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Abstract

In a dynamic model with uncertainty, a decision tree and preference at each de-
cision node have been taken as primitives. This assumption requires the analyst to
know all the uncertainties a decision maker (DM) perceives. Kreps (1979) and Dekel,
Lipman and Rustichini (2001) show that the subjective states can be identified with
the set of uncertain future preferences and be derived from preference over menus.

However, it is not immediate how we can use their models for dynamic choice
because the realized subjective state is not observable for the analyst. We propose
introducing some objective states into their model. There are two added benefits of
this modification. First, we can derive a meaningful probability over the subjective
state space, which makes stochastic prediction of subsequent choice possible. Second,
in our model, subjective states have correlation with objective states. Hence, the
analyst can infer the ex post probability over the subjective states from the realized
objective information. We derive a unique updating rule of the subjective probability
over the subjective state space in response to the objective information.
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1 Introduction

1.1 Motivation and Outline

In order to model intertemporal choice under uncertainty, a decision tree and preference
at each decision node have been taken as primitives in a standard dynamic setting. This
modeling requires the analyst to know all the uncertainties a decision maker (DM) per-
ceives. However, the DM may have some subjective contingencies in her mind, which are
different from the given objective states. Moreover, by the nature of subjective states,
those contingencies are not directly observable for the analyst.

The answer suggested by Kreps [8, 9] and Dekel, Lipman and Rustichini [1] (Hence-
forth DLR) is that the analyst can derive the subjective uncertainties from preference over
opportunity sets (or menus) of alternatives. When considering menus as choice objects,
we have in mind the following timing of decisions: (i) choose a menu x; and (ii) choose
an alternative a ∈ x in the next period, though such an ex post stage is not in the formal
model.

The following example illustrates the basic idea of Kreps [8]: The DM will choose this
evening between chicken dinner and fish dinner at a restaurant. If the DM has to make a
reservation for dinner, she is indifferent between chicken and fish. Nevertheless, the DM
may strictly prefer not to make a reservation because she is reluctant to commit herself
right now to decide between chicken and fish. That is, the ranking

{chicken, fish} Â {chicken} ∼ {fish} (1)

is appealing in terms of flexibility. This ranking reveals that the DM perceives two sub-
jective states. She expects that, at one state, chicken is strictly preferred to fish, while
this ranking is reversed at the other state. Ranking (1) reflects the DM’s awareness of
uncertainty about her future preferences. In Kreps’s model, the subjective state space is
identified with a set of ex post preferences over alternatives.

Can we use their models for dynamic choice? More precisely, when observing the DM
choose a menu, can we predict choice out of the menu in the next period? The answer
is not immediate. Even if the analyst can collect information on the rankings over menus
and derive the DM’s subjective states, the realized subjective state is unobservable for the
analyst. Hence, we can not predict subsequent choice based on the ex post preference.

Now a question is how we can make subjective states observable. The answer we
suggest here is to introduce some objective states, say Ω, into the Kreps’s model. The idea
is simple. If there exist objective states, the DM’s subjective states may be correlated with
those objective states. If a joint distribution over the objective states and the subjective
states is known, the analyst can infer the ex post probability over the subjective states
from the realized objective information. As long as the distribution has correlation, this
procedure provides some information about the subjective states.

There are two added benefits of this modification. First, unlike Kreps [8, 9] and DLR,
we can pin down a meaningful probability measure over a subjective state space. Why is
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this possible? Unlike a menu of some abstract alternatives, we can now consider a menu
of acts as a choice object. An act means a function from the objective state space into
a given outcome space. In this setup, we can identify the subjective state space with a
set of subjective expected utility (SEU) representations over acts. An SEU representation
has two components: taste over outcomes and belief over Ω. In our model, subjective
uncertainties concern only beliefs over Ω, and do not affect preference over outcomes. This
state-independence of outcome preference is the reason why we can pin down a subjective
probability over the subjective state space.

Our model has implications for dynamic choice behavior. Once a subjective probability
is uniquely derived, it is possible to predict subsequent choice stochastically. We provide a
condition under which a subjective probability over the subjective state space generates a
unique stochastic choice in the ex post stage.

As mentioned above, in our model, subjective states concern beliefs about Ω. In other
words, subjective states have correlation with objective states. This is the second benefit
of introducing the objective states. Imagine the situation where, before choice out of the
predetermined menu takes place, the DM receives an additional information telling that
A ⊂ Ω is the “true” event. Presumably, she updates the initial subjective probability
somehow in response to this objective information. This updating rule is relevant for the
analyst because the updated probability provides more accurate stochastic prediction of
the subsequent choice. We derive a unique updating rule of the subjective probability over
the subjective state space in response to the objective information.

1.2 Domain and Functional Form

We consider the following choice objects: Let Ω be a finite objective state space. Let Z be
a compact metric outcome space and ∆(Z) be the set of lotteries over Z. Let H be the
set of functions, h : Ω → ∆(Z), called Anscombe-Aumann acts. Let P(H) be the set of
non-empty subsets of H. Preference º is defined on the domain D ≡ P(H).

Our hypothesis is that, when choosing a menu, the DM has in mind the “ex post” stage
where choice out of the menu takes place. If so, preference on menus should reflect the
DM’s dynamic perspective.

We axiomatize preference º on D admitting the following representation: there exist
a state space S ⊂ ∆(Ω), a countably additive Borel probability measure µ over S, and a
non-constant mixture linear function u : ∆(Z) → R such that U : D → R, defined by

U(x) ≡
∫

S

sup
h∈x

(∑
ω∈Ω

u(h(ω))p(ω)

)
dµ(p), (2)

represents º. This functional form justifies our hypothesis, that is, the DM behaves as if
she anticipates the ex post stage where choice out of the menu takes place. She expects
some subjective signal, p, to arrive in the next period according to the probability measure
µ, and is aware that the ex post choice takes place so as to maximize the signal-dependent
SEU representation over H.
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In (2), the subjective state space S is identified with a subset of beliefs over Ω. This
special nature allows us to pin down a unique subjective probability µ.

1.3 An Example: Real Option

As an example, consider a DM facing the decision whether she purchases a real estate.
The profit from the real estate depends on objective states, ω1 and ω2. If ω1 happens, it
generates a net gain $1000, whereas it causes a net loss $1000 otherwise. Hence, the real
estate is regarded as an act from {ω1, ω2} into R. On the other hand, if the DM does not
purchase it, she receives nothing no matter what objective state is realized.

Now suppose {[
$1000 ω1

−$1000 ω2

]}
º

{[
0 ω1

0 ω2

]}
. (3)

This ranking says that the DM wants to buy the real estate. Presumably, she has a prior
over {ω1, ω2} evaluating that ω1 is more likely to happen.

Nevertheless, the DM may strictly prefer delaying a decision. Consider the real option
making procrastination possible with some (opportunity) cost c > 0. For c small enough,
the ranking

{[
$1000− c ω1

−$1000− c ω2

]
,

[ −c ω1

−c ω2

]}
Â

{[
$1000 ω1

−$1000 ω2

]}
(4)

is appealing. Ranking (4) reveals that the DM anticipates two subjective signals to arrive in
the next period. One signal suggests that ω1 is more likely, while the other signal conversely
tells that ω2 is more likely. The left hand side of (4), that is, the real option, allows the DM
to choose between purchasing the real estate and not purchasing it, depending on subjective
signals. On the other hand, if she chooses the right hand side, she has to commit herself
to purchase the real estate no matter what signal arrives. Thus, the DM prefers the real
option even though she has to pay a positive cost. Our resulting model (2) is consistent
with ranking (3) and (4).

Under the ranking (3), the “standard” model implies the ranking

{[
$1000 ω1

−$1000 ω2

]}
º

{[
$1000− c ω1

−$1000− c ω2

]
,

[ −c ω1

−c ω2

]}
, (5)

for any c ≥ 0. Thus, the real option has no value.

1.4 Updating of the Initial Prior

To capture how µ is updated in response to objective information, we consider the set of
conditional preferences {ºA}A⊂Ω over P(H). Each ºA is interpreted as preference over
menus when the DM is told that A ⊂ Ω is a “true” event. We impose all the axioms
ensuring result (2) on the ex ante preference ºΩ, that is, preference under no additional
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information. Imposing, in addition, “dynamic consistency” on the conditional preferences
{ºA}A⊂Ω, we show that each ºA admits representation (2) with components (µA, u), where
µA is a probability measure over ∆(Ω) and u is a risk preference independent of A.

Our question is what is the relation between the initial prior µΩ and µA, that is, how
to update µΩ in response to the objective information A ⊂ Ω. Our axioms pin down the
following unique updating rule:

Step 1: Adjust µ to µ∗ so as to reflect the “reliance” of each p ∈ ∆(Ω) in terms of the
additional information A.

Step 2: Update each p ∈ ∆(Ω) by Bayes’ Rule, and derive the non-negative measure νA

over ∆(A) as the distribution of µ∗ induced by Bayes’ Rule.

Step 3: Normalize νA to obtain a probability measure.

The probability over ∆(Ω) derived from these steps exactly coincides with µA.
To illustrate the above updating rule, assume that Ω consists of three states, that is,

a red ball R, a blue ball, B, and a green ball, G. The DM satisfying our axioms has a
subjective probability µ over ∆(Ω). Since Ω consists of three states, ∆(Ω) can be identified
with the probability triangle such as Figure 1. For simplicity, assume µ has the finite
support {p1, · · · , p4} ⊂ ∆(Ω).

R G

B

p1

p2

p3

p4

q1

q2

q3

Figure 1: probability triangle and updating rule

Now suppose that the DM receives the objective information A ≡ {B,G}. First, she
reevaluates pi by taking into account its reliance in terms of the information A. For example,
though p2 and p3 induces the same conditional probability q2 = p2(·|A) = p3(·|A), p2(A) is
less than p3(A). Thus, p2 is less reliable than p3 in terms of the event A. The DM takes
this into account. Precisely, the new evaluation of pi is µ∗(pi) ≡ µ(pi)pi(A). Second, she
updates each pi by Bayes’ Rule and obtains the set {q1, q2, q3} ⊂ ∆(A), where q1 = p1(·|A),
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q2 = p2(·|A) = p3(·|A), and q3 = p4(·|A). Third, she induces the distribution νA over
{q1, q2, q3} by

νA(q1) ≡ µ∗(p1), νA(q2) ≡ µ∗(p2) + µ∗(p3), νA(q3) ≡ µ∗(p4).

This non-negative measure νA over ∆(A) may not be a probability measure. Finally,
take a normalization νA/νA(∆(A)), which must coincide with µA representing conditional
preference ºA. This is a unique updating rule consistent with dynamic consistency.

1.5 Related Literature

Kreps [8, 9] provides an axiomatic foundation of a subjective state space. Dekel, Lipman
and Rustichini [1] show uniqueness of the subjective state space. DLR take as the domain
the set of non-empty subsets of lotteries over alternatives. Though they have several models,
we focus the additive representation with a non-negative measure, that is,

U(x) =

∫

S

sup
l∈x

u(l, s) dµ(s), (6)

where S is a state space, µ is a non-negative measure over S, and u(·, s) is a state-dependent
expected utility function over lotteries.

DLR fail to provide a unique probability over the subjective state space because of the
state-dependence of the ex-post utility functions. Hence, µ in (6) cannot be interpreted as
the DM’s belief about subjective uncertainties.

Domains consisting of menus with objective states are not new. Epstein [2] introduces
the domain P(H) and provides non-Bayesian updating models. Takeoka [13] derives not
only a subjective probability but also a subjective decision tree by taking into account the
domain P(P(H)). Hyogo [7] takes the product domain A × P(H), where A is the set of
actions, and provides an axiomatic foundation of a subjective experimentation.

Nehring [10], Ghirardato [4] and Ozdenoren [11] are other literature considering menus
with objective states. These authors take, as the domain, the set of set-valued Savage acts
or of set-valued Anscombe-Aumann acts.

In the updating context within the Savage model, Epstein and Le Breton [3] show that
dynamic consistency implies that the DM is probabilistically sophisticated and updates the
prior by Bayes’ Rule. Ghirardato [5] shows the similar result under the subjective expected
utility setting.

2 Subjective Probability over a Subjective State Space

2.1 Domain

Let Ω be a finite objective state space with #Ω = n. Let Z be a compact metric
outcome space and ∆(Z) be the set of all Borel probability measures over Z with the
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weak convergence topology. Let H be the set of all Anscombe-Aumann acts, that is,
H ≡ {h|h : Ω → ∆(Z)}. Since ∆(Z) is a compact metric space, so is H under the product
topology.

To capture the subjective states of the DM, we adapt the modeling as in Kreps [8] and
DLR. Let P(H) be the set of all non-empty subsets of H with the Hausdorff topology.1

Generic elements are denoted by x, y, · · · , and interpreted as menus or opportunity sets of
acts. Preference º is defined on D ≡ P(H).

What we have in mind is the following timing of decisions:

Period 0: choose a menu x

Period 1−: receive a subjective signal s

Period 1: choose an act h ∈ x

Period 1+: An objective state is realized and the DM receives the lottery prescribed by
h.

Notice that this time line, expect period 0, and a subjective signal s are not parts of
the formal model. If the DM has in mind the above timing of decisions and expects to
receive a subjective signal, preference in period 0 should reflect the DM’s perception of
those subjective signals. Thus, preference over P(H) is relevant for deriving the subjective
states.

2.2 Axioms

The first five axioms on º are the same as in DLR. However, we impose the same axioms
on preference on P(H) rather than on P(∆(Z)).

AXIOM 2.1 (Order): º is complete and transitive.

AXIOM 2.2 (Continuity): For all x ∈ D, {y ∈ D|x º y} and {y ∈ D|y º x} are closed.

AXIOM 2.3 (Strong Nondegeneracy): There exist l, l′ ∈ ∆(Z) such that {l} Â {l′}.

For any acts h, h′ ∈ H and λ ∈ [0, 1], we can define the mixture act λh + (1− λ)h′ ∈ H
by mixing lotteries h(ω) and h′(ω) state by state. For all menus x, x′ ∈ D and λ ∈ [0, 1],
define the mixture by

λx + (1− λ)x′ ≡ {λh + (1− λ)h′|h ∈ x, h′ ∈ x′}.

AXIOM 2.4 (Independence): For all x, y, z ∈ D and for all λ ∈ (0, 1],

x Â y ⇒ λx + (1− λ)z Â λy + (1− λ)z.

1Details are relegated to Appendix A.
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As in DLR, Independence is justified by the following two steps: For any x, z ∈ P(H)
and λ ∈ [0, 1], consider the lottery λ ◦ x + (1 − λ) ◦ z, which assigns x with probability λ
and z with probability (1 − λ). This lottery is an informal object because it is not in the
domain. vNM independence axiom implies that, for any λ ∈ (0, 1], if x is strictly preferred
to y, then λ ◦ x + (1− λ) ◦ z is strictly preferred to λ ◦ y + (1− λ) ◦ z.

As the second step, we argue that the DM is indifferent between λ ◦ x + (1− λ) ◦ z and
λx + (1− λ)z. The difference between these two objects is the timing of resolution of the
randomization (λ, 1 − λ). For the former, the randomization has been realized before the
DM chooses an act out of the menu she receives, while, for the latter, the randomization is
still unresolved when she chooses an act out of the menu λx + (1− λ)z. Thus, indifference
between these objects means that the DM does not care in which order the randomization
(λ, 1− λ) is realized. This is appealing if the DM believes that her future preference over
H surely satisfies mixture linearity because she can expect the same outcome out of the
above two objects.

The next axiom says that a bigger menu is always weakly preferred.

AXIOM 2.5 (Monotonicity): For all x, x′ ∈ D, x′ ⊃ x ⇒ x′ º x.

A bigger menu is preferable because it allows the DM to leave more options until the
next period. Thus, Monotonicity is consistent with preference for flexibility.

The next axiom has no counterpart in DLR. The axiom is meaningful only when there
are some objective states. For h ∈ H, let

O(h) ≡ {h′ ∈ H|{h(ω)} º {h′(ω)} for all ω} .

In terms of commitment preference {l} º {l′}, any act in O(h) is dominated by h state by
state. Hence, O(h) is the set of all dominated acts by h.

This dominance notion can be adapted to menus. Let

O(x) ≡ ∪h∈xO(h).

Notice that O(x) is also a menu and that O(x) is bigger than x when º satisfies Order.
Any act in O(x) is dominated by some act in x in the above sense.

AXIOM 2.6 (Risk Preference Certainty): For all x ∈ D, x ∼ O(x).

This axiom can be justified as follows: suppose that the DM surely knows her future
risk preference, that is, the rankings over ∆(Z). Then the future risk preference coincides
with the commitment preference {l} º {l′} though these two preferences are conceptually
different. Now O(x) can be reinterpreted as the set of all acts dominated by some act in x
in terms of the future risk preference. Even though O(x) is bigger than x, the additional
part O(x) \ x is surely valueless because the DM never chooses a dominated act in the
future. Since O(x) has no additional value in terms of flexibility, x and O(x) should be
indifferent.
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2.3 Additive SEU Representation

In this section, we introduce a functional form with a subjective state space and a subjective
probability, and provide the main representation theorem.

First of all, the set of subjective signals can be effectively identified with the set of
preferences over H. As suggested in the Introduction, subjective signals themselves do
not matter for the DM. Subjective signals are relevant only because they convey some
information about the future preferences.

The second remark is that preference over H can have a special representation, that
is, a subjective expected utility (SEU) representation. An SEU representation has two
components: a risk preference u : ∆(Z) → R and a belief p over Ω. Thus, it is possible that
subjective signals have no effect on u, but affect beliefs over Ω. Then the set of subjective
signals can be identified with ∆(Ω).

The above argument leads to the functional form U : P(H) → R, defined by

U(x) ≡
∫

∆(Ω)

sup
h∈x

U1(h, p) dµ(p), (7)

where
U1(h, p) ≡

∑
ω∈Ω

u(h(ω))p(ω),

µ is a countably additive Borel probability measure over ∆(Ω) and u : ∆(Z) → R is a
non-constant mixture linear function.

The following is the analogue of the additive EU representation provided by DLR for
menus of acts:

Definition 2.1. Preference º on P(H) admits an additive SEU representation if there
exists the functional form (7) with components (µ, u) representing º.

This representation can be interpreted as follows: the DM behaves as if she has in mind
the timing of decisions described in Section 2.1 and anticipates a subjective signal to arrive
before choosing an act out of the menu. The DM is certain about her future risk preference.
Thus, subjective signals exclusively concern beliefs about Ω. She faces, in period 0, the
uncertainty about the subjective signals and have a belief µ over these signals.

The following is the main theorem in this section. A proof appears in Appendix B.1.

Theorem 2.1. The following statements are equivalent:

(a) Preference º on D satisfies Order, Continuity, Strong Nondegeneracy, Independence,
Monotonicity and Risk Preference Certainty.

(b) Preference º on D admits an additive SEU representation.
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Three remarks are in order regarding additive SEU representations. Suppose that º
on P(H) admits an additive SEU representation. Notice that the commitment preference
over H is represented by the SEU form

U({h}) =
∑

ω

u(h(ω))p̄(ω),

where p̄ ∈ ∆(Ω) is the mean belief in terms of the second-order probability µ ∈ ∆(∆(Ω)).
Since the commitment preference reflects the ex ante perspective, the belief p̄ is interpreted
as the ex ante belief or initial prior over Ω. Each belief p expected to arrive in period 1 can
be interpreted as the ex post belief over Ω. Thus, it depends on subjective signals how the
DM updates the initial prior p̄.

If the subjective states are interpreted as primitives, the functional form (7) is consistent
with the standard Bayesian model. Let S be the subjective state space. Then, S × Ω can
be regarded as the “full” state space. The DM has a marginal distribution µ over S and a
conditional probability system q : S → ∆(Ω) defined by q(p) = p for all p ∈ S. Equivalently,
the DM has a single belief over S ×Ω and updates the belief by Bayes’ Rule when a signal
s ∈ S arrives.

A final remark concerns the relation to DLR. An additive SEU representation is not an
extension of their additive representation to the setting of acts. The direct counterpart of
their representation is the functional form

U(x) ≡
∫

S

sup
h∈x

U1(h, s) dµ(s), (8)

where S is a state space, µ is a non-negative measure over S, and U1(·, s) is a state-
dependent mixture linear function over H. This representation is consistent with Axiom
2.1-2.5, but may violate Risk Preference Certainty. An additive SEU representation is a
special case of the functional form (8), and Risk Preference Certainty plays a key role to
determine the special structure. As shown in the next subsection, the added benefit of this
axiom is to pin down a unique belief over the subjective state space.

2.4 Uniqueness

Suppose there exist two additive SEU representations (µ, u) and (µ′, u′) representing the
same preference. If µ 6= µ′, we cannot interpret µ as a belief of the DM about subjective
states. The following theorem ensures that preference on D admits a unique additive SEU
representation. A proof is relegated to Appendix B.2.

Theorem 2.2. If two additive SEU representations (µ, u) and (µ′, u′) represent the same
preference, then:

(i) u and u′ are cardinally equivalent, that is, there exist α > 0 and β ∈ R such that
u′ = αu + β; and
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(ii) µ = µ′.

Unlike DLR, we can pin down a meaningful probability measure µ over a subjective
state space. The reason comes from a special nature of an additive SEU representation
(µ, u), that is, subjective uncertainties exclusively concern beliefs over Ω, and do not affect
risk preference. This state-independence of risk preference makes our result possible.

2.5 Generated Stochastic Choice

An additive SEU representation

U(x) ≡
∫

∆(Ω)

sup
h∈x

U1(h, p) dµ(p), (9)

where
U1(h, p) ≡

∑
ω∈Ω

u(h(ω))p(ω),

has an implication of choice in the ex post stage. The basic idea is as follows: suppose that
the DM has preference over menus represented by functional form (9) and that we observe
her choose a menu x in period 0. In period 1, the DM has an SEU over H depending
on the realized subjective signal p, which comes about according to µ. Thus, µ can be
interpreted as a random subjective expected utility. If the DM receives p in period 1−, (9)
suggests that she will choose an act h ∈ x so as to maximize the ex post SEU U1(·, p). We
can expect the random SEU µ to deliver a stochastic choice over x, which is a stochastic
prediction of choice in the ex post stage.

Prior to proceeding to the formal argument, we point out some remarks. The probability
µ is a part of the representation. That is, it is a subjective belief over signals. Hence, µ may
have nothing to do with the “true” probability over those signals. The argument about
the ex post choice as outlined above relies on the hypothesis that subjective belief µ over
signals coincides with the objective probability. 2 For example, imagine the situation where
the DM knows the true probability over the signals, but the analyst does not. Then, µ
in (9) can be interpreted as the private information of the DM, which is elicited from the
DM’s observable behavior.

Second, uniqueness of additive SEU representations, shown in Section 2.4, is crucial for
deriving a meaningful stochastic prediction of the ex post choice. Without uniqueness of
µ, the stochastic choice generated by the representation is not unique, either.

To model choice in the ex post stage, we adapt the argument in Gul and Pesendorfer [6]. 3

We focus on menus consisting of finite elements, that is,

DF ≡ {x ∈ D|#x < ∞}.
2This hypothesis is well-known as the rational expectations hypothesis.
3Gul and Pesendorfer [6] consider as the primitive a stochastic choice among a finite menu of lotteries

and characterize the condition under which there exists a “random expected utility” rationalizing the
stochastic choice. We consider acts rather than lotteries as choice objects, and ask under what conditions
a “random subjective expected utility” µ induces a stochastic choice.
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A stochastic choice is a function ρ : DF → ∆(H) such that ρx(x) = 1 for any x ∈ DF .
Let

M(x, p) ≡ {h ∈ x|U1(h, p) ≥ U1(h
′, p), for any h′ ∈ x}.

When the DM has a menu x and p arrives, she chooses h ∈ M(x, p) in period 1. However,
since M(x, p) may contain more than two elements, we need an arbitrarily specified tie-
breaking rule to derive a stochastic choice. To avoid this arbitrariness, we pay attention to
random SEUs admitting, almost surely, a unique maximizer for any x. For any x ∈ DF , let

N(x, h) ≡ {p ∈ ∆(Ω)|U1(h, p) ≥ U1(h
′, p), for all h′ ∈ x},

and
N+(x, h) ≡ {p ∈ ∆(Ω)|U1(h, p) > U1(h, p), for all h′ ∈ x with h′ 6= h}.

That is, N(x, h) is the set of p supporting h as a maximizer among x in terms of U1(·, p).
Similarly, N+(x, h) is the set of p such that h is a unique maximizer with respect to U1(·, p).
For h /∈ x, let N(x, h) = N+(x, h) = ∅.

For some x ∈ DF , N+(x, h) is empty for all h ∈ x. For example, take h and h′ with
h 6= h′ satisfying u(h(ω)) = u(h′(ω)) for all ω. Then, for any p ∈ ∆(Ω), U1(h, p) = U1(h

′, p).
Therefore, N+({h, h′}, h) = N+({h, h′}, h′) = ∅. To ensure N+(x, h) 6= ∅ for some h ∈ x,
we focus on the domain

D+
F ≡ {x ∈ DF |∀h, h′ ∈ x, ∃ω, u(h(ω)) 6= u(h′(ω))}.

Say that a random SEU (µ, u) is regular if, for any x ∈ D+
F ,

µ

(⋃

h∈x

N+(x, h)

)
= 1. (10)

That is, regularity means that, for any x ∈ D+
F , U1(·, p) almost surely has a unique maxi-

mizer among x.

Definition 2.2. A stochastic choice ρ : D+
F → ∆(H) is said to be generated by a regular

random SEU (µ, u) if, for any x ∈ DF and h ∈ H,

ρx(h) = µ(N(x, h)).

The following proposition says that, if we impose an additional assumption, regularity,
on (µ, u), it provides a meaningful stochastic prediction of the ex post choice. A proof can
be found in Appendix B.3.

Proposition 2.1. Any regular random SEU (µ, u) generates a unique stochastic choice ρ.
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What kind of random SEU satisfies regularity? Condition (10) says that the set

N(x, h) \N+(x, h) = {p ∈ ∆(Ω)|U1(h, p) = U1(h
′, p), for some h′ ∈ x with h′ 6= h} (11)

has measure zero. Since U1(h, p) is mixture linear in p, (11) is the union of finite sets which
have strictly smaller “dimension” than ∆(Ω). Thus, if µ assigns measure zero to any set
with smaller dimension, it should be regular.

To state the above argument formally, we introduce some notions. Since #Ω = n < ∞,
∆(Ω) can be identified with the (n − 1)-dimensional unit simplex in Rn. For any F ∈
B(∆(Ω)), let dim F denote the dimension of the affine hull of F , that is, the smallest affine
space in Rn including F . 4 Say that a probability measure µ over ∆(Ω) is full-dimensional
if µ(F ) = 0 whenever dim F < n− 1.

Proposition 2.2. A random SEU (µ, u) is regular if and only if µ is full-dimensional.

For example, the uniform distribution over ∆(Ω) is full-dimensional. Any µ with the
finite support is not full-dimensional.

Proposition 2.2 is the counterpart of Lemma 3 (p. 30) of Gul and Pesendorfer [6] in the
setting of acts. To show this proposition, we adapt their argument. Details are relegated
to Appendix B.4.

3 Updating of a Subjective Prior

3.1 Preference Conditional on Objective Information

Imagine the situation where, after choosing a menu in period 0, the DM receives information
about objective states prior to choosing an act out of the menu. The objective information
typically affects the DM’s rankings over menus and hence she may prefer another menu
to the predetermined menu. The preference change according to objective information
presumably reveals how the DM updates the initial prior over a subjective state space in
response to the objective information. Since the objective information is observable also
for the analyst, this updating rule is relevant for predicting subsequent choice of the DM.

To formulate the argument as outlined above, consider a set of preferences {ºA}A∈A,
where A is the set of all non-empty subsets of Ω, and ºA is a preference relation on
D ≡ P(H). We call ºA the conditional preference on an event A, which is interpreted
as the rankings over menus when the DM receives the information telling that any states
outside the event A never happen. For convenience, ºΩ is denoted by º, and called the ex
ante preference.

What we have in mind is the following time line:

Period 0: choose a menu x

4Let B(∆(Ω)) denote the Borel σ-algebra on ∆(Ω).
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Period 01: receive objective information A1 ∈ A and choose another menu x1

Period 02: receive another information A2 ⊂ A1 and choose another menu x2

...

Period 0t: receive another information At ⊂ At−1 and choose another menu xt

Period 1−: receive a subjective signal s

Period 1: choose an act h ∈ xt

Period 1+: An objective state in At is realized and the DM receives the lottery prescribed
by h.

3.2 Axioms on Conditional Preferences

We impose several axioms on conditional preferences {ºA}A∈A. The first axiom is about
the ex ante preference º.

AXIOM 3.1 (Initial Prior): º satisfies Axiom 2.1-2.6.

Under this axiom, Theorem 2.1 ensures that the ex ante preference º has an additive
SEU representation with (µΩ, u). The probability measure µΩ over ∆(Ω) is interpreted as
an initial prior over ∆(Ω).

For any f, g ∈ H and A ∈ A, let fAg ∈ H be the act which coincides with f on A and
with g elsewhere. Formally,

fAg ≡
[

f(ω) if ω ∈ A
g(ω) if ω ∈ Ω \ A

]
.

Say that an event A ∈ A is null with respect to º if, for any h, f, g ∈ H,

{fAh} ∼ {gAh}.

This indifference relation says that the DM does not care about the outcomes contingent
on states in the event A. As mentioned in Section 2.3, commitment rankings over H reflect
the DM’s initial belief over Ω. Thus, the above indifference suggests that the DM assigns
zero probability to the event A. An event A ∈ A is non-null if A is not a null event.

The next two axioms are imposed on each conditional preference ºA.

AXIOM 3.2 (Conditional Order): For any non-null event A ∈ A, ºA is complete and
transitive.

14



Suppose the DM is told that an event A will happen. Then, she should not care about
the outcomes contingent upon states in the counterfactual event Ω \ A. To capture this
behavior, for any event A ∈ A and any act f ∈ H, let fA be the act restricted on A, that
is, fA is the function from A into ∆(Z) defined by fA(ω) = f(ω) for all ω ∈ A.

AXIOM 3.3 (Consequentialism): For any non-null event A ∈ A and x, y ∈ D,

{fA|f ∈ x} = {fA|f ∈ y} ⇒ x ∼A y.

The next axiom prescribes relation between the ex ante preference and a conditional
preference. For any x ∈ D and g ∈ H, define the menu xAg by

xAg ≡ {fAg|f ∈ x}.

AXIOM 3.4 (Dynamic Consistency): For any non-null event A ∈ A, x, y ∈ D, and
f ∈ H,

xAf ÂA yAf ⇔ xAf Â yAf.

The ranking xAf ÂA yAf says that the DM strictly prefers xAf to yAf if she receives
the objective information A. Since the DM should not care about the consequences con-
tingent upon Ω \ A, the ranking reveals that x is strictly preferred to y in terms of the
information A. How should two menus xAf and yAf be ranked from the ex ante perspec-
tive? If the event A happens, xAf provides a strictly better menu than does yAf , while
both menus ensure the same menu {f} when Ω\A happens. Since A is non-null, A is likely
to happen from the ex ante perspective. This argument leads to the ranking xAf Â yAf .

The other direction can be justified by taking into account the contrapositive of the
statement. That is, “xAf Â yAf ⇒ xAf ÂA yAf for any x, y, f” is equivalent to
“xAf ºA yAf ⇒ xAf º yAf for any x, y, f”. From the above argument, if xAf ÂA yAf ,
then the ranking, xAf Â yAf , is appealing. Similarly, we can argue that, if xAf ∼A yAf ,
then xAf and yAf should be indifferent from the ex ante perspective, that is, xAf ∼ yAf .
Therefore, Dynamic Consistency is justifiable.

3.3 Updating Rule

The following theorem shows that the axioms in Section 3.2 pin down a unique updating
rule of an initial prior over the subjective states in response to objective information. A
proof appears in Appendix B.5.

Theorem 3.1. Initial Prior, Conditional Order, Consequentialism, and Dynamic Consis-
tency are equivalent to:

(i) For any non-null event A ∈ A, ºA admits the additive SEU representation (µA, u) such
that the risk preference u is identical across A ∈ A.
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(ii) µA coincides with the updated probability measure of the ex ante probability µΩ accord-
ing to the following steps:

Step 1: Adjust µΩ to µ∗ so as to reflect the “reliance” of each p ∈ ∆(Ω) in terms of
the event A. Precisely, µ∗ satisfies

∫

∆(Ω)

ϕ(p) dµ∗(p) =

∫

∆(Ω)

ϕ(p)p(A) dµΩ(p), (12)

for all continuous function ϕ : ∆(Ω) → R.

Step 2: Update each p ∈ ∆(Ω) with p(A) > 0 by Bayes’ Rule, that is,

βA(p) ≡ p(·|A) ≡ p(· ∩ A)

p(A)
, (13)

and derive the non-negative measure νA over the conditional probability measures
p(·|A)’s from the mapping βA : (∆A(Ω), µ∗) → ∆(A), where

∆A(Ω) ≡ {p ∈ ∆(Ω)|p(A) > 0}.

Step 3: Normalize νA to obtain a probability measure, that is,

νA

νA(∆(A))
. (14)

Then, the probability measure (14) exactly coincides with µA.

Figure 1 in Section 1.4 illustrates this updating rule when #Ω = 3 and µΩ has the finite
support.

Is the updating rule in Theorem 3.1 consistent with the Bayesian model in any sense?
Once S ≡ ∆(Ω) is taken into account as a part of the state space, the updating rule in
Theorem 3.1 is consistent with Bayes’ Rule. To state this claim formally, define S ≡ S×Ω
as the “full” state space. As mentioned in Section 2.3, for any µ0 ∈ ∆(S), we can define an
initial prior over the full state space P ∈ ∆(S) as the unique probability measure satisfying

P (B × C) =

∫

B

p(C) dµ0(p),

for any B ∈ B(S) and C ∈ B(Ω). Then, for any non-null event A ∈ A, the probability
measure conditional on the event S × A is derived by Bayes’ Rule

P (E|S × A) =
P (E ∩ (S × A))

P (S × A)
, (15)

for any E ∈ B(S × Ω).
The following proposition provides a characterization of the updating rule in Theorem

3.1. A proof can be found in Appendix B.6.
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Proposition 3.1. For any non-null event A ∈ A and any F ∈ B(∆(A)),

µA(F ) = P (β−1
A (F )× A|S × A). (16)

The right-hand side of (16) is interpreted as follows: For any B ∈ B(S) and C ∈ B(Ω),

P (B × C|S × A)

is the conditional probability of the event B × C with respect to the Bayesian updating
P (·|S × A) of P . Since any state outside A never happens, any p, p′ ∈ S can be identified
as long as the conditional probability of p on A coincides with that of p′. Formally, the
mapping βA : S → ∆(A), defined as (13), stands for this identification. Thus, for any
F ∈ B(∆(A)) and C ∈ B(Ω),

P (β−1
A (F )× C|S × A) (17)

is the distribution of P (·|S × A) on ∆(A) × A induced by the mapping βA. This step is
regarded as refinement of the full state space. Finally,

P (β−1
A (F )× A|S × A)

is the marginal distribution of (17) on ∆(A). Proposition 3.1 says that the probability
measure obtained by the above steps coincides with µA. Thus, once S is regarded as a
part of the state space, the updating rule in Theorem 3.1 is consistent with the standard
Bayesian updating of an initial prior over the full state space S × Ω.

3.4 Updated Stochastic Choice

When objective information A arrives, as shown in Section 3.3, the DM updates her prior
over the subjective states. Now we can update the stochastic prediction of the ex post
choice according to the DM’s updating rule.

Once the DM is told that A is the true event, she does not care about outcomes
contingent upon objective states outside A. Hence, as long as u(h(ω)) = u(h′(ω)) for
all ω ∈ A, acts h and h′ should be indifferent. Thus, we focus on the domain

D+A
F ≡ {x ∈ DF |∀h, h′ ∈ x, ∃ω ∈ A, u(h(ω)) 6= u(h′(ω))}.

That is, under given information A, D+A
F is the set of finite menus consisting of distinct

acts in terms of payoffs.
The additive SEU representation UA with (µA, u) suggests that the DM chooses an act

out of the given menu so as to maximize the ex post subjective expected utility, which
depends on the realization of the random factor µA. As pointed out in Section 2.5, there
may exist more than two maximizers. To derive a unique stochastic choice without an ad
hoc tie-breaking rule, we focus on random SEUs admitting a unique maximizer out of any
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menu with probability one. For any A ∈ A, say that a random SEU (µ, u) is regular relative
to A if, for any x ∈ D+A

F ,

µ

(⋃

h∈x

N+(x, h)

)
= 1. (18)

A random SEU is not necessarily regular relative to A. The next theorem, however,
ensures that µA derived from the updating rule in Theorem 3.1 is always regular relative
to A as long as the prior µ is regular. A proof appears in Appendix B.7.

Theorem 3.2. Assume that a random SEU (µ, u) is regular, and that µA is the probability
measure derived by the steps in Theorem 3.1. Then, (µA, u) is regular relative to A.

The following is an immediate consequence of Theorem 3.1 and Theorem 3.2:

Corollary 3.3. Assume that {ºA}A∈A satisfies all the axioms in Theorem 3.1 and that
(µ, u) representing º is regular. Then, for any non-null event A ∈ A, we can derive a
unique stochastic choice ρA : D+A

F → ∆(H).

4 Concluding Remarks

When trying to use DLR’s model for dynamic choice, we face an obstacle. Even if the
analyst know the DM’s preference over menus and derive her subjective states, the realized
subjective state is not observable for the analyst. Hence, we can not predict subsequent
choice based on the ex post preference.

We have proposed introducing some objective states into the Kreps’s framework. There
are two added benefits of this modification. First, unlike Kreps [8, 9] and DLR, we have
derived a unique probability measure over the subjective state space. This result makes
stochastic prediction of subsequent choice possible.

The second benefit is that the subjective states have correlation with the objective
states. Hence, the analyst can infer the ex post probability over the subjective states from
the realized objective information. We have addressed how the DM updates a subjective
prior over the subjective states if additional information about the objective states arrives
prior to the ex post stage, and have pinned down a unique updating rule consistent with
dynamic consistency.

Two remarks are in order regarding remaining questions. We have derived stochastic
choice associated with the additive SEU representation with components (µ, u) only when
(µ, u) is regular, equivalently, µ is full-dimensional. Otherwise, stochastic choice may not
be unique. We do not know behavioral conditions ensuring full-dimensionality of µ.

As mentioned in Section 2.5, Gul and Pesendorfer [6] characterize the condition under
which there exists a “random expected utility” rationalizing a given stochastic choice over
lotteries. Similarly, we can examine the same question by taking a stochastic choice over
acts as a primitive. The answer to this question provides a revealed preference foundation
of additive SEU representations.
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A Hausdorff Topology

Let d(h, x) ≡ infh′∈x d(h, h′) and e(x′, x) ≡ suph′∈x′ d(h′, x). For each x, y ∈ P(H), define

dh(x, y) ≡ max[e(x, y), e(y, x)].

Then, dh is a pseudo-metric. That is, dh satisfies (i) dh(x, y) ≥ 0, (ii) x = y implies dh(x, y) = 0,
(iii) dh(x, y) = dh(y, x), and (iv) dh(x, z) ≤ dh(x, y) + dh(y, z). The Hausdorff topology is the
topology generated from ε-balls with respect to dh.

B Proofs

B.1 Proof of Theorem 2.1

Necessity of the axioms is routine. We show sufficiency. The basic procedure of the proof is the
same as in DLR. For each x ∈ P(H), let cl(x) be the closure of x. Since H is compact, cl(x)
is a compact menu. As in DLR, Continuity implies x ∼ cl(x). Let co(x) be the convex hull of
x. Under Continuity and Independence, x ∼ co(x) for any x ∈ D. Notice that co(x) is closed
whenever x is closed. Hence, we can restrict our attention to the sub-domain,

D1 ≡ {x ∈ D|x = co(cl(x))},

that is, the set of convex and compact menus.
Recall

O(h) ≡ {h′ ∈ H|{h(ω)} º {h′(ω)} for all ω},
and O(x) ≡ ∪h∈xO(h). This defines the operation O : D → D.

Lemma B.1.

(i) If x ∈ D1, O(x) ∈ D1.

(ii) O : D1 → D1 is well-defined.

(iii) O : D1 → D1 is Hausdorff continuous.

(iv) O : D1 → D1 is mixture linear.

Proof. (i) We want to show O(x) is compact and convex whenever x is compact and convex.

Step 1: O(x) is compact.

Since D1 is a compact metric space, it suffices to show that O(x) is closed. Let hn → h
with hn ∈ O(x). Then there is a sequence {kn}∞n=0 in x satisfying {kn(ω)} º {hn(ω)} for all
ω. Since ∆(Z) is compact, for each ω, the sequence {kn(ω)}∞n=0 has a convergent subsequence
{kni(ω)}∞i=0 with a limit point lω ∈ ∆(Z). Define k∗ ∈ H by k∗(ω) ≡ lω. From finiteness of Ω,
we can find a subsequence {km}∞m=0 of {kn}∞n=0 satisfying km → k∗. Notice that k∗ ∈ x. Since
{km(ω)} º {hm(ω)} for all ω, {k∗(ω)} º {h(ω)} because of Continuity. Thus, h ∈ O(k∗) ⊂ O(x).

19



Step 2: O(x) is convex.

Take h, h′ ∈ O(x). Then there are k, k′ ∈ x such that {k(ω)} º {h(ω)} and {k′(ω)} º {h′(ω)}
for all ω. Since x is convex, λk + (1− λ)k′ ∈ x for any λ ∈ [0, 1]. From Order and Independence,

λ{k(ω)}+ (1− λ){k′(ω)} º λ{h(ω)}+ (1− λ){h′(ω)},

for all ω, which is equivalent to

{λk(ω) + (1− λ)k′(ω)} º {λh(ω) + (1− λ)h′(ω)}.

Hence, λh+ (1− λ)h′ ∈ O(x).
(ii) This is a direct consequence of (i).
(iii) Let xn → x. We want to show O(xn) → O(x). Since D1 is compact, the sequence

{O(xn)}∞n=1 has a convergent subsequence {O(xm)}∞m=1 with a limit y ∈ D1.

Step 1: O(x) ⊂ y.

Suppose otherwise. Then, there is h ∈ O(x) \ y. Since y is a compact subset of H, there is
an open neighborhood of h, B(h) ⊂ H, satisfying B(h) ∩ y = ∅. From the definition of Hausdorff
metric, B(h) ∩ O(xn) = ∅ for all sufficiently large n. On the other hand, since h ∈ O(x), there
exists h̄ ∈ x such that {h̄(ω)} º {h(ω)} for all ω. Since xm → x, we can find a sequence
{h̄m}∞m=1 in H satisfying h̄m ∈ xm and h̄m → h̄ in the sense of the metric on H, equivalently,
for all ω, h̄m(ω) → h̄(ω) in the sense of the metric on ∆(Z). Now we are going to construct a
sequence {hm}∞m=1 in H with hm ∈ O(xm) satisfying hm → h. Fix an arbitrary ω. There are
two cases; (1) {h̄(ω)} Â {h(ω)}, and (2) {h̄(ω)} ∼ {h(ω)}. If case (1) holds, from Continuity,
{h̄m(ω)} Â {h(ω)} for all sufficiently large m. Hence, define hm(ω) ≡ h(ω) for all sufficiently
large m, and hm(ω) can be taken to be an arbitrary point, otherwise. If case (2) holds, define
hm(ω) ≡ h(ω) as long as h̄m(ω) º h̄(ω) ∼ h(ω). Otherwise, let k ≥ 1 be the first natural number
satisfying h̄(ω) ∼ h(ω) Â h̄k(ω). Let lω(λ) ≡ λh̄k(ω)+ (1−λ)h(ω). Continuity ensures that there
is λm such that lω(λm) ∼ h̄m(ω). Define hm(ω) ≡ lω(λm). From case (1) and (2), we now have
a sequence {hm}∞m=1 such that hm → h and {h̄m(ω)} º {hm(ω)} for all ω, that is, hm ∈ O(xm).
This contradicts the fact that B(h) ∩O(xm) = ∅ for all m sufficiently large.

Step 2: y ⊂ O(x).

Suppose otherwise. Take h ∈ y \O(x). Since O(x) is compact as long as x is compact, there
exists an open neighborhood of h, B(h), such that B(h)∩O(x) = ∅. Then, we can find a sequence
hn ∈ O(xn) with hn → h in the sense of the metric on H. By definition of O(xn), there is h̄n ∈ xn

such that {h̄n(ω)} º {hn(ω)} for all ω. Since H is compact, we can assume {h̄n} converges to a
limit h∗ ∈ H without loss of generality. Since h̄n → h∗ and xn → x with h̄n ∈ xn, h∗ ∈ x. From
Continuity, {h∗(ω)} º {h(ω)} for all ω. Thus, h ∈ O(x). This is a contradiction.

From Step 1 and 2, we have O(x) = y. That is, O is Hausdorff-continuous.
(iv) We want to show that, for any x, x′ ∈ D1 and λ ∈ [0, 1],

λO(x) + (1− λ)O(x′) = O(λx+ (1− λ)x′).
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Step 1: λO(x) + (1− λ)O(x′) ⊂ O(λx+ (1− λ)x′).

Take any h′′ ∈ λO(x) + (1 − λ)O(x′). Then there exist h ∈ O(x) and h′ ∈ O(x′) satisfying
h′′ = λh+ (1− λ)h′. By definition of O(x) and O(x′), there are h̄ ∈ x and h̄′ ∈ x′ such that

{h̄(ω)} º {h(ω)}, and {h̄′(ω)} º {h′(ω)},
for all ω. Consider λh̄+ (1− λ)h̄′ ∈ λx+ (1− λ)x′. By Independence,

{λh̄(ω) + (1− λ)h̄′(ω)} = λ{h̄(ω)}+ (1− λ){h̄′(ω)}
º λ{h(ω)}+ (1− λ){h′(ω)}
= {λh(ω) + (1− λ)h′(ω)}.

Thus, h′′ ∈ O(λx+ (1− λ)x′).

Step 2: O(λx+ (1− λ)x′) ⊂ λO(x) + (1− λ)O(x′).

Take any h′′ ∈ O(λx+(1−λ)x′). There are h̄ ∈ x and h̄′ ∈ x′ satisfying {λh̄(ω)+(1−λ)h̄′(ω)} º
{h′′(ω)} for all ω. We are going to find h ∈ O(x) and h′ ∈ O(x′) satisfying h′′ = λh+ (1− λ)h′.
Consider an arbitrarily fixed ω. Assume first that {h̄(ω)} º {h̄′(ω)}. By Independence,

{h̄(ω)} º {λh̄(ω) + (1− λ)h̄′(ω)} º {h̄′(ω)}.
We have the following two cases: (1) {h̄′(ω)} º {h′′(ω)}; and (2) {h̄(ω)} º {h′′(ω)} Â {h̄′(ω)}.

If case (1) holds, define h(ω) = h′(ω) ≡ h′′(ω). Since {h̄(ω)} º {h̄′(ω)},
{h̄(ω)} º {h(ω)} and {h̄′(ω)} º {h′(ω)}.

Furthermore, h′′(ω) = λh(ω) + (1− λ)h′(ω).
If case (2) holds, take two lotteries lω and l′ω such that lω ∼ h̄(ω), l′ω ∼ h̄′(ω), and h′′(ω) =

αlω + (1− α)l′ω for some α ∈ (0, 1]. From Independence, λ ≥ α. Define

h(ω) ≡ α

λ
lω +

(
1− α

λ

)
l′ω, and h′(ω) ≡ l′ω.

Then we have {h̄(ω)} º {h(ω)}, {h̄′(ω)} º {h′(ω)}, and h′′(ω) = λh(ω) + (1− λ)h′(ω).
Consider next the case where {h̄′(ω)} º {h̄(ω)}. Independence implies

{h̄′(ω)} º {λh̄(ω) + (1− λ)h̄′(ω)} º {h̄(ω)}.
We have the following two cases: (1) {h̄(ω)} º {h′′(ω)}; and (2) {h̄′(ω)} º {h′′(ω)} Â {h̄(ω)}.

In case (1), define h(ω) = h′(ω) ≡ h′′(ω). Since {h̄′(ω)} º {h̄(ω)},
{h̄(ω)} º {h(ω)} and {h̄′(ω)} º {h′(ω)}.

Furthermore, h′′(ω) = λh(ω) + (1− λ)h′(ω).
In case (2), take two lotteries lω and l′ω such that lω ∼ h̄(ω), l′ω ∼ h̄′(ω), and h′′(ω) =

αlω + (1− α)l′ω for some α ∈ [0, 1). From Independence, α ≥ λ. Define

h(ω) ≡ lω, and h′(ω) ≡ α− λ

1− λ
lω +

(
1− α− λ

1− λ

)
l′ω.

Then we have {h̄(ω)} º {h(ω)}, {h̄′(ω)} º {h′(ω)}, and h′′(ω) = λh(ω) + (1− λ)h′(ω).
Let h and h′ be the acts defined as above. By construction, h ∈ O(h̄) ⊂ O(x), h′ ∈ O(h̄′) ⊂

O(x′), and h′′ = λh+ (1− λ)h′. Therefore, h′′ ∈ λO(x) + (1− λ)O(x′).
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From Lemma B.1 (i), it is enough to consider the sub-domain

D2 ≡ {x ∈ D1|x = O(x)}.

Since O : D1 → D1 is Hausdorff continuous and mixture linear from Lemma B.1 (iii) and (iv), D2

is compact and convex.
First of all, Order, Continuity and Independence ensure a mixture linear representation U :

D1 → R of º because D1 is a mixture space. Let u : ∆(Z) → R be the restriction of U on ∆(Z),
that is, u(l) ≡ U({l}). Since ∆(Z) is compact, there exist a maximal element l̄ and a minimal
element l with respect to u. From Strong Nondegeneracy, u(l̄) > u(l). Without loss of generality,
we can assume u(l̄) = 1 and u(l) = 0.

Let S ≡ ∆(Ω). Since #Ω = n, S is identified with the (n − 1)-dimensional unit simplex.
Let C(S) be the set of real-valued continuous functions on S with the supnorm metric. For each
x ∈ D2 and p ∈ S, let

σx(p) ≡ max
h∈x

∑

ω∈Ω

u(h(ω))p(ω).

This defines the function σ : D2 → C(S).

Lemma B.2.

(i) σ is continuous.

(ii) σ is mixture linear.

(iii) σ is injective.

Proof. (i) Define
u(x) ≡ {(u(h(ω)))ω∈Ω ∈ Rn|h ∈ x}.

Since u : ∆(Z) → [0, 1] is continuous and mixture linear, u(x) ⊂ [0, 1]n is a compact and convex
set. Let K([0, 1]n) be the set of non-empty compact subsets of [0, 1]n with the Hausdorff metric.

Step 1: The map ψ : D 3 x 7→ u(x) ∈ K([0, 1]n) is Hausdorff continuous.

Take a sequence xn → x with xn, x ∈ D. Since K([0, 1]n) is compact, without loss of generality,
we can assume {ψ(xn)}∞n=1 converges to a limit w ∈ P([0, 1]n). We want to show ψ(x) = w.

Suppose ψ(x) 6⊂ w. Then, there exists ū ∈ ψ(x) \w. Since w is compact, there exists an open
neighborhood of ū, V (ū), separating ū and w. There exists h̄ ∈ x such that ū = (u(h(ω)))ω. Since
xn → x, we can find {hn}∞n=1 such that hn → h̄ with hn ∈ xn. Let un ≡ (u(hn(ω)))ω ∈ ψ(xn).
Since un → ū, un ∈ V (ū) for all n sufficiently large. This contradicts that ψ(xn) → w. Thus,
ψ(x) ⊂ w.

For the other direction, take any ū ∈ w. Since ψ(xn) → w, we can find {un}∞n=1 such that
un → ū with un ∈ ψ(xn). There exists hn ∈ xn satisfying un = (u(hn(ω)))ω. Since H is compact,
without loss of generality, assume hn → h̄. Thus, un → u(h̄) = ū. Since hn → h̄, xn → x and
hn ∈ xn, h̄ ∈ x. We have ū = u(h̄) ∈ ψ(x). Hence, w ⊂ ψ(x).

Step 2: dsupnorm(σx, σy) ≤ dHausdorff(u(x), u(y)).

22



For any p ∈ S, by definition,

|σx(p)− σy(p)| =

∣∣∣∣∣max
h∈x

∑
ω

u(h(ω))p(ω)−max
h∈y

∑
ω

u(h(ω))p(ω)

∣∣∣∣∣

=
∣∣∣∣ max
u∈u(x)

u · p− max
u∈u(y)

u · p
∣∣∣∣ .

Let upx ∈ u(x) and upy ∈ u(y) be maximizers for the maximization problems, respectively.
Without loss of generality, assume upx · p ≥ upy · p. Let Hpy be the hyperplane u · p = upy · p and
u∗ ∈ Hpy be a point such that u∗ ∈ argminu∈Hpy‖u− upx‖. Then, by the Schwarz inequality,

∣∣∣∣ max
u∈u(x)

u · p− max
u∈u(y)

u · p
∣∣∣∣ = |upx · p− upy · p|

= |upx · p− u∗ · p|
= |(upx − u∗) · p|
≤ ‖upx − u∗‖‖p‖
≤ ‖upx − u∗‖
≤ min

u∈u(y)
‖upx − u‖

≤ dHausdorff(u(x), u(y)).

Since this inequality holds for all p, dsupnorm(σx, σy) ≤ dHausdorff(u(x), u(y)).

From Step 1 and 2, σ is continuous.
(ii) We want to show σλx+(1−λ)y = λσx + (1− λ)σy. Fix p ∈ S arbitrarily. Since u is mixture

linear,

σλx+(1−λ)y(p) = max
h∈λx+(1−λ)y

∑
ω

u(h(ω))p(ω)

= λmax
h∈x

∑
ω

u(h(ω))p(ω) + (1− λ) max
h∈y

∑
ω

u(h(ω))p(ω)

= λσx(p) + (1− λ)σy(p).

(iii) Take any x, x′ ∈ D with x 6= x′. Then, there is h̄ ∈ x′ \ x. Let ū ≡ (u(h̄(ω)))ω∈Ω ∈ Rn

and u(x) ≡ {(u(h(ω)))ω∈Ω ∈ Rn|h ∈ x}. Since u is continuous and linear, u(x) is a compact and
convex set in Rn.

Suppose that (u(x)− ū) ∩Rn
+ 6= ∅. Then, there exists ĥ ∈ x such that u(ĥ(ω))− u(h̄(ω)) ≥ 0

for all ω. By Risk Preference Certainty, h̄ ∈ O(x). This contradicts the fact that h̄ /∈ x = O(x).
Hence, (u(x)− ū) ∩ Rn

+ = ∅. By the separating hyperplane theorem, there exist p̄ ∈ ∆n−1 and a
constant c ∈ R such that, for all h ∈ x,

∑

ω∈Ω

u(h̄(ω))p̄(ω) > c >
∑

ω∈Ω

u(h(ω))p̄(ω).

Hence, we have

σx′(p̄) = max
h∈x′

∑

ω∈Ω

u(h(ω))p̄(ω) > max
h∈x

∑

ω∈Ω

u(h(ω))p̄(ω) = σx(p̄).

Therefore, σ is injective.
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Let C ⊂ C(S) be the range of σ. By Lemma B.2, σ : D → C is homeomorphic.

Lemma B.3.

(i) C is convex.

(ii) The zero function is in C.

(iii) The unit function is in C.

(iv) The supremum of any two points σ, σ′ ∈ C is also in C. That is, max[σ(p), σ′(p)] is also in
C.

(v) For all f ∈ C, f ≥ 0.

Proof. (i) Since D2 is convex and σ is mixture linear, C is convex.
(ii) Let x ≡ O({l}) ∈ D2. Since u(l) = 0, σx(p) = 0 for all p.
(iii) Let x ≡ O({l}) ∈ D2. Since u(l) = 1, σx(p) = 1 for all p.
(iv) There exist x′, x ∈ D2 such that σ = σx and σ′ = σx′ . Let σ′′ ≡ σO(co(x∪x′)) ∈ C. Then,

σ′′(p) = max[σx(p), σx′(p)].
(v) There exists x ∈ D2 such that f = σx. Since O({l}) ⊂ x, f(p) = σx(p) ≥ σO({l})(p) = 0

for any p.

Define W : C → R by W (f) ≡ U(σ−1(f)). Notice that W (0) = 0 and W (1) = 1, where 0 and
1 are identified with the zero function and with the unit function, respectively. Since U and σ are
continuous and mixture linear, so is W .

Lemma B.4. W (αf + βf ′) = αW (f) + βW (f ′) as long as f, f ′, αf + βf ′ ∈ C, where α, β ∈ R+.

Proof. For any α ∈ [0, 1],

W (αf) = W (αf + (1− α)0) = αW (f) + (1− α)W (0) = αW (f),

where 0 is the zero function. For any α > 1, let f ′′ ≡ αf . Since

W

(
1
α
f ′′

)
=

1
α
W (f ′′),

αW (f) = W (αf). Finally,

W (f + f ′) = 2W
(

1
2
f +

1
2
f ′

)
= W (f) +W (f ′).

This completes the proof.
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By the same argument as in DLR, we will extend W : C → R on C(S). For any r ≥ 0, let
rC ≡ {rf |f ∈ C}. Let H ≡ ∪r≥0rC and

H∗ ≡ H −H = {f1 − f2 ∈ C(S)|f1, f2 ∈ H}.
For any f ∈ H \ 0, there is r > 0 satisfying (1/r)f ∈ C. Define W (f) ≡ rW ((1/r)f). From
linearity of W on C, W (f) is well-defined. That is, even if there is another r′ > 0 satisfying
(1/r′)f ∈ C, rW ((1/r)f) = r′W ((1/r′)f). It is easy to see that W on H is mixture linear. By
the same argument as in Lemma B.4, W is also linear.

For any f ∈ H∗, there are f1, f2 ∈ H satisfying f = f1 − f2. Define W (f) ≡W (f1)−W (f2).
We can verify W : H∗ → R is well-defined. Indeed, suppose that f1, f2, f3 and f4 in H satisfy
f = f1 − f2 = f3 − f4. Since f1 + f4 = f2 + f3, W (f1) +W (f4) = W (f2) +W (f3) by linearity of
W on H.

Lemma B.5. H∗ is dense in C(S).

Proof. From the Stone-Weierstrass theorem, it is enough to show that (i)H∗ is a vector sublattice,
(ii) H∗ separates the points of S, that is, for any two points p, p′ ∈ S, there is f ∈ H∗ such that
f(p) > f(p′), and (iii) H∗ contains the constant functions equal to one. By the exactly same
argument as Lemma 11 (p.928) in DLR, (i) holds. In order to show (ii), take p, p′ ∈ S with p 6= p′.
There is ω ∈ Ω such that p(ω) > p′(ω). Define h ∈ H by h(ω) = l and h(ω′) = l otherwise. Then,

σO({h})(p) = p(ω) > p′(ω) = σO({h})(p′).

Since σO({h}) ∈ C, (ii) holds. Finally, (iii) directly follows from Lemma B.3 (iii) and the definition
of H.

Since D2 is compact, by the same argument as Lemma 12 (p.929) in DLR, it can be shown
that there is a constant K > 0 such that W (f) ≤ K‖f‖ for any f ∈ H∗. By the Hahn-Banach
theorem, we can extend W : H∗ → R to W : C(S) → R in a linear, continuous and increasing
way. Since H∗ is dense by Lemma B.5, this extension is unique.

Now we have the following commutative diagram:

D2 - R

?
C(S)

¡
¡¡µ
W

U

σ

Since W is a positive linear functional on C(S), the Riesz representation theorem ensures that
there exists a unique bounded countably additive non-negative measure µ0 on S satisfying

W (f) =
∫

S
f(p)dµ0(p),

for all f ∈ C(S). By normalization, µ0 can be taken to be a probability measure. Thus, we have

U(x) = W (σ(x)) =
∫

S
max
h∈x

(∑

ω∈Ω

u(h(ω))p(ω)

)
dµ0(p).

Redefine S as the support of µ0. Define µ1 : S → ∆(Ω) as the identity mapping, that is,
µ1(p) = p. Then, (S, µ0, µ1, u) is a second-order additive SEU representation.
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B.2 Proof of Theorem 2.2

(i) Since u and u′ are mixture linear representations of the commitment rankings over ∆(Z), that
is, {l} º {l′}, they are cardinally equivalent by the standard argument.

(ii) As shown above, u and u′ are cardinally equivalent. Thus, (µ′, u) also represents the same
preference. Let U and U ′ be the canonical representations associated with (µ, u) and (µ′, u),
respectively. For all x ∈ P(H) and p ∈ ∆(Ω), let

σx(p) ≡ sup
h∈x

U1(h, p),

where
U1(h, p) ≡

∑
ω

u(h(ω))p(ω).

Then,

U(x) =
∫
σx(p)dµ, U ′(x) =

∫
σx(p)dµ′.

Since U and U ′ are mixture linear functions over K(H), that is, the set of all compact menus of
H, representing the same preference, there exist α > 0 and β ∈ R such that U ′ = αU + β. For
any lottery l,

U ′({l}) = αU({l}) + β

u(l) = αu(l) + β.

Since we must have α = 1 and β = 0,
∫
σx(p)dµ =

∫
σx(p)dµ′, (19)

for all x. If x is convex, σx is the supporting function associated with x. Equation (19) holds
even when σx is replaced with ασx − βσy for any convex menus x, y and α, β ≥ 0. From Lemma
B.5, the set of all such functions is a dense subset of the set of real-valued continuous functions
over ∆(Ω). Hence, equation (19) still holds even if σx is replaced with any real-valued continuous
function. Hence, the Riesz representation theorem implies µ = µ′.

B.3 Proof of Proposition 2.1

It suffices to verify that ρx, satisfying ρx(h) = µ(N(x, h)), is a well-defined probability measure
over H.

Lemma B.6. µ(N+(x, h)) = µ(N(x, h)).

Proof. Let F (x, h) ≡ N(x, h) \ N+(x, h). By definition, for any p ∈ F (x, h), there exists h′ ∈ x
with h′ 6= h such that U1(h, p) = U1(h′, p). Thus, ∪h∈xN

+(x, h) and ∪h∈xF (x, h) are mutually
exclusive. Regularity implies

µ(∪h∈xN
+(x, h) ∪ ∪h∈xF (x, h)) = µ(∪h∈xN

+(x, h)) + µ(∪h∈xF (x, h))
= 1 + µ(∪h∈xF (x, h)).
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We must have µ(∪h∈xF (x, h)) = 0. Since F (x, h) ⊂ ∪h∈xF (x, h), µ(F (x, h)) = 0 for any h ∈ x.
Therefore, µ(N(x, h)) = µ(N+(x, h)) + µ(F (x, h)) = µ(N+(x, h)).

Since N+(x, h) and N+(x, h′) are exclusive, Lemma B.6 implies

∑

h∈x

ρx(h) =
∑

h∈x

µ(N(x, h)) =
∑

h∈x

µ(N+(x, h)) = µ

(⋃

h∈x

N+(x, h)

)
= 1.

Hence, ρx is actually a probability measure over H whenever µ is regular.

B.4 Proof of Proposition 2.2

Notice first that N(x, h) and N+(x, h) are invariant up to affine transformation of u. Thus,
without loss of generality, we can assume u(l) = 1 and u(l) = 0, where l and l are respectively a
maximal element and a minimal element in terms of º on ∆(Z). We can consider [0, 1]n instead
of H by using the continuous, mixture linear and onto mapping ϕ : H → [0, 1]n defined by
ϕ(h) = (u(h(ω1)), · · · , u(h(ωn))). By definition, ϕ(h) 6= ϕ(h′) for any h, h′ ∈ x and any x ∈ D+

F .
Then,

N(x, h) = {p ∈ ∆(Ω)|ϕ(h) · p ≥ ϕ(h′) · p, for all h′ ∈ x},
N+(x, h) = {p ∈ ∆(Ω)|ϕ(h) · p > ϕ(h′) · p, for all h′ ∈ x with h′ 6= h},

where ‘·’ means the inner product.
(if part) Assume µ is full-dimensional.

Lemma B.7. ∆(Ω) = ∪h∈xN
+(x, h)∪F , where F is the union of finite polyhedrons of dimension

less than n− 1, and F and ∪h∈xN
+(x, h) have no intersection.

Proof. We know ∆(Ω) = ∪h∈xN(x, h). Let F (x, h) ≡ N(x, h) \ N+(x, h). Then, ∆(Ω) =
∪h∈xN

+(x, h) ∪ ∪h∈xF (x, h). By definition, ∪h∈xN
+(x, h) and ∪h∈xF (x, h) are mutually ex-

clusive. Notice that

F (x, h) = ∪h′∈x\{h}{p ∈ ∆(Ω)|ϕ(h) · p = ϕ(h′) · p}.

By definition of D+
F , ϕ(h) 6= ϕ(h′) whenever h and h′ are elements of the same menu. Since

{p ∈ ∆(Ω)|ϕ(h) · p = ϕ(h′) · p} is the intersection of the (n − 1)-dimensional unit simplex and
the hyperplane (ϕ(h)− ϕ(h′)) · p = 0 with non-zero normal vector, it must be a polyhedron with
dimension less than n− 1. Hence, F ≡ ∪h∈xF (x, h) satisfies the requirement.

If µ is full-dimensional, µ(F ) = 0. Thus,

1 = µ(∆(Ω)) = µ(∪h∈xN
+(x, h)) + µ(F ) = µ(∪h∈xN

+(x, h)),

and hence (µ, u) is regular.
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(only-if part) Assume (µ, u) is regular. Take any F ∈ B(∆(Ω)) with dimF < n− 1. We want
to show µ(F ) = 0. Since F has dimension less than n − 1, there exists a hyperplane v′ · p = c
with a normal vector v′ ∈ Rn \ {0} and c ∈ R such that F ⊂ {p ∈ ∆(Ω)|v′ · p = c}. Since
{p ∈ ∆(Ω)|v′ · p = c} has dimension less than n− 1, the affine hull of {0} ∪ {p ∈ ∆(Ω)|v′ · p = c}
is a hyperplane of Rn. Hence, there exists a normal vector v 6= 0 such that {q ∈ Rn|v · q = 0}
coincides with the above affine hull. There exist v1, v2 ∈ Rn

+ such that v can be rewritten as
v = v1 − v2. Since ‖v‖ can be taken to be small, we can assume v1, v2 ∈ [0, 1]n. Ontoness of ϕ
implies that there exists h1, h2 ∈ H satisfying ϕ(h1) = v1 and ϕ(h2) = v2. Let x ≡ {h1, h2} ∈ D+

F .
Then,

∆(Ω) = N+(x, h1) ∪N+(x, h2) ∪ {p ∈ ∆(Ω)U1(h1, p) = U1(h2, p)}.
Since (µ, u) is regular,

0 = µ({p ∈ ∆(Ω)|U1(h1, p) = U1(h2, p)}) = µ({p ∈ ∆(Ω)|v′ · p = c}) ≥ µ(F ).

Hence, µ(F ) = 0.

B.5 Proof of Theorem 3.1

Lemma B.8. For any non-null event A ∈ S and any f̄ ∈ H, x ÂA y ⇔ xAf̄ Â yAf̄ .

Proof. Assume x ÂA y. Take any f̄ ∈ H. By Consequentialism, x ∼A xAf̄ and y ∼A yAf̄ . From
Conditional Order, xAf̄ ÂA yAf̄ . Thus, Dynamic Consistency implies xAf̄ Â yAf̄ .

To show the converse, assume xAf̄ Â yAf̄ . Dynamic Consistency implies xAf̄ ÂA yAf̄ . Since
x ∼A xAf̄ and y ∼A yAf̄ by Consequentialism, x ÂA y.

From Theorem 2.1, º admits an additive SEU representation with (µ, u), that is,

U(x) =
∫

S
sup
h∈x

(∑

ω∈Ω

u(h(ω))p(ω)

)
dµ(p).

represents º. For each p ∈ S,

sup
h∈xAf

∑

Ω

u(h(ω))p(ω) = sup
h∈xAf


∑

A

u(h(ω))p(ω) +
∑

Ω\A
u(h(ω))p(ω)




= sup
h∈xAf


∑

A

u(h(ω))p(ω) +
∑

Ω\A
u(f(ω))p(ω)




= sup
h∈xAf

∑

A

u(h(ω))p(ω) +
∑

Ω\A
u(f(ω))p(ω).

Hence,

U(xAf) =
∫

S
sup

h∈xAf

(∑

A

u(h(ω))p(ω)

)
dµ(p) +

∫

S

∑

Ω\A
u(f(ω))p(ω)dµ(p).
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Therefore, for all x, y ∈ D, f, g ∈ H,

U(xAf) > U(yAf)

⇔
∫

S
sup

h∈xAf

(∑

A

u(h(ω))p(ω)

)
dµ(p) >

∫

S
sup

h∈yAf

(∑

A

u(h(ω))p(ω)

)
dµ(p)

⇔
∫

S
sup
h∈x

(∑

A

u(h(ω))p(ω)

)
dµ(p) >

∫

S
sup
h∈y

(∑

A

u(h(ω))p(ω)

)
dµ(p). (20)

Since U(xAf) represents ºA from Lemma B.8, (20) implies

ŨA(x) ≡
∫

S
sup
h∈x

(∑

A

u(h(ω))p(ω)

)
dµ(p)

also represents ºA. By rearrangement,

ŨA(x) =
∫

∆A(Ω)
sup
h∈x

(∑

A

u(h(ω))p(ω)

)
dµ(p)

=
∫

∆A(Ω)
sup
h∈x

(∑

A

u(h(ω))
p(ω)
p(A)

)
p(A)dµ(p)

=
∫

∆A(Ω)
sup
h∈x

(∑

A

u(h(ω))βA(p)(ω)

)
p(A)dµ(p).

For any A ∈ F and any continuous function ϕ : ∆(Ω) → R, let

ΛA(ϕ) ≡
∫

∆(Ω)
ϕ(p)p(A)dµ(p).

Since ΛA is non-negative continuous linear functional, the Riesz representation theorem ensures
that there exists a unique non-negative measure µ∗ such that

ΛA(ϕ) =
∫

∆(Ω)
ϕ(p)dµ∗(p).

Notice that µ∗ ∈ ∆A(Ω). Thus,

ŨA(x) =
∫

∆A(Ω)
sup
h∈x

(∑

A

u(h(ω))βA(p)(ω)

)
p(A)dµ(p)

=
∫

∆A(Ω)
sup
h∈x

(∑

A

u(h(ω))βA(p)(ω)

)
dµ∗(p)

=
∫

∆(A)
sup
h∈x

(∑

A

u(h(ω))q(ω)

)
dµ∗ ◦ (βA)−1(q),
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where µ∗ ◦ (βA)−1 is the non-negative measure induced by βA : ∆A(Ω) → ∆(A). Finally, let

µA ≡ µ∗ ◦ (βA)−1

µ∗ ◦ (βA)−1(∆(A))
.

Then,

UA(x) ≡
∫

∆(A)
sup
h∈x

(∑

A

u(h(ω))q(ω)

)
dµA(q)

is the additive SEU representation with components (µA, u) representing ºA.

B.6 Proof of Proposition 3.1

By definition of Bayes’ Rule, for any B ∈ B(S) and C ∈ B(Ω),

P (B × C|S ×A) =
P ((B × C) ∩ (S ×A))

P (S ×A)

=

∫
B p(C ∩A) dµ0(p)∫

S p(A) dµ0(p)
. (21)

Since the function p(C ∩A)/p(A) is continuous with respect to p, we have
∫

B

p(C ∩A)
p(A)

dµ∗(p) =
∫

B

p(C ∩A)
p(A)

p(A) dµ0(p)

from equation (12). Hence, the numerator of expression (21) is equal to
∫

B

p(C ∩A)
p(A)

p(A) dµ0(p) =
∫

B

p(C ∩A)
p(A)

dµ∗(p)

=
∫

B
βA(p)(C) dµ∗(p). (22)

By taking ϕ : S → R as the constant function equal to one, equation (12) implies

µ∗(S) =
∫

S
p(A) dµ0(p).

Hence, the denominator of expression (21) is equal to
∫

S
p(A) dµ0(p) = µ∗(S)

= µ∗(β−1
A (∆(A)))

= νA(∆(A)). (23)

Thus, taking (22) and (23) together,

P (B × C|S ×A) =

∫
B βA(p)(C) dµ∗(p)

νA(∆(A))
.

30



By the change of variables, for any F ∈ B(∆(A)),

P (β−1
A (F )× C|S ×A) =

∫
β−1(F ) βA(p)(C) dµ∗(p)

νA(∆(A))

=

∫
F q(C) dµ∗ ◦ β−1

A (q)
νA(∆(A))

=

∫
F q(C) dνA(q)
νA(∆(A))

=
∫

F
q(C) d

(
νA(q)

νA(∆(A))

)

=
∫

F
q(C) dµA(q).

Thus, letting C = A, we have, for any F ∈ B(∆(A)),

P (β−1
A (F )×A|S ×A) = µA(F ).

B.7 Proof of Theorem 3.2

From Proposition 2.2, µ is full-dimensional.

Step 1: µ∗ satisfying (12) is full-dimensional.

We want to show µ∗(F ) = 0 whenever dimF < n−1. We identify ∆(Ω) with the unit simplex
in Rn. Since F has dimension less than n− 1, there exists a hyperplane v · q = c with v 6= 0 and
c ∈ R such that F is included the intersection of ∆(Ω) and the hyperplane, denoted by H. Let
Bn ≡ {p ∈ ∆(Ω)|d(H, p) < 1/n}, where d is the Euclidean metric, and d(H, p) = minq∈H d(q, p).
That is, Bn is the 1/n-open neighborhood of H relative to the unit simplex. For any n, there
exists a continuous function ϕn : ∆(Ω) → [0, 1] such that ϕ(p) = 1 if p ∈ H and ϕ(p) = 0 if
p ∈ ∆ \Bn. Then, the sequence {ϕn}∞n=1 converges pointwise to the characteristic function of H,
χH : ∆(Ω) → R, satisfying that χH(p) = 1 if p ∈ H and χH(p) = 0 otherwise. From condition
(12), for all n, ∫

∆(Ω)
ϕn(p) dµ∗(p) =

∫

∆(Ω)
ϕn(p)p(A) dµ(p).

The dominated convergence theorem (See Royden [12].) implies

µ∗(F ) ≤ µ∗(H)

=
∫

∆(Ω)
χH(p) dµ∗(p)

=
∫

∆(Ω)
χH(p)p(A) dµ(p).

=
∫

H
p(A) dµ(p).

Since µ is full-dimensional, µ(H) = 0. Thus, we have µ∗(F ) = 0.
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Let nA ≡ #A. For any A ∈ A, say that µ ∈ ∆(Ω) is full-dimensional relative to A if µ(F ) = 0
whenever dimF < nA − 1 with F ∈ B(∆(A)).

Step 2: µA is full-dimensional relative to A.

Since µA satisfies

µA(F ) =
νA(F )

νA(∆(Ω))
=
µ∗(β−1

A (F ))
µ∗(∆(Ω))

,

we have to show that µ∗(β−1
A (F )) = 0 for any F ∈ B(∆(A)) with dimF < nA − 1. From Step 1,

it suffices to show that β−1
A (F ) has dimension less than n− 1.

Now βA : ∆A(Ω) → ∆(A) is regarded as the composite function of the following two functions:
T1 : ∆A(Ω) → RnA

+ \ {0} defined by T1(q) ≡ (q1, · · · , qnA , 0, · · · , 0) and T2 : RnA
+ \ {0} → ∆(A)

defined by T2(q) ≡ (q1/
∑
qi, · · · , qnA/

∑
qi).

For any F ∈ B(∆(A)) with dimF < nA−1, there exists a hyperplane v ·q = c with v ∈ Rn\{0}
and c ∈ R such that F is included the intersection of ∆(A) and the hyperplane. Denote this
intersection by E, which has dimension less than nA−1. Since the inverse image T−1

2 (E) is equal
to

aff(E ∪ {0}) \ {0},
where aff(X) means the affine hull of X, T−1

2 (E) has dimension less than nA. Since the projection
mapping T1 has rank nA, T−1

1 (T−1
2 (E)) must have dimension less than n− 1. Full dimensionality

of µ∗ implies
µ∗(β−1

A (F )) = µ∗(T−1
1 (T−1

2 (F ))) ≤ µ∗(T−1
1 (T−1

2 (E))) = 0.

Thus, µ∗(β−1
A (F )) = 0.

Step 3: (µA, u) is regular relative to A.

First of all, as pointed out in the proof of Proposition 2.2, we can consider [0, 1]n instead
of H by using the continuous, mixture linear and onto mapping ϕ : H → [0, 1]n defined by
ϕ(h) = (u(h(ω1)), · · · , u(h(ωn))). For any x ∈ D+A

F , ϕ(h) 6= ϕ(h′) for any h, h′ ∈ x. For any
x ∈ D+A

F , let

NA(x, h) = {p ∈ ∆(A)|ϕ(h) · p ≥ ϕ(h′) · p, for all h′ ∈ x},
N+A(x, h) = {p ∈ ∆(A)|ϕ(h) · p > ϕ(h′) · p, for all h′ ∈ x with h′ 6= h},

where ‘·’ means the inner product.
By the same argument in Lemma B.7, we can show that

∆(A) = ∪h∈xN
+A(x, h) ∪ FA

where FA is the union of finite polyhedrons of dimension less than nA−1, and FA and ∪h∈xN
+A(x, h)

have no intersection. Since µA is full-dimensional relative to A, µA(FA) = 0. Thus,

1 = µA(∆(A)) = µA(∪h∈xN
+A(x, h)) + µA(FA) = µA(∪h∈xN

+A(x, h)) = µA(∪h∈xN
+(x, h)),

and hence (µA, u) is regular relative to A.
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