma 6) to proceed

to a convenient utility renormalization (Section B.4), after which the renormalized certainty

equivalents Gk become translation-invariant (Lemmas 8 and 10). We eventually obtain a

pair of linear distributivity equations, (37) and (38) in Section B.6, which are solved in great
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generality in Lundberg (1985). The key here is equation (26) which constrains the solutions

of these equations to be related in a specific way. This allows us to rule out a number of the

potential solutions identified in Lundberg (1985). We are left with only two possible cases,

which we explore further in Sections B.7 and B.8, and which end up providing the two cases

listed in Proposition 1. The final part of the proof elicits the restrictions imposed by Axiom

6 and addresses some remaining technical issues.39

B.2 Constructing an iteration group

The proof requires some mathematical machinery from Lundberg (1982). First, given a proper

interval A ⊂ R, let D(A) be the set of all continuous, strictly increasing functions f whose

domain and range are intervals contained in A and whose graphs disconnect A2. Given

λ ∈ R ∪ {+∞}, a collection {fα : α ∈ (−λ, λ)} ⊂ D(A) is an iteration group on A if

fα+α
′

= fαfα
′ for all α, α′, α+ α′ ∈ (−λ, λ).40 When no confusion arises, we suppress λ and

the interval A and write {fα} for an iteration group. A few remarks about the definition of

an iteration group are in order. First, f0 is necessarily the identity function on A. Moreover,

if 1 ∈ (−λ, λ) and α is any other integer in (−λ, λ), then fα is the α-iterate of the function

f1. In fact, let f := f1. We know how to define the α-iterate of f for any integer α. One

can think of an iteration group as a way to define an α-iterate of the function f for any

real number α, while ensuring (i) that the definition is consistent with the usual definition

of an iterate for integer α, and (ii) that the different ‘iterates’, fα, fα′ , and fα+α′ , do in fact

‘iterate’. We should also point out that the index α has no meaning beyond encoding this

second property. Formally, let γ 6= 1 be any real number and for every α ∈ (−λ, λ), define

gαγ := fα. Then, {gα̃ : α̃ ∈ (−γλ, γλ)} is an iteration group on A and {gα̃} = {fα}. Thus,

{gα̃} is just a relabeling of {fα}. When we specify an iteration group {fα}, we assume that

the group is nontrivial, that is, that fα 6= f0 for at least one α 6= 0. If the group is nontrivial,

then fα 6= f0 for all α 6= 0. It should also be observed that λ < +∞ whenever A is a

bounded interval. For example, if f1(x) > x for all x ∈ A, then the graph of fn lies outside of

A×A for all n large enough, so that fn /∈ D(A). Finally, when we specify an iteration group

{fα : α ∈ (−λ, λ)} on a bounded interval A, we assume that the group is maximal, that is,

there is no other iteration group {gα : α ∈ (−λ′, λ′)} ⊂ D(A) such that λ′ > λ and gα = fα

for all α ∈ (−λ, λ).

Let (fn)n be a sequence of functions fn ∈ D(A). A function f ∈ D(A) is the closed limit

of (fn)n, which we denote as fn →L f , if the graph of f is the closed limit of the graphs
39For some parts of the proof we have to work on a smaller domain, where consumption is restricted to be

in (c, c) instead of [c, c] but we show that the representation result extends by continuity.
40When A is a proper subset of R, Lundberg (1982) calls the iteration group truncated. We have no occasion

to distinguish between truncated and untruncated groups and use the term iteration group to denote both.
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of the functions fn.41 If A is a closed interval and the graphs of fn and f are closed, then

fn →L f if and only if the graphs of fn converge to the graph of f in the Hausdorff metric.

We write fn →H f to denote the latter type of convergence. The sequence (fn)n, fn ∈ D(A),

generates the iteration group {fα} on A if for every α ∈ (−λ, λ), there exists a sequence (pn)n

of integers such that fpnn →L f
α.

We come back to the proof of the theorem. Let j be the identity function on [0, 1]. Fix

a sequence (cn)n such that cn ∈ (c, c∗) for every n and the sequence decreases monotonically

to c. Let (fcn)n be the associated sequence of functions where fcn = F−1c Fcn for every n. We

note several properties of the sequence (fcn)n. First, fcn > fcn+1 > j for every n. Second, each

function fcn has domain Domn := [0, F−1cn (β)] and range [fcn(0), 1]. It follows that the graph

of each function fcn disconnects [0, 1]2 so that fcn ∈ D([0, 1]). Another immediate implication

is that Domn →H [0, 1]. The latter implies that for every x ∈ (0, 1), there is k > 0 such that

fcn(x) is defined for all n ≥ k. The sequence (fck(x), fck+1
(x), . . .) converges to x. The next

lemma, whose proof is technical and can be skipped without loss of continuity, shows that the

convergence is in fact uniform.

Lemma 4 (uniform convergence) fcn →H j.

Proof. Let Grn denote the graph of fcn . Let E′ be a limit point of the sequence (Grn)n in

the Hausdorff metric. Let E := {(x, x) : x ∈ [0, 1]}, that is, E is the diagonal of the unit

square [0, 1]2. It is also the graph of the identity function j. For every a ∈ (0, 1) and every

n large enough, the functions fcn are defined on the interval [0, a]. Since the functions fcn
converge monotonically to the identity function, we can apply Dini’s theorem to conclude that

the convergence is uniform when the functions are restricted to the interval [0, a]. But the

uniform convergence of functions is equivalent to the Hausdorff convergence of their graphs.

We conclude that the E∩([0, a]× [0, 1])=E′∩([0, a]× [0, 1]). Since this is true for every a < 1,

the intersections of E and E′ with [0, 1)× [0, 1] coincide. Since the set E′ is closed, we know

that (1, 1) ∈ E′. Moreover, since fcn > j for all n, the set E′ ‘lie above’ E, that is, there is

no pair (1, x) ∈ [0, 1]2 such that x < 1 and (1, x) ∈ E′. We conclude that E′ = E. Since the

limit point E′ of (Grn)n was arbitrary, this concludes the proof.

The next two lemmas are key in terms of solving the distributivity equation.

Lemma 5 (constructing an iteration group) There is an iteration group {fα : α ∈ (−λ, λ)}
on (0, 1) such that λ > 1, fα > j for all α > 0, and

fαG0(x1, . . . , xm) = G0(f
α(x1), . . . , f

α(xm)) (31)

41See Aliprantis and Border(1999, p. 109) for the definition of a closed limit.
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for all (x1, . . . , xm) ∈ [0, 1]m and α ∈ (−λ, λ) for which the equation is well defined.

Proof. We know that fcn →L j, fcn 6= j for every n, and Domn →L (0, 1). Theorem 4.16

in Lundberg (1982) shows that the sequence (fcn)n generates an iteration group {fα : α ∈
(−λ, λ)} on (0, 1) such that λ > 1 and (31) holds. Using the fact that fcn > j for every n, one

can furthermore show that fα > j for all α > 0. In particular, fix some α ∈ (0, λ). Since the

iteration group is nontrivial, fα 6= j. Since (fcn)n generates the group, there is a sequence

(pn)n of integers such that fpncn →L fα. Since fcn > j for every n, we can conclude that

fpncn > j for every n and, hence, that fα ≥ j. Lemmas 4.7 and 4.8 in Lundberg (1982) show

that whenever a function f solves a distributivity equation such as the one in (31), f ≥ j,

and f 6= j, then f > j.

Lemma 6 (constructing an Abel function) There is a continuous strictly increasing func-

tion L : (0, 1) → R such that fα(x) = L−1(L(x) + α) for all x in the domain of fα and all

α ∈ (−λ, λ).

Proof. We know that fα > j for all α ∈ (0, λ). Since fα is the inverse of f−α, the latter

implies that fα < j for all α ∈ (−λ, 0). In particular, none of the functions fα, α 6= 0, has

a fixed point. It follows that the iteration group has an Abel function, that is, a continuous

function L : (0, 1) → R such that fα(x) = L−1(α + L(x)) for every α ∈ (−λ, λ) and every

x in the domain of fα. See Lundberg (1982, p. 79) for more details about Abel functions.

Since fα > j for all α > 0, the function L is strictly increasing. Since each function fα is

continuous, the function L is continuous .

Recall that each function fcn is defined in a right neighborhood of 0. It follows that

each function fα, α > 0, is defined in a right neighborhood of zero. Similarly, each function

fα, α < 1, is defined in a left neighborhood of 1. For each α > 0, let fα(0) := limx↘0 f
α(x)

and for each α < 0, let fα(1) := limx↗1 f
α(x). Assume now that the iteration group {fα}

is such that f1(0) > 0 and f−1(1) < 1; Section B.9 shows how to modify the proof if either

f1(0) = 0 or f−1(1) = 1. Under this assumption, we have fα(0) > 0 for all α > 0 and

fα(1) < 1 for all α < 0. Another implication is that L(0) := limx↘0 L(x) < −∞ and

L(1) := limx↗1 L(x) < +∞. Using the latter, we now argue that the Abel function L can

be chosen so that L(0) = 0 and L(1) = 1. First, observe that if L is an Abel function for

the iteration group {fα}, then so is the function L + l where l ∈ R is a constant. Thus, we

can choose L so that L(0) = 0. To see that L can be chosen so that L(1) = 1, observe that

λ = limα↗λ f
α(0) = L(1). Relabeling the iteration group {fα : α ∈ (−λ, λ)} so that λ = 1

implies that L(1) = 1.
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B.3 An extended distributivity equation for G1

For every c ∈ C, let Ac := [Fc(0), Fc(1)] and let Amc be the Cartesian product of m-copies

of the set Ac. Observe that W1 = ∪cAmc , i.e., the domain of G1 is the union of product sets

situated along the diagonal in [0, 1]m. Lemma 7 below shows that equation (31) continues to

hold when the function G0 is replaced with G1. One important caveat is that the equation

is only guaranteed to hold ‘locally’, that is, within each product set Amc rather than across

the entire domain W1 of G1. The proof of Lemma 7 clarifies why we can obtain only a local

analogue of Lemma 5.

Lemma 7 For every c ∈ C, (x1, . . . , xm) ∈ Amc , and α ∈ (−1, 1) such that (fα(x1), . . . , f
α(xm)) ∈

Amc , we have G1(f
α(x1), . . . , f

α(xm)) = fαG1(x1, . . . , xm).

Proof. We need to establish a preliminary property of the distributivity equation in (30). Fix

c ∈ C and let f be a function such that f > j and fG1(x1, . . . , xm) = G1(f(x1), . . . , f(xm))

for all (x1, . . . , xm) ∈ Amc such that (f(x1), . . . , f(xm)) ∈ Amc . Let p > 1 be an integer

and let (x1, . . . , xm) ∈ Amc be such that (fp(x1), . . . , f
p(xm)) ∈ Amc . We want to show that

fpG1(x1, . . . , xm) = G1(f
p(x1), . . . , f

p(xm)). Suppose first that p = 2. Then,

f2G1(x1, . . . , xm) = ffG1(x1, . . . , xm) = fG1(f(x1), . . . , f(xm)) (32)

= G1(f
2(x1), . . . , f

2(xm)), (33)

as desired. Next, fix an integer p > 2. For every integer p′ such that 0 < p′ < p, we have

(x1, . . . , xm) ≤ (fp
′
(x1), . . . , f

p′(xm)) ≤ (fp(x1), . . . , f
p(xm))

where ≤ is the pointwise order on Rm. Since Amc is a product set and the vectors (x1, . . . , xm),

(fp(x1), . . . , f
p(xm)) belong to Amc , it follows that the vector (fp

′
(x1), . . . , f

p′(xm)) belongs

to Amc . But then a chain of equalities analogous to those in (32) and (33) shows that f3 solves

the distributivity equation. By induction, so do the functions f4, f5, . . ., and fp.

We can now complete the proof of the lemma. Take some α > 0; symmetric arguments

apply when α < 0. Fix any c ∈ C. Take some (x1, . . . , xm) in the interior of Amc and α ∈ (0, λ)

such that (fα(x1), . . . , f
α(xm)) ∈ Amc . We know that there is a sequence (pn)n of integers

such that fpncn →L f
α. For n large enough, we know that (fpncn (x1), . . . , f

pn
cn (xm)) ∈ Amc . Since

(30) holds for each fcn , we know that G1(f
pn
cn (x1), . . . , f

pn
cn (xm)) = fpncn G1(x1, . . . , xm) for all

n large enough. Since fpncn →L f
α and G1 is continuous, we have G1(f

α(x1), . . . , f
α(xm)) =

fαG1(x1, . . . , xm), as desired.
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B.4 A monotone transformation of utility

Since L : [0, 1] → [0, 1] is strictly increasing, the function Ũ := LU : D → [0, 1] represents �
on D. Moreover, the function Ũ is part of a recursive representation (Ũ , W̃ , Ĩ) where

W̃ (c, x) := LW (c, L−1(x)) ∀x ∈ [0, 1], c ∈ C,

Ĩ(µ) := LI(µ ◦ L−1) ∀µ ∈M([0, 1]).

For every c ∈ C, let F̃c := LFcL
−1. For k ∈ {0, 1, 2}, let G̃k(x1, . . . , xm) := LGk(L

−1(x1), . . . , L
−1(xm)).

As before, define W̃0 := [0, 1]m and inductively for k ∈ {1, 2},

Wk := {(F̃c(x1), . . . , F̃c(xm)) : c ∈ C, (x1, . . . , xm) ∈ W̃k−1}. (34)

Observe that, by definition, the function G̃k, k ∈ {0, 1, 2}, has domain W̃k. Also, W̃0 ⊃ W̃1 ⊃
W̃2.

Lemma 8 (translation-invariance G̃0) For every (x1, . . . , xm) ∈ W̃0, α ∈ (−1, 1) such

that (α+ x1, . . . , α+ xm) ∈ W̃0, we have G̃0(α+ x1, . . . , α+ xm) = α+ G̃0(x1, . . . , xm).

Proof. Let (x1, . . . , xm) and α be as in the statement of the lemma. Let yi = L−1(xi) for

i = 1, . . . ,m. Then,

G̃0(α+ x1, . . . , α+ xm) = G̃0(α+ L(y1), . . . , α+ L(ym)) =

LG0(L
−1(α+ L(y1)), . . . , L

−1(α+ L(ym))) = LG0(f
α(y1), . . . , f

α(ym)) =

Lfα(G0(y1, . . . , ym)) = L(G0(y1, . . . , ym)) + α = L(G1(L
−1(x1), . . . , L

−1(xm))) + α =

G̃0(x1, . . . , xm) + α.

For every x1, x2 ∈ [0, 1], define

φ0(x2 − x1) := G̃0(x1, x2, x2, . . . , x2)− x1.

To see that φ0 is well defined, take x1, x2, y1, y2 ∈ [0, 1] such that x2 − x1 = y2 − y1 and let

z := (x1, x2, . . . , x2), z
′ := (y1, y2, . . . , y2) ∈ W̃0. Let α := y1 − x1 > 0. By construction,

z′ = z + α and α ∈ (−1, 1). But then G̃0(z + α) = G̃0(z) + α, which is equivalent to

G̃0(x1, x2, x2, . . . , x2)− x1 = G̃0(y1, y2, y2, . . . , y2)− y1,

showing that φ0 is well defined. Finally observe that φ0 has domain [−1, 1].
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Lemma 9 The function φ0 is continuous and strictly increasing. The function j − φ0 is

strictly decreasing.

Proof. Only the second statement requires proof. Fix some x in (−1, 1), that is, in the

interior of φ0’s domain. Then, there is some x′ ∈ [0, 1] such that for all ε > 0 small enough,

the vectors z := (x′, x′ + x, . . . , x′ + x), z + ε, and z′ := z + (0, ε, ε, . . . , ε) belong to W̃0.

Observe that z′ < z + ε. It is enough to show that φ0(x + ε) − φ0(x) − ε < 0. From the

definition of φ0 and Lemma 8, we can deduce that φ0(x+ ε)−φ0(x)− ε = G0(z
′)−G0(z+ ε),

which is less than 0 since G0 is strictly increasing.

B.5 An analogous construction for G̃1 and G̃2

For every c ∈ C, let Ãc := [F̃c(0), F̃c(1)] and let Ãmc be the Cartesian product of m-copies

of the set Ãc. The proof of the next lemma parallels that of Lemma 8 and is omitted. As

was the case with Lemmas 5 and 7, Lemma 10 is only a partial analogue of Lemma 8 in that

its conclusion holds only within each separate rectangle Ãmc , rather than within the entire

domain of G̃1.

Lemma 10 (translation-invariance for G̃1) For every c ∈ C, (x1, . . . , xm) ∈ Ãmc , and

α ∈ (−1, 1) such that (α + x1, . . . , α + xm) ∈ Ãmc , we have G̃1(α + x1, . . . , α + xm) = α +

G̃1(x1, . . . , xm).

Using the above lemma, we can define for every c ∈ C, (x1, x2, . . . , x2) ∈ Ãmc ,

φc1(x2 − x1) := G̃1(x1, x2, . . . , x2)− x1.

An analogue of Lemma 9 shows that φc1 is a continuous, strictly increasing function and that

j−φc1 is a strictly decreasing function. We omit the details. We should observe however that

if (x1, x2, . . . , x2) ∈ Ãmc , then (x2, x1, . . . , x1) ∈ Ãmc . Thus, the domain of φc1 is an interval of

the form [−ac1, ac1]. Since Ãc ⊂ [0, 1], we also know that [−ac1, ac1] ⊂ [−1, 1].

We need an analogous construction for G̃2 as well. Fix c ∈ C and let

Ãmcc := {(F̃c(x1), . . . , F̃c(xm) : (x1, . . . , xm) ∈ Ãmc }.

An analogue of Lemma 10 shows that G̃2 is translation invariant within the rectangle Ãmcc.

Hence, we can define a function φc2 such that φc2(x2 − x1) = G̃2(x1, x2, . . . , x2) − x1 for all

(x1, x2, . . . , x2) ∈ Ãmcc. Once again we omit the details. Finally, note that Ãmcc ⊂ Ãmc and so

φc2 is defined on an interval [−ac2, ac2] ⊂ [−ac1, ac1].
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B.6 Two linear distributivity equations

The functions G̃0, G̃1, G̃2, and F̃c satisfy analogues of equation (26), that is,

F̃cG̃0(x1, . . . , xm) = G̃1(F̃c(x1), . . . , F̃c(xm)), (35)

F̃cG̃1(x1, . . . , xm) = G̃2(F̃c(x1), . . . , F̃c(xm)), (36)

where the first equation holds for all c ∈ C and (x1, . . . , xm) ∈ W̃0, while the second holds

for all c ∈ C and (x1, . . . , xm) ∈ W̃1. From these equations and from the definitions of the

functions φ0, φc1, φc2, we can deduce the two following linear distributivity equations

F̃c(x1 + φ0(x2 − x1)) = F̃c(x1) + φc1(F̃c(x2)− F̃c(x1)), (37)

F̃c(x1 + φc1(x2 − x1)) = F̃c(x1) + φc2(F̃c(x2)− F̃c(x1)), (38)

where the first equation holds for all c ∈ C and x1, x2 ∈ [0, 1], while the second holds for all

c and x1, x2 such that (x1, x2, x2, . . . , x2) ∈ Ãmc . Focus on the first equation:

F̃c(x1 + φ0(x2 − x1)) = F̃c(x1) + φc1(F̃c(x2)− F̃c(x1)), (39)

which holds for all c ∈ C, x1, x2 ∈ [0, 1]. Think of (39) as a system of functional equations, one

for each c ∈ C. Equations of this form are studied in Lundberg (1985). His results, Theorem

11.1 in particular, are applicable since the functions F̃c, φ0, φc1, φc2 are strictly increasing and,

by Lemma 9, the functions j−φ0, j−φc1, j−φc2 are strictly decreasing. Also, all functions are

continuous. For any given c ∈ C, Theorem 11.1 in Lundberg (1985) shows that there are four

cases for the functions F̃c, φc1 that solve (39). As in Lundberg (1985), we enumerate those

cases: a),b),c),d). In addition, we let Ωa) be the set of all c ∈ C such that the functions F̃c, φc1
belong to case a). The sets Ωb),Ωc),Ωd) are defined analogously. The next lemma shows that

all but one of the sets ‘Ω’ is empty. Namely, the system of equations in (39) is solved by

functions that belong to the same case.

Lemma 11 C = Ωk for some k ∈ {a), b), c), d)}.

Proof. The four sets Ωa),Ωb),Ωc), and Ωd) form a partition of C. Since C is connected, it is

enough to show each of these sets is open in C. For every c ∈ C, write (ac, bc) for the interval

(F̃c(0), F̃c(1)). If Ωa) is empty, it is necessarily open. So suppose Ωa) is nonempty and fix

some c′ ∈ Ωa). Since the functions c 7→ ac and c 7→ bc are continuous, we can find ε > 0 such

that for all c′′ ∈ (c′, c′ + ε) ∩ C, we have ac′′ ∈ (ac′ , bc′) and for all c′′ ∈ (c′ − ε, c′) ∩ C, we

have bc′′ ∈ (ac′ , bc′). In other words, for all c′′ sufficiently close to c′, the intervals (ac′ , bc′)

and (ac′′ , bc′′) have a nonempty intersection. To show that Ωa) is open in C, it is enough
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to show that the neighborhood (c′ − ε, c′ + ε) ∩ C of c′ is a subset of Ωa). First, take some

c′′ ∈ (c′, c′ + ε) ∩ C. For every x1, x2 ∈ (ac′′ , bc′) = (ac′ , bc′) ∩ (ac′′ , bc′′), we know from the

definitions of φc′1 , φc
′′
1 that

φc
′
1 (x2 − x1) = G̃1(x1, x2, x2, . . . , x2) (40)

φc
′′
1 (x2 − x1) = G̃1(x1, x2, x2, . . . , x2). (41)

Note that if x1, x2 ∈ (ac′′ , bc′), then x2 − x1 ∈ (ac′′ − bc′ , bc′ − ac′′). From (40), conclude

that φc′1 , φc
′′
1 coincide on the interval (ac′′ − bc′ , bc′ − ac′′), which is a symmetric, nontrivial

neighborhood of 0. From Theorem 11.1 in Lundberg, if φ1c′ , φ
1
c′′ belong to different cases,

they cannot coincide on any nontrivial interval. We conclude that c′′ ∈ Ωa). Analogous

arguments show that (c′ − ε, c′) ∩ C ⊂ Ωa) and, hence, that Ωa) is open in C. Similarly, the

sets Ωb),Ωc),Ωd) are open in C, completing the proof of the lemma.

We now argue that either C = Ωa) or C = Ωd), that is, we can rule out cases b) and c).

To do so, fix some c ∈ C and consider the pair of equations:

F̃c(x1 + φ0(x2 − x1)) = F̃c(x1) + φc1(F̃c(x2)− F̃c(x1)), (42)

F̃c(x1 + φc1(x2 − x1)) = F̃c(x1) + φc2(F̃c(x2)− F̃c(x1)). (43)

The first important observation is that the two equations are linked by the function F̃c which

appears in both. This implies that if the solutions to one of the equations belong to a given

case, then so do the solutions to the other equation. Second observe that the function φc1

appears in both equations but in a ‘different position’ within each equation. This rules out

cases b) and c) in Lundberg (1985) since in those cases functions that appear in ‘different

positions’ cannot be the same. Suppose in particular that both equations have solutions

belonging to case b). Applied to the first equation, Theorem 11.1 in (1985) tells us that φ1c
must be piecewise linear. Applied to the second equation, the theorem tells us that φ1c is not

piecewise linear, a contradiction. An analogous argument rules out case c).

We now focus on cases a) and b) which we refer to as the affine and non-affine case

respectively.

B.7 The affine case

If all functions F̃c belong to case a), then F̃c(x) = u(c) + b(c)x for every c ∈ C and x ∈ [0, 1].

Moreover, the functions u, b : C → R are continuous and b(C) ⊂ (0, 1). If b is a constant

function, there is little left to prove since we already know that G̃0 is translation invariant.

See Section B.9 for the remaining details. Here, suppose that the function b is not constant.
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We begin with a general lemma concerning the scale invariance of a real valued function G′

defined on a convex set in a Euclidean space.

Lemma 12 Let W ′ be a convex set in Rm containing the origin and G′ be a continuous

function from W ′ into R. Suppose that for every x ∈ W ′, there is ε ∈ (0, 1) such that

G′(αx) = αG′(x) for all α ∈ (1− ε, 1]. Then, G′(αx) = αG′(x) for all x ∈ W ′ and all α > 0

such that αx ∈ W ′.

Proof. Pick x ∈ W ′. It is enough to show that G′(γx) = γG′(x) for all γ ∈ (0, 1]. We proceed

by way of contradiction. Let assume that there is γ′ ∈ (0, 1) such that G′(γx) = γG′(x) for all

γ ∈ [γ′, 1] and G′(γx) 6= γG′(x) for all γ in a left neighborhood of γ′. But we know that there

is εγ′x > 0 such that G′(αγ′x) = αG′(γ′x) for all α ∈ (1−εγ′x, 1]. Also, by the definition of γ′,

αG′(γ′x) = αγ′G′(x) and, hence, G′(αγ′x) = αγ′G′(x) for all α ∈ (1− εγ′x, 1], contradicting

the fact that G′(γx) 6= γG′(x) for all γ in some left neighborhood of γ′.

When a function G′ :W ′ → R has the property deduced in Lemma 12, we say that G′ is

scale invariant on W ′.

Lemma 13 If b : C → (0, 1) is non-constant, then G̃0 is scale invariant on W̃0.

Proof. For every c, c′ ∈ C and x in the interior of W̃0, let

y :=
u(c′)− u(c)

b(c)
+
b(c′)

b(c)
x. (44)

Observe that if c′ is sufficiently close to c, then y is close to x and hence y ∈ W̃0. Similarly,

we can insure that b(c′)
b(c) x ∈ W̃0. From now on, assume that c, c′ are chosen so that both

inclusions hold. From the definition of y, conclude that u(c) + b(c)y = u(c′) + b(c′)x. Hence,

G̃1(u(c) + b(c)y) = G̃1(u(c′) + b(c′)x). Since G̃0 and G̃1 satisfy an analogue of equation (26),

conclude that u(c) + b(c)G̃0(y) = u(c′) + b(c′)G̃0(y). Substituting the expression for y from

(44), we get

G̃0(x) =
u(c)− u(c′)

b(c′)
+
b(c)

b(c′)
G̃0

(
u(c′)− u(c)

b(c)
+
b(c′)

b(c)
x

)
. (45)

Since y ∈ W̃1 and b(c′)
b(c) x ∈ W̃1, we can apply Lemma 8 and deduce that

G̃0(x) =
b(c)

b(c′)
G̃0

(b(c′)
b(c)

x
)
.

Since b is non-constant, we can also choose c, c′ so that b(c) > b(c′). Since b is continuous

and C a connected set, we can also vary c, c′ so that b(c′)
b(c) spans an open interval of the form

(1− ε, 1]. It follows from Lemma 12 that G̃0 is scale invariant on W̃0.
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B.8 The non-affine case

If all functions F̃c belong to case d), then

F̃c(x) =
1

a
log(u(c) + b(c)eax) ∀c ∈ C, x ∈ [0, 1], (46)

where u, b : C → R are continuous functions, a ∈ (0,+∞), and b(C) ⊂ (0, 1). Let H(x) := eax

and observe that H([0, 1]) = [1, ea] and H−1(y) = 1
a log y. For every c ∈ C, let F̂c := HF̃H−1.

Each function F̂c has domain [1, ea] and, by construction, F̂c(x) = u(c)+b(c)x for every c ∈ C
and x ∈ [1, ea]. Also, let Ŵ0 := [1, ea]m and

Ŵk := {(F̂c(x1), . . . , F̂c(xm)), c ∈ C, (x1, . . . , xm) ∈ Ŵk−1}

for k ∈ {1, 2}. For k ∈ {0, 1, 2} and every (x1, . . . , xm) ∈ Ŵk, let

Ĝk(x1, . . . , xm) := HG̃k(H
−1(x1), . . . ,H

−1(x1)).

The next two lemmas focus on the function Ĝ0.

Lemma 14 The function Ĝ0 : Ŵ0 → R is scale invariant on Ŵ0.

Proof. Fix x = (x1, . . . , xm) ∈ Ŵ0 and α > 0 such that αx ∈ Ŵ0. Since xi, αxi ∈ [1, ea] for

every i, we know that H−1(xi) ∈ [0, 1] and H−1(αxi) = H−1(xi) +H−1(α) ∈ [0, 1] for every

i = 1, . . . ,m. Using Lemma 8 and the definition of Ĝ0, deduce that

Ĝ0(αx) = HG̃0

(
H−1(αx1), . . . ,H

−1(αxm)
)

= HG̃0

(
H−1(x1) +H−1(α), . . . ,H−1(xm) +H−1(α)

)
= H

[
G̃0(H

−1(x1), . . . ,H
−1(xm)) +H−1(α)

]
= αHG̃0(H

−1(x1), . . . ,H
−1(xm))

= αĜ0(x).

Lemma 15 For every x in the interior of Ŵ0, there is some δx > 0 such that Ĝ0(x + δ) =

Ĝ0(x) + δ for all δ ∈ [0, δx].

Proof. Suppose first that u is a non-constant function. By construction, the functions F̂c, Ĝ0,

and Ĝ1 satisfy an analogue of equation (35), that is,

u(c) + b(c)Ĝ0(x) = Ĝ1

(
u(c) + b(c)x

)
(47)
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for every c ∈ C and x ∈ Ŵ0. For every c, c′ ∈ C and every x in the interior of Ŵ0, let

y :=
u(c′)− u(c)

b(c)
+
b(c′)

b(c)
x.

Using (47), deduce that

Ĝ0(x) =
u(c)− u(c′)

b(c′)
+
b(c)

b(c′)
Ĝ0

(
u(c′)− u(c)

b(c)
+
b(c′)

b(c)
x

)
. (48)

If c, c′ are close to one another, then b(c)
b(c′)y,y ∈ Ŵ0. From Lemma 14, we can conclude that

b(c)
b(c′)Ĝ0(y) = Ĝ0(

b(c)
b(c′)y). Then, (48) becomes

Ĝ0(x) =
u(c)− u(c′)

b(c′)
+ Ĝ0

(
u(c′)− u(c)

b(c′)
+ x

)
. (49)

Summarizing the arguments so far, we can insure that (49) holds for all x in the interior of

Ŵ0, all c ∈ C, and all c′ in some neighborhood Ox,c of c. Since u : C → R is non-constant,

we can choose c such that u is non-constant in some right neighborhood of c. But then (49)

implies that Ĝ0(x) = −δ + Ĝ0(δ + x) for all x in the interior of Ŵ0 and all δ > 0 less than

some δx > 0, as we wanted to prove.

Finally suppose that u is a constant function. The functions F̂c, Ĝ0, Ĝ1, and Ĝ2 satisfy

equations analogous to equations (35) and (36). Deduce that

u(c) + b(c)u(c) + b(c)b(c)Ĝ0(x) = Ĝ2

(
u(c) + b(c)u(c) + b(c)b(c)x

)
(50)

for every c ∈ C and x ∈ Ŵ0. For every c ∈ C, let v(c) := u(c)(1 + b(c)) and γ(c) := b(c)b(c).

Observe that if u : C → X is a constant function, then b : C → R is necessarily non-constant.

Otherwise, � fails to be strictly increasing in the pointwise order on C∞. Conclude that v is

necessarily a non-constant function. Then, (50) becomes

v(c) + γ(c)Ĝ0(x) = Ĝ2

(
v(c) + γ(c)x

)
, (51)

which holds for every c ∈ C,x ∈ Ŵ0. But this equation is an exact analogue of equation (47),

with the function v non-constant. Hence, the proof can be completed in an identical manner.

The next lemma shows that the local property obtained in Lemma (15) ‘integrates’ into

a global property. The proof is analogous to that of Lemma 12 and is omitted.

Lemma 16 For every x ∈ Ŵ0 and every δ ∈ R such that x + δ ∈ Ŵ0, we have Ĝ0(x + δ) =

Ĝ0(x) + δ.
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B.9 Concluding the proof of Proposition 1

The preceding arguments show that is always possible to renormalize the utility representation

so as to have an affine time aggregator and a renormalized certainty equivalent (G̃0 in the

affine case and Ĝ0 in the non-affine case) which is translation invariant (Lemmas 8 and

16). Moreover this renormalized certainly equivalent has to be scale invariant in the case

of endogenous discounting (Lemmas 13 and 14). Recall from (24) that G0 was defined by

fixing m > 1 and a probability vector (π1, . . . , πm) and projecting I onto [0, 1]m. Since m and

(π1, . . . , πm) were arbitrary, we obtain that the recursive representation (U,W, I) of � can be

renormalized so that:

– W (c, x) = u(c) + βx and I is translation invariant on Mf (U)

– W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant on Mf (U),

where U := U(D) andMf (U) is the set of simple lotteries with prizes drawn from the interval

U . In the first case, u : C → R is continuous and β ∈ (0, 1). In the second, the functions

u, b : C → R are continuous and b(C) ⊂ (0, 1). Since Mf (U) is dense in M(U) and the

certainty equivalent I : M(U)→ U is continuous, we know that if I is translation-invariant on

Mf (U), then I is also translation-invariant on M(U). An identical argument holds for scale

invariance. It remains to show that in the second case the functions u, u + b : C → R are

strictly increasing whenever utility is normalized so that U = [0, 1]. To that end, say that a

preference relation � on C∞ has an Uzawa representation (u, b, U) if it is represented by the

utility function

U(c0, c1, . . .) = u(c0) + b(c0)u(c1) + b(c0)b(c1)u(c2) + . . .

= u(c0) + b(c0)U(c1, c2, . . .),

where u, b : C → R are continuous functions and b(C) ⊂ (0, 1).

Lemma 17 Suppose a preference relation � on C∞ has an Uzawa representation (u, b, U)

normalized so that U(C∞) = [0, 1]. The preference relation � is strictly increasing in the

pointwise order on C∞ if and only if the functions u, u+ b : C → R are strictly increasing.

Proof. Suppose first that U is strictly increasing in the pointwise order on C∞. Since U is

normalized so that U(C∞) = [0, 1], we have U(c, c, c, . . .) = u(c) and U(c, c, c, . . .) = u(c)+b(c)

for every c ∈ C. Thus, the functions u, u + b : C → R are strictly increasing. Conversely,
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suppose that

u(c′) > u(c)

u(c′) + b(c′) > u(c) + b(c)

for all c, c′ ∈ C such that c′ > c. Fix x ∈ [0, 1]. After multiplying the first inequality by

(1− x) and the second by x, and adding the resulting inequalities, we obtain

u(c′) + b(c′)x > u(c) + b(c)x. (52)

We conclude that U(c′, c1, c2, . . .) > U(c, c1, c2, . . .) for all c′ > c and (c1, c2, . . .) ∈ C∞ .

Since U is recursive and continuous, a standard backward-induction argument shows that U

is strictly increasing on C∞.

Lemma 17 completes the proof of Proposition 1 provided that the iteration group {fα}
obtained in Lemma 5 is such that f1(0) > 0 and f−1(1) < 1. This meant that the Abel

function L : (0, 1)→ R is bounded, which allowed us to extend L continuously from (0, 1) to

[0, 1]. If either f1(0) = 0 or f−1(1) = 1, then the Abel function L : (0, 1) → R is no longer

bounded and cannot be continuously extended to [0, 1]. To see how this affects the preceding

proof, note that we started with a utility function U : D → [0, 1] and then obtained the desired

representations by looking at the functions LU or HLU , depending on whether we were in

the affine or non-affine case. If L is unbounded on (0, 1) however, the functions LU or HLU

are not well defined on the entire domain D: we have to exclude the best and worst temporal

lotteries in D, namely, the deterministic consumption streams (c, c, . . .) and (c, c, . . .). In

particular, let D◦ ⊂ D be the subset of all temporal lotteries whose consumption levels are

drawn from the open interval C◦ := (c, c). Following the preceding arguments, we can then

obtain the desired representations on D◦. It remains to show that these representations can

be extended from D◦ to the entire domain D. The only nontrivial part in this argument is

to show that an Uzawa representation on (C◦)∞ can be extended to an Uzawa representation

on C∞. The next lemma provides the details, thus completing the proof of Proposition 1.

Lemma 18 If � is continuous on C∞ and has an Uzawa representation on (C◦)∞, then �
has an Uzawa representation on the entire domain C∞.

Proof. Let (u, b, U) be the Uzawa representation on (C◦)∞. In particular, note that

u, b are functions on C◦ and U is a function on (C◦)∞. First we are going to show that

limc↗c U(c, c, . . .) < +∞. If limc↗c U(c, c, . . .) = +∞, then we can find a sequence (cn)n

such that cn ∈ C◦ and βn(c′)U(cn, cn, . . .) ≥ 1 for every n. Fix some c′, c′′ ∈ C◦ such

that U(c′, c′, . . .) < U(c′′, c′′, . . .) < U(c′, c′, . . .) + 1
2 and consider the consumption streams
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d1 := (c′, c1, c1, . . .), d2 := (c′, c′, c2, c2, . . .), and so on. Since the sequence (dn)n converges

pointwise to (c′, c′, . . .) and � is continuous in the product topology on C∞, we know that

(c′′, c′′, . . .) � dn for all n large enough. But for every n,

U(dn) = U(c′, c′, . . .)(1− b(c′)n) + b(c′)nU(cn, cn, . . .) ≥ U(c′, c′, . . .)(1− b(c′)n) + 1.

Hence, U(dn) > U(c′, c′, . . .) + 1
2 > U(c′′, c′′, . . .) for all n large enough, a contradiction.

Next we are going to show that limc↗c b(c) < 1. The proof is once again by contradiction.

Let (cn)n be a sequence such that cn ↗ c, b(cn) ↗ 1, and cn ∈ C◦ for every n. Fix some

c, c′ ∈ C◦ such that (c, c, c, . . .) � (c′, c, c, . . .) � (c, c, . . .). Since � is continuous, we know

that (cn, c, c, . . .) � (c′, c, c, . . .) for all n large enough. Also,

U(cn, c, c, . . .) = (1− b(cn))U(cn, cn, . . .) + b(cn)U(c, c, . . .) ∀n.

Since limn U(cn, cn, . . .) <∞ and b(cn)↗ 1, it follows that limn U(cn, c, c, . . .) = U(c, c, . . .).

But then U(cn, c, c, . . .) < U(c′, c, c, . . .) for all n large enough, contradicting the fact that

U represents � on (C◦)∞. Analogous arguments show that limc↘c U(c, c, . . .) > −∞ and

limc↘c b(c) > 0. Since u(c) = (1 − b(c))−1U(c, c, . . .) for every c ∈ C0 and the function U is

bounded, we can conclude that u : C◦ → R is bounded. By taking limits, we can extend the

functions u, b : C◦ → R from C◦ to C. Let (u′.b′, U ′) be the ensuing Uzawa representation on

C∞. By construction U ′ agrees with U on (C◦)∞ and hence represents � on (C◦)∞. Since

U ′ is the continuous extension of U from (C◦)∞ to C∞, the function U ′ represents � on C∞

as well.

C Proof of Proposition 2

The first step is to show that I : M([0, 1]) → [0, 1] is convex in probabilities, i.e., that

πI(µ1) + (1 − π)I(µ2) ≥ I(πµ1 ⊕ (1 − π)µ2) for every π ∈ [0, 1], µ1, µ2 ∈ M([0, 1]). The

arguments are based on Lemma 1 in Grant, Kajii and Polak (2000), with several adjustments

arising from the fact that we employ a different choice setting. Fix µ1, µ2 ∈M([0, 1]) and let

m1,m2 ∈ M(D) be such that µ1 = m1 ◦ U−1 and µ2 = m2 ◦ U−1. From preference for early

resolution, we know that for all c0, c1 ∈ C and π ∈ [0, 1]

(c0, π(c1,m1)⊕ (1− π)(c1,m2)) � (c0(c1, πm1 ⊕ (1− π)m2)). (53)

Suppose � has a representation with a fixed discount factor β ∈ (0, 1) and a translation-

invariant certainty equivalent I. Identical arguments apply when the discounting is endoge-
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nous. From (53), deduce that

u(c0)+βI

(
π[u(c1)+βI(µ1)]⊕(1−π)[u(c1)+βI(µ2)]

)
≥ u(c0)+βu(c1)+β2I(πµ1⊕(1−π)µ2).

Using the fact that I is translation-invariant and canceling terms, we obtain:

I
(
π[βI(µ1)]⊕ (1− π)[βI(µ2)]

)
≥ βI(πµ1 ⊕ (1− π)µ2).

Since I ≤ E, we also know that

πβI(µ1) + (1− π)βI(µ2) ≥ I
(
π[βI(µ1)]⊕ (1− π)[βI(µ2)]

)
.

Combining the last two inequalities shows that I is convex in probabilities. Since I satisfies

betweenness, Lemma 2 in Grant, Kajii and Polak (2000) shows that I is of the expected utility

form, that is, there is a function φ : [0, 1] → [0, 1] such that I(µ) = φ−1Eµφ. Since I ≤ E,

φ is concave. Since I is translation-invariant, φ is either exponential (of the CARA form) or

linear. If I is also scale-invariant, then φ is linear.

D Proof of Proposition 4

We first establish a result similar to Lemma 1, after which the proof of Proposition 1 can be

almost readily applied.

Lemma 19 A binary relation � on H admits a recursive representation (U,W, I) (as defined

in equation 23) if and only if it fulfills Axioms 1, 2, A.3, A.4 and A.5.

Proof. Let us start with the necessity of the axioms. It is obvious that representation (23)

implies that Axioms 1, 2 and A.4 hold. Remark that (21) and (23) imply that for any c ∈ C
and h ∈ H, we have

U(c, h) = W (c, U(h)),

which proves that Axiom A.5 holds. Last, for Axiom A.3, let consider two acts h = (h0, h1, . . .)

and h′ = (h0, h
′
1, . . .) such that U(hs) ≥ U(h′s) for all s. Using (20) we get U(hs) =

W (h0, U(hs,1)) and U(h′s) = W (h0, U(h′s,1)), so that the inequality U(hs) ≥ U(h′s) for

all s provides U(hs,1) ≥ U(h′s,1) for all s. Thus, we deduce that U(h) ≥ U(h′), which implies

that Axiom A.3 holds and concludes the necessity part.

We now demonstrate that the axioms are sufficient. Let us denote by He the set of

consumption plans h = (h0, h1, . . .) whose consumption h0 at date 0 is not constrained to

be deterministic, that is the set C−valued and G−adapted processes. States will be denoted
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(s0, s1, . . .) to emphasize the difference with our setting, where h0 was supposed to be constant

(while here it may depend on s0). Let c0 ∈ C be a given constant consumption level. We

define a binary relation �e on the set He as follows:

∀(h, h′) ∈ H2
e , h �e h′ ⇔ (c0, h) � (c0, h

′),

where (c, h) is defined similarly to equation (19). Because of Axiom A.4, the binary relation

�e is independent of c0 and defines a preference relation on He. Moreover, for any c ∈ C and

h ∈ H, Axioms A.4 and A.5 imply that (c, h) �e (c, h′) ⇔ h �e h′. The preference relation

�e fulfills therefore a property similar to the one defined in Axiom A.5. By continuity of �
and thus of �e, there exists a continuous utility representation, whose corresponding utility

function is denoted U .

For any c ∈ C, the functions h ∈ He 7→ U(h) and h ∈ He 7→ U((c, h)) both represent the

preference relation �e. Therefore, there exists a continuous function W , which is increasing

in its second argument, such that

∀h ∈ He, U((c, h)) = W (c, U(h)).

For any h in He and any s ∈ S on can define a conditional act hs ∈ H similarly to equation

(17). Consider now two acts h and h′ in He such that hs �e h′s for all s. By definition

of �e, we have (c0, h
s) � (c0, h

′s) for all s. Axiom A.3 implies then that h �e h′. The

set He being isomorph to HS , we obtain that for any h ∈ He, U(h) = I(U ◦ h) where

U ◦ h : S → Im(U) = [0, 1] is defined by (U ◦ h)(s) = U(hs) and I : B0(Σ) → R+ is a

continuous, strictly increasing function. Since any h = (h0, h1, . . .) ∈ H can be viewed as

(h0, (h1, . . .)) where (h1, . . .) ∈ He, we obtain:

U(h0, . . .) = W (h0, I(U ◦ h1)).

It remains to show that I fulfill I(x) = x for all x ∈ Im(U). For this, consider any act such

that U(hs,1) = x for all s. We have U(hs) = W (h0, x) which is independent of s. With Axiom

A.3, this implies that U(hs) = U(h) and therefore I(x) = x.

To end up proving Proposition 4, it remains to show that Axioms 6 and A.7 hold if and

only if one can use a time aggregator W and a certainty equivalent that fulfill the same

kind of restrictions as those derived in the risk setting. The sufficiency part of the proof is

exactly the same as the one provided for the risk setting. Indeed, in Section B, the number

m ∈ N+ and the probabilities (π1, . . . , πm) ∈ (0, 1)m were considered to be fixed. Thus, the

whole reasoning that was done considering the simple lottery (π1, x1 ; . . . ;πm, xm) ∈M([0, 1])
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can be reproduced here without any change by imposing that m = card(S) and viewing the

x1, . . . , xm as state-contingent realizations.

Necessity of Axiom 6 is obvious, as in the risk setting. For the necessity of Axiom A.7,

which is a stronger monotonicity requirement that the one imposed in the risk setting, let us

define the notion of time t conditional act as follows. For any t ≥ 1, any (σ1, . . . , σt) ∈ St,
and any act h ∈ H we set:

hσ1,...,σt ∈ H : (s1, s2, . . .) ∈ Ω→ hσ1,...,σt(s1, s2, . . .) = h(σ1, . . . , σt, st+1, st+2, . . .).

This is a direct generalization to the notion of conditional act defined in equation (17).

Now consider any act h such that any time t conditional act is a constant act (i.e., the

act h only depends on the information revealed during the first t periods). We can show that

U(h) is given by the terminal point of the backward recursion:Vt(σ1, . . . , σt, h) = V (hσ1,...,σt) for τ ≥ t,

Vτ (σ1, . . . , στ , h) = Iτ+1 (s 7→ Vτ+1(σ1, . . . , στ , s, h)) for all τ ≥ 0,
(54)

where V is the ex-post lifetime utility function, as defined in Section 5.1 and the Iτ are given

by It(µ) = βtI
(

1
βtµ
)
. The property stated in Axiom A.7 is then found to hold for any pair

of acts h and h′ that only depends on information revealed in a finite number of periods. The

extension to all pairs of acts is obtained by continuity.
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