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Abstract
Noor and Takeoka [3] propose a generalization of the discounted utility, called the

costly empathy representation, where a current self empathizes future selves at cog-
nitive costs and optimally chooses a discount function for each consumption stream.
This model accommodates several anormalies of the discounted utility including the
magnitude effect, the common difference effect, preference for increasing sequences,
and so on. In the present study, we extend the costly empathy representation to an
intertemporal choice environment with negative consumption utilities. This exten-
sion allows for distinction between gains and losses relative to a reference point and
explaining anormalies of the discounted utility such as the sign effect.

1 Introduction

Noor and Takeoka [3] extend the metaphor of multiple selves by incorporating costly em-
pathy into it. The key behavioral implication of costly empathy is that impatience reduces
with the magnitude of rewards. The model unifies several experimental and empirical
findings in the intertemporal choice literature including the magnitude effect, the common
difference effect, preference for increasing sequences, and so on.

Noor and Takeoka [3] consider the following model, called the Costly Empathy (CE)
representation. There are (finite) discrete time periods t = 0, 1, · · · , T . Let C = R+ be
the set of positive consumption and X = CT+1 be the set of consumption streams. For
any instantaneous utility function u : R+ → R+ with u(0) = 0 and cognitive cost functions
{φt(d)}Tt=1, where φt : [0, 1] → R+∪{∞}, with certain properties, we say that preference ≿
over X admits a CE representation if it is represented by the utility function U : X → R+

defined by

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), x ∈ X, (1)
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where Du(xt)(t) = arg max
D(t)∈[0,1]

{D(t)u(xt)− φt(D(t))}. (2)

The expression (1) looks like the discounted utility, but the discount function Du(xt)(t)
depends on the utility of x at time t, which is in stark contrast with the standard discounted
utility model. The expression (2) shows that Du(xt) is derived as a solution to the cognitive
optimization problem for allocating empathy to future selves. Higher empathy to self t
corresponds to greater discount function D(t) ∈ [0, 1]. The agent, interpreted as self 0, can
choose D(t) at a cognitive cost φt(D(t)).

The present study extends the CE model so that consumption 0 can be interpreted
as a reference point and negative consumption is permitted. Now a consumption space is
assumed to be C = R and allows for simple lotteries over C, denoted by ∆. Accordingly,
u : C → R with u(0) = 0 is interpreted as a VNM function. A Costly Empathy (CE)
representation is a tuple (u, {φt}) such that ≿ is represented by the function U : X→ R
defined by

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), x ∈ X = ∆T+1,

where Du(xt)(t) = arg max
D(t)∈[0,1]

{D(t)|u(xt)| − φt(D(t))}.

The key hypothesis in the model is in the cognitive optimization problem, where the
agent considers the discounted sum of absolute value of utility of consumption of future
selves. Consequently, the worst off selves are not ignored in the allocation of empathy. If
loss aversion (|u(−c)| > u(c)) is assumed, then the model gives rise to the sign effect, that
is, greater patience when dealing with a loss of $c than a gain of $c (see Hardistry et al [2]
for a recent reference).

2 The Model

2.1 Primitives

There are T +1 < ∞ periods, starting with period 0. The space C of outcomes is assumed
to be C = R. The element 0 is interpreted as a reference point or an initial endowment.
Positive and negative consumption should be understood to be gains and losses from the
reference point. Let ∆ denote the set of simple lotteries over C, with generic elements
p, q, ... We will refer to p as consumption. Consider the space of consumption streams
X = ∆T+1, endowed with the product topology. A typical element in X is denoted by
x = (x0, x1, · · · , xT ). The primitive of our model is a preference ≿ over X.

Let ∆0 ⊂ X denote the set of streams x = (p, 0, · · · , 0) that offer consumption p
immediately and 0 in every subsequent period. Abusing notation, we often use p to denote
both a lottery p ∈ ∆ and a stream (p, 0, · · · , 0) ∈ ∆0. Thus, 0 also denotes the stream
(0, · · · , 0). An element of ∆ that is a mixture between two consumption alternatives p, q ∈
∆ is denoted α ◦ p + (1 − α) ◦ q for any α ∈ [0, 1]. The same mixture is also regarded as
α ◦ p+ (1− α) ◦ q ∈ ∆0. In particular, the mixture between p and 0 is denoted by α ◦ p.
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Denote by pt the stream that pays p ∈ ∆ at time t and 0 in all other periods. Such a
stream is called a dated reward.

Say that a stream x is positive if xt ≿ 0 for all t, and it is negative if xt ≾ 0 for all t.
Let X+ denote the set of positive streams, that is,

X+ := {x ∈ X |xt ≿ 0, ∀t}.

Note that via the identification between p and (p, 0, .., 0), it is meaningful to say that p ∈ ∆
is positive or negative. The choice domain of Noor and Takeoka [3] is X = ∆(R+)

T+1 and
effectively identified with X+ in the current set up.

2.2 Functional Form

We extend the costly empathy representation of Noor and Takeoka [3] allowing for negative
consumption utilities.

Consider an instantaneous utility function u : ∆ → R, and a cost function φt : [0, 1] →
R+ ∪ {∞} for each t > 0. Say that a tuple (u, {φt}Tt=1) is basic if

(i) u is mixture linear with a vNM utility index u : C → R satisfying continuity, strictly
increasingness, and u(0) = 0.
(ii) for each t > 0, the cost function φt is represented by the Riemann integral

φt(D(t)) =

∫ D(t)

0

φ′
t(δ) dδ, D(t) ∈ [0, 1],

of a marginal cost function φ′
t for which there exist parameters 0 ≤ dt ≤ dt ≤ 1 such that

φ′
t : [0, 1] → R+∪{∞} is left-continuous, continuous at 0 in particular, takes the value 0 on

[0, dt], is strictly increasing on (dt, dt], takes the value ∞ on (dt, 1], and is weakly increasing
in t.

The conditions of the cost function provided in part (ii) is the same as in Noor and
Takeoka [3]. In part (i), the VNM function is extended to negative consumption (losses
relative to the reference point 0).

The following representation is an extension of the CE representation of Noor and
Takeoka [3] allowing for negative consumption utilities.

Definition 1 (CE Representation) A Costly Empathy (CE) representation is a basic
tuple (u, {φt}) such that ≿ is represented by the function U : X→ R defined by

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt), x ∈ X,

s.t. Du(xt)(t) = arg max
D(t)∈[0,1]

{D(t) |u(xt)| − φt(D(t))}.
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An interpretation has been provided in the Introduction. The axiomatization of Noor
and Takeoka [3] can be regarded as a characterization of the above fuctional on X+.

As in Noor and Takeoka [3], we can consider the following tractable special case of the
CE representation.

Definition 2 (Homogeneous CE) A homogeneous CE representation (u,m, dt, at) is a
CE representation (u, {φt}) such that for all t,

φt(d) =

{
atd

m if d ∈ [0, dt],

∞ if d ∈ (dt, 1],

where (i) m > 1 and (ii) at > 0 is increasing in t.

Since the cost function is differentiable on [0, dt] the cognitive optimization problem can
be solved in the usual way by including the constraint d ≤ dt.

3 Reduced From

3.1 Characterization

In order to develop an intuition for its structure, we first establish that the CE model
can be nested within a class of representations that maintains the DU model’s additive
separability across time but permits magnitude-dependent discounting:

Definition 3 (General Discounted Utility Representation) A General Discounted Util-
ity (GDU) representation for a preference ≿ over X is a tuple (u,D) where u : ∆ → R
is an expected utility such that its VNM function u : C → R is continuous and strictly in-
creasing with u(0) = 0 and for each c ∈ C, D|u(c)| : {1, · · · , T} → [0, 1] is an absolute-value
magnitude-dependent discounting function which is weakly decreasing in t and continuous
for all u(c) > 0, such that ≿ is represented by a strictly increasing function U : X → R
defined by

U(x) = u(x0) +
∑
t≥1

D|u(xt)|(t)u(xt), x ∈ X.

A GDU representation (u,D) is unbounded if u(C) = R.

The GDU model permits Dr(t) to increase or decreasing with r > 0. The condition that
U is strictly increasing requires that Dr(t)r must be strictly increasing, thereby placing a
limit on how negative the slope of Dr(t) can be. That said, our study will lead us into the
following GDU subclass:

Definition 4 (Magnitude-Decreasing Impatience) A GDU representation (u,D) ex-
hibits magnitude-decreasing impatience (MDI) if Dr(t) is weakly increasing in r > 0 for all
t.
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Since Dr(t) depends only on positive payoffs r, the following results are obtained as a
corollary of Theorem 1 of Noor and Takeoka [3].

Corollary 1 A preference ≿ over X admits a CE representation if and only if it admits
a GDU representation that exhibits magnitude-decreasing impatience.

Corollary 2 The following statements are equivalent for any preference ≿ over X, and
any tuple (u,m, dt, at) as in the Definition 2.

(a) ≿ admits a homogeneous CE representation (u,m, dt, at).
(b) ≿ admits a GDU representation (u,D) such that for all t,

Dr(t) =

{
κtr

1
m−1 if 0 < r ≤ rt

dt if r > rt
,

where κt = (mat)
− 1

m−1 and rt = matd
m−1

t .

Corollary 1 suggests that it is enough to characterize the GDU representation with
MDI for axiomatizing the CE representation. By Corollary 2, we have to ensure that
Dr(t) is homogeneous up to some threshold and is constant thereafter to axiomatize the
homogeneous CE representation.

3.2 Implications

As shown by Noor and Takeoka [3], the CE model can accommodate several anormalies
of the DU model including the magnitude effect and the common difference effect on the
domain of positive streams. In addition, the model extended to negative utilities can
accommodate the following experimental and empirical evidence.

3.2.1 Sign Effect

The sign effect refers to the finding that people are more patient when dealing with a loss
of $c than a gain of $c. For example, Thaler [5] report that a median subject tends to
be indifferent between a gain of $15 now and a gain of $60 in a year, while the subject is
indifferent between a loss of $15 now and a loss of $20 in a year. See Hardistry et al [2] for
a recent reference. Consider the reduced form of the homogeneous CE model (Corollary
2). If |u(−c)| > u(c) then we obtain

D−c(t) = κt |u(−c)|
1

m−1 > κtu(c)
1

m−1 = Dc(t).

3.2.2 Magnitude Hypothesis in Consumption Smoothing

There is considerable evidence that consumption tends to respond to anticipated income
increases more than what is implied by standard models of consumption smoothing. More-
over, this response is inversely correlated with the size or magnitude of anticipated income
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increases, that is, for small income changes, consumption tends to overreact to them, while
consumption pattern tends to be consistent with consumption smoothing for medium or
large income changes. This evidence is known as the magnitude hypothesis in consump-
tion smoothing (Browning and Collado [1], Scholnick [4]), which has been attributed to
bounded rationality or costs associated with the mental processing of small anticipated
income changes.

The CE representation may predict a similar behavioral pattern where ≿ exhibits pref-
erence for concentration in streams with small payoffs, whereas it exhibits preference for
consumption smoothing otherwise. Consider the reduced form of the homogeneous CE
model (Corollary 2). A stream x is interpreted as a stream of gains from the reference
point. Note that Du(xt)(t)u(xt) has a flatter curvature up to xt ≤ u−1(rt) because of the
convex transformation over u, and gets more concave beyond the threshold. Thus, the
agent is more likely to choose a skewed consumption stream over a smoothed consumption
stream when these streams are small.

4 Behavioral Foundation

Consider a binary relation ≿ over the space of consumption streams X = ∆T+1 as defined
in Section 2.1.

4.1 CE Representation

Axiom 1 (Regularity) (a) (Order). ≿ is complete and transitive.
(b) (Continuity). For all x ∈ X, {y ∈ X : y ≿ x} and {y ∈ X : x ≿ y} are closed.
(c) (Impatience). For any positive p ∈ ∆ and t < t′,

(p)t ≿ (p)t
′
.

(d) (C-Monotonicity): for all c, c′ ∈ C,

c ≥ c′ ⇐⇒ c ≿ c′.

(e) (Monotonicity) For any x, y ∈ X,

(xt, 0, .., 0) ≿ (yt, 0, .., 0) for all t =⇒ x ≿ y.

Moreover, if (xt, 0, .., 0) ≻ (yt, 0, .., 0) for some t, then x ≻ y.

(f) (Risk Preference). For any p, p′, p′′ ∈ ∆ and α ∈ (0, 1],

p ≻ p′ =⇒ α ◦ p+ (1− α) ◦ p′′ ≻ α ◦ p′ + (1− α) ◦ p′′.

(g) (Present Equivalents). For any stream x there exist c, c′ ∈ C s.t.

c ≿ x ≿ c′.
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Order and Continuity are standard. Impatience requires that positive outcomes are
weakly preferred sooner rather than later. C-Monotonicity states that more consumption
is better than less. While C-Monotonicity applies only to immediate consumption, Mono-
tonicity is a property on arbitrary streams: it requires that point-wise preferred streams are
preferred. Risk Preference imposes vNM Independence only on immediate consumption.
Present Equivalents states that for any stream, there are immediate consumption levels
that are better and worse than x. Given Order and Continuity, this ensures that each
stream x has a present equivalent cx ∈ C. Notably, each x has a unique present equivalent
cx (by C-Monotonicity, x ∼ cx > cy ∼ y implies cx ≻ cy and therefore x ≻ y).

For notational convenience, for all streams x, y ∈ X and all t, let xty denote the stream
that pays according to x at t and according to y otherwise.

Axiom 2 (Separability) For all x ∈ X and all t,

1

2
◦ cxt0 +

1

2
◦ c0tx ∼ 1

2
◦ cx +

1

2
◦ c0.

For any stream x and α ∈ [0, 1], α ◦ x denotes the stream (α ◦ x0, · · · , α ◦ xT ), and
is interpreted as a scaling down of the stream by lottery α. As argued by Noor and
Takeoka [3], the magnitude effect can be identified via violation of Homotheticity: For any
positive streams x ∈ X+ and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ∼ α ◦ x.

Axiom 3 (Weak Homotheticity) For any x ∈ X+ and any α ∈ (0, 1),

cx ∼ x =⇒ α ◦ cx ≿ α ◦ x.

We extend the model to accommodate negative outcomes. We say that p∗ ∈ ∆ is an
absolute value of p ∈ ∆ if:1 p∗ ∼ p when p is positive , or p∗ satisfies

1

2
◦ p+ 1

2
◦ p∗ ∼ 0

when p is negative. That is, the 50-50 lottery over p and p∗ is as good as receiving 0.
For any stream x, define x∗ by the stream that replaces each outcome xt with an absolute

value (xt)
∗, that is,

x∗
t = (xt)

∗ for all t.

Note that the absolute value p∗ is not unique, since anything in its indifference class will
also be an absolute value for p.

We impose a Symmetry axiom so that axioms on positive streams translate into restric-
tions on negative ones.

1For simplicity, we use this terminology rather than the more accurate one that p∗ has the same absolute
value as p. This terminology anticipates the fact that in terms of the representation p, p∗ will satisfy
u(p∗) = |u(p)|.
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Axiom 4 (Symmetry) If x is a negative stream then

(cx)
∗ = cx∗ .

Consider a negative stream x and its present equivalent cx. The axiom states that the
absolute value (cx)

∗ of this present equivalent is the same as the present equivalent cx∗ of
the stream’s absolute value x∗.

As noted earlier, present equivalents carry information about the agent’s assessment of
the outcomes and his impatience towards them. So the axiom suggests that the agent’s
impatience towards two streams is identical when the streams give outcomes that have
identical absolute values. This suggests that if impatience is not constant, it can only
change with the absolute value of outcomes.

Theorem 1 A non-degenerate preference ≿ on X satisfies Regularity, Separability, Weak
Homotheticity, and Symmetry if and only if it admits a CE representation.

If there are two CE representations (ui, {φi
t}), i = 1, 2 of the same preference ≿, then

there exists λ > 0 such that (i) u2 = λu1, (ii) φ2
t = λφ1

t for each t.

A proof sketch is as follows. By Lemma 1 in the Appendix, there exists an expected
utility representation u on lotteries. There exists a representation U on X which is an
extension of u. Since ≿ satisfies Separability, Lemma 2 ensures that U : X → R admits
an additively separable form where each component function Ut is defined on ∆. For any
negative dated reward, Lemma 3 shows that the absolute value of its present equivalent
is equal to the dated reward of its absolute value. Together with Lemma 3, in Lemma 4,
we show that U : X → R admits a GDU representation such that the discount function
depends only on the absolute value of payoffs. By Weak Homotheticity, the discount
function is weakly increasing in positive payoffs. The result obtains by invoking Corollary
1.

4.2 Homogeneous CE Representation

Say that a stream x ∈ X+ is ℓ-Magnitude Sensitive if the agent’s impatience strictly reduces
whenever the stream is made less desirable.

Definition 5 (ℓ-Magnitude-Sensitivity) A stream x ∈ X+ is ℓ-Magnitude Sensitive if

cx ∼ x =⇒ α ◦ cx ≻ α ◦ x for all α ∈ (0, 1).

The set of all ℓ-Magnitude Sensitive streams is denoted by Xℓ ⊂ X+.

The set Xℓ can be identified with the set of magnitude sensitive streams considered in
Noor and Takeoka [3] in particular by interpreting the operation ◦ as the mixture operation
over lotteries. We consider two axioms on Xℓ, called X∗-Regularity and X∗-Homogeneity,
introduced by Noor and Takeoka [3]. Details are omitted.
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Theorem 2 A non-degenerate preference ≿ on X satisfies Regularity, Separability, Weak
Homotheticity, Symmetry, X∗-Regularity, and X∗-Homogeneity if and only if it admits a
homogeneous CE representation.

Moreover, if there are two homogeneous CE representations (ui,mi, d
i

t, a
i
t), i = 1, 2 of

the same preference ≿, then there exists λ > 0 such that (i) u2 = λu1, (ii) d
2

t = d
1

t ,
a2t = λa1t , and m2 = m1 for each t.

Since≿ satisfies Regularity, Separability, Weak Homotheticity, and Symmetry, ≿ admits
a GDU representation. Since the discount function depends only on the absolute value
of utility of consumption, axioms on positive streams are enough to impose particular
structures on the discount function. As shown by Noor and Takeoka [3, Theorem 7], X∗-
Regularity and X∗-Homogeneity on positive streams imply that there exists rt > 0 such
that Dr(t) is homogeneous on (0, rt] and Dr(t) is constant on (rt,∞). Theorem 2 obtains
by invoking Corollary 2.

A Appendix: Characterization of GDU Representa-

tions

Theorem 3 A preference ≿ over X = ∆T+1 satisfies Regularity and Separability if and
only if it admits an unbounded GDU representation.

Moreover, two GDU representations (ui, Di), i = 1, 2 represent the same preference ≿
if and only if there exists a scalar λ > 0 s.t. (i) u2 = λu1, and (ii) for all p ∈ ∆ and t > 0,

D1
|u1(p)|(t) = D2

|u2(p)|(t).

Proof. Necessity is obvious. We show sufficiency.

Lemma 1 The preference ≿|∆0 is represented by a utility function u : ∆ → R with u(0) = 0
which is continuous, mixture linear, and homogeneous (that is, u(αp) = αu(p) for all
α ≥ 0.) Moreover, the preference ≿ on X is represented by a continuous utility function
U : X → R such that U(p) = u(p) for all p ∈ ∆0.

Proof. By Weak Regularity, ≿|∆0 satisfies the vNM axioms. There exists a continuous
mixture linear function u : ∆ → R which represents ≿|∆0 and which can be chosen so that
u(0) = 0.

Establish homogeneity of u next. If α ∈ [0, 1], by mixture linearity of u, together with
identifying αp with αp+ (1− α)0,

u(αp) = u(αp+ (1− α)0) = αu(p) + (1− α)u(0) = αu(p).

If α > 1, we identify αp with p′ ∈ ∆ satisfying p = 1
α
p′ + α−1

α
0. Then, mixture linearity of

u implies that u(p) = 1
α
u(p′), that is, u(αp) = u(p′) = αu(p), as desired.
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For any x ∈ X, the Present Equivalents axiom ensures that there exists cx ∈ C such
that cx ∼ x. Define U(x) = u(cx). By construction, U represents ≿. Moreover, for all
p ∈ ∆, U(p) = u(p). In particular, we have U(0) = u(0) = 0.

To show the continuity of U , take any sequence xn → x̂. There exists a corresponding
present equivalent cxn ∼ xn. Since U(xn) = u(cxn) and u is continuous, we want to show
that cxn → cx̂.

Claim 1 The present equivalent is continuous, that is, if xn → x, then cxn → cx̂.

Proof. Take any c and c such that c > cx̂ > c. Let W = {x ∈ X | c ≻ x ≻ c}. Since
xn → x̂ ∼ cx̂, by Continuity, we can assume xn ∈ W for all n without loss of generality.

Seeking a contradiction, suppose cxn ̸→ cx̂. Then, there exists a neighborhood of cx̂,
denoted by B(cx̂), such that cxm /∈ B(cx̂) for infinitely many m. Let {xm} denote the
corresponding subsequence of {xn}. Since xn → x̂, {xm} also converges to x̂. Without loss
of generality, we can assume xm ∈ W , that is, c ≻ xm ∼ cxm ≻ c. By C-Monotonicity,
c > cxm > c. Thus, {cxm} belongs to a compact interval [c, c], and hence, there exists a
convergent subsequence {cxℓ} with a limit c̃ ̸= cx̂. On the other hand, since xℓ → x̂ and
xℓ ∼ cxℓ , Continuity implies x̂ ∼ c̃. Since cx̂ is unique, cx̂ = c̃, which is a contradiction.

The symmetric argument can be applied for the case that 0 ≿ x, xn for all n. Finally,
suppose that x ∼ 0. If xn ∼ 0 for some n, U(xn) = 0 = U(x) for such n. Thus, we can
assume without loss of generality that xn ̸∼ 0 for all n. For the subsequence {xm} of {xn}
satisfying xm ≻ 0, we have xm → x. By the above argument, U(xm) → U(x). Similarly,
for the subsequence {xm} of {xn} satisfying 0 ≻ xm, we have U(xm) → U(x). Therefore,
U(xn) → U(x), as desired.

Lemma 2 U can be written as an additively separable utility form, i.e. U : X → R s.t.
for all x ∈ X,

U(x) = u(x0) +
∑
t≥1

Ut(xt),

where u is given as in Lemma 1 and Ut : ∆ → R is continuous with Ut(0) = 0 for each t.
Moreover, u is unbounded from above.

Proof. Take any x = (x0, x1, · · · , xT ) ∈ X s.t. x ̸∼ 0. By Monotonicity, there exists some
t > 0 with xt ≻ 0. We start with the case where there are two xt, xs ̸∼ 0. By notational
convenience, denote such a stream by (xt, xs, 0, · · · , 0). By Separability,

1

2
◦ c(0,xs,0,··· ,0) +

1

2
◦ c(xt,0,··· ,0) ∼

1

2
◦ c(xt,xs,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,xs,0,··· ,0)) + u(c(xt,0,··· ,0)) = u(c(xt,xs,0,··· ,0)) + u(0)

⇐⇒ U(0, xs, 0, · · · , 0) + U(xt, 0, · · · , 0) = U(xt, xs, 0, · · · , 0).
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Define Ut(xt) = U(xt, 0, · · · , 0) and Us(xs) = U(0, xs, 0, · · · , 0). Then, we have

U(xt, xs, 0, · · · , 0) = Ut(xt) + Us(xs). (3)

In particular, if t = 0, Ut(xt) = u(xt).
If a stream has three outcomes xt, xs, xr ̸∼ 0, denote it by (xt, xs, xr, 0, · · · , 0). From

the above argument, we have (3). By Separability,

1

2
◦ c(0,0,xr,0,··· ,0) +

1

2
◦ c(xt,xs,0,··· ,0) ∼

1

2
◦ c(xt,xs,xr,0,··· ,0) +

1

2
◦ 0.

Since u is mixture linear,

u(c(0,0,xr,0,··· ,0)) + u(c(xt,xs,0,··· ,0)) = u(c(xt,xs,xr,0,··· ,0)) + u(0)

⇐⇒ U(0, 0, xr, 0 · · · , 0) + U(xt, xs, 0, · · · , 0) = U(xt, xs, xr, 0, · · · , 0).

Define Ur(xr) = U(0, 0, xr, 0, · · · , 0). Then, we have

U(xt, xs, xr, 0, · · · , 0) = Ur(xr) + U(xt, xs, 0, · · · , 0) = Ut(xt) + Us(xs) + Ur(xr).

By repeating the same argument finitely many times, we have

U(x) =
∑
t≥0

Ut(xt),

where Ut(xt) is defined as Ut(xt) = U(0, · · · , 0, xt, 0, · · · , 0). By definition, Ut(0) = 0. Since
U is continuous, Ut is also continuous. Moreover, U0(x0) = U(x0, 0, · · · , 0) = u(x0).

Finally, we show that u must be unbounded. First, we show that u is unbounded above.
By seeking a contradiction, suppose otherwise. Then, the range of u is nonempty and has
an upper bound. There exists a supremum v of the range of u. Since Ut is non-constant
by Monotonicity, there exists some p̃ ∈ ∆ with Ut(p̃) > 0. Take a lottery p ∈ ∆ such that
v − u(p) < Ut(p̃). Consider the stream x which pays p in period 0, p̃ in period t, and zero
otherwise. By the representation,

U(x) = u(p) + Ut(p̃) > v.

Since v is the supremum of u(∆), the above inequality contradicts to the Present Equiva-
lents axiom. By the symmetric argument, we can show that u is unbounded below.

We show properties of an absolute value of streams.

Lemma 3 (1) For all negative outcomes p ∈ ∆, u(p) = −u(p∗).
(2) For any dated reward pt with a negative outcome, (cpt)

∗ ∼ (p∗)t.

11



Proof. (1) If 0 ≻ p, by definition, its absolute value p∗ ∈ ∆ satisfies

1

2
◦ p+ 1

2
◦ p∗ ∼ 0.

Since u is mixture linear, u(p) = −u(p∗).
(2) Since the dated reward pt with this negative outcome is a negative stream, by

Symmetry, (cpt)
∗ = c(pt)∗ . Since (pt)∗ = (p∗)t by definition, we have a desired result.

Lemma 4 The function U : X → R defined as in Lemma 2 can be written as follows:

U(x) = u(x0) +
∑
t≥1

D|u(xt)|(t)u(xt),

where for all t ≥ 1, D|u(p)|(t) ∈ [0, 1] and D|u(p)|(t) is continuous in |u(p)|.
Proof. Taking the additive representation from Lemma 2, by Monotonicity, we have that
Ut(xt) can be written as an increasing transformation of u(xt). So we can write Ut(xt) as

Ut(u(xt)). Define Dx by Du(xt)(t) =
Ut(u(xt))
u(xt)

> 0 for any xt ∈ ∆ with xt ̸∼ 0. Then

U(x) = u(x0) +
∑
t≥1

Du(xt)(t)u(xt).

By Lemma 3, the representation implies

Du(p)(t)u(p) = U(pt) = u(cpt) = −u((cpt)
∗) = −u(c(pt)∗)

= −U((pt)∗) = −Du(p∗)(t)u(p
∗) = D|u(p)|(t)u(p),

and hence, Du(p)(t) = D|u(p)|(t), as desired.
Since u and Ut are continuous, so is Du(p)(t) in u(p) on the domain of u(p) ̸= 0.

Moreover, since |u(p)| is continuous, so is D|u(p)|(t) for all |u(p)| ̸= 0.
By Impatience, for all positive p and t ≥ 1, u(p) = U(p0) ≥ U(pt) = D|u(p)|(t)u(p),

which implies D|u(p)|(t) ≤ 1.

Finally we establish uniqueness.

Lemma 5 If GDU (ui, Di) for i = 1, 2 both represent the same preference ≿, then there
exists a scalar λ > 0 s.t. for all p ∈ ∆ and t > 0,

u1(p) = λu2(p) and D1
|u1(p)|(t) = D2

|u2(p)|(t).

Proof. By considering the restriction ≿|∆0 and applying the Mixture Space Theorem,
we obtain λ > 0 and γ s.t.u1 = λu2 + γ. Due to the normalization u(0) = 0 in the
representation, we have γ = 0. Thus u1 = λu2.

Next, observe that there exists a present equivalent cpt for each dated reward pt, the
representation implies that ui(cpt) = Di

|ui(p)|(t)u
i(p) for any p ∈ ∆ and t > 0. Since

u1 = λu2, we therefore see that

D1
|u1(p)|(t) =

u1(cpt)

u1(p)
=

u2(cpt)

u2(p)
= D2

|u2(p)|(t),

as desired.

12



B Proof of Theorem 1

By Regularity and Separability, Theorem 3 ensures that ≿ admits a GDU representation.

Lemma 6 ≿ satisfies Weak Homotheticity if and only if Dr(t) is weakly increasing in
r > 0.

Proof. By the GDU representation, for any p ∈ ∆ and t > 0, it must be that U(pt) =
Du(p)(t)u(p). Take any α ∈ (0, 1]. Since u is mixture linear, αu(q) = u(α◦q) for any q ∈ ∆.
For the dated reward pt,

αDu(p)(t)u(p) = αU(pt) = αu(cpt) = u(α ◦ cpt)
≥ U(α ◦ x) = Du(α◦p)(t)u(α ◦ p) = αDαu(p)(t)u(p),

where the inequality holds since Weak Homotheticity requires α ◦ cx ≿ α ◦ x. Conclude
that Du(p)(t) ≥ Dαu(p)(t), that is, D is weakly increasing in utility of magnitude, as desired.
The converse directions of this claim is straightforward to establish.

Together with this lemma, the sufficiency of Theorem 1 obtains by invoking Corollary
1.

For the necessity, it is enough to verify the Symmetry axiom. Assume that ≿ is rep-
resented by a CE representation. Take any negative stream x and its absolute value x∗.
Note that the absolute value of the utility stream of x∗ is written as (|u(xt)|)Tt=0, which is
denoted by |u(x)|. By representation,

U(x∗) = |u(x0)|+
∑
t≥1

D|u(x)||u(xt)|, and

U(x) = u(x0) +
∑
t≥1

D|u(x)|u(xt).

Therefore,
u(cx∗) = U(x∗) = −U(x) = −u(cx) = u((cx)

∗),

as desired.

Uniqueness

Consider two CE representations (ui, {φi
t}), i = 1, 2, that represent the same preference.

Their reduced forms are denoted by U i(x) = ui(x0) +
∑

t≥1D
i
|ui(xt)|(t)u

i(xt), where Di
|ui(x)|

is an optimal discount function. Since these are GDU representations that represent the
same preference, by Theorem 3, there exists λ > 0 such that (i) u2 = λu1, and (ii) for all
c ∈ C and t,

D1
|u1(c)|(t) = D2

|u2(c)|(t). (4)

Since Di
r(t) depends only on positive payoffs, the uniqueness of the CE representations

extended to negative payoffs is equivalent to that of the CE representation on the positive
streams. The latter uniqueness is established by Noor and Takeoka [3, Theorem 6].
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