Financial Engineering Quantitative Finance education @ SMU

by Kian-Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University

Presentation at Hitotsubashi University, August 8, 2009

Quantitative Finance Major courses

There are 14 compulsory semester courses out of 36 for BBM degree

- Introductory Statistics A (STAT101) or B (STAT102)
- Financial Accounting (ACCT101)
- Management Accounting (ACCT102)
- Finance (FNCE101)
- Linear Algebra and Regression (QF201)
- Differential Equations (QF202)
- Real Analysis (QF203)
- One elective of *

Probability and Finance Theory (QF204) or Stochastic Processes and Modelling (STAT306) or Risk Theory and Loss Models (STAT311)

One elective of

Computer Technology for Finance (QF205) or Software Foundations (IS200) or Object Orientated Application Development (IS201) or Data Management (IS202) or Software Engineering (IS203)

- Structured Finance (QF301)
- Investment and Financial Data Analysis (QF302) *
- Stochastic Calculus and Finance Theory (QF303) *
- Numerical Methods (QF304) *
- Global Financial Risk Management (QF305)
 - * = advanced undergraduate level

QF 201 Linear Algebra and Regression

- Matrices (including matrix operations, inversion)
- Systems of linear equations (including their solutions by Gauss elimination and matrix operations)
- Determinants, co-factors, Cramer's rule, Euclidean space, general vector spaces, sub-spaces, linear independence
- Norms, Inner, Outer products, Orthogonal bases, Gram-Schmidt orthogonalization
- Eigenvalues, eigenvectors, eigenspaces, eigenbases
- Quadratic forms, positive definiteness
- Least squares solution
- Applications
- Functional language programming: MatLab and Excel VBA

QF 202 Differential Equations

- Solution methods for specific first-order differential equations and higher-order linear differential equations with constant and variable coefficients
- Solution methods for systems of linear first-order differential equations
- Numerical methods e.g. Euler's method, Runge-Kutta method
- Analytical and numerical solutions to the Black-Scholes partial differential equation
- Programming languages: MATLAB, Excel VBA and Maxima

QF 203 Real Analysis

- Foundational mathematical concepts
- Basics of differentiation and integration
- Notions of numbers
- Sets
- Functions
- Sequences
- Limits
- Continuity
- Differential and integral calculus

QF 204 Probability and Finance Theory

Mathematical analysis of probability theory rather than statistical aspects

- Distribution Theory, Conditional Probability and Conditional Expectation
- Modeling state space securities under market equilibrium
- Martingale, Equivalent Martingale Measures, Fundamental Theorems of Asset Pricing
- Change of Numeraire and Discounting, Risk-Adjusted and Forward-Neutral Measures,
- Minimal and Maximal prices of contingent claims
- Markovian Models, and Existence of martingale measures preserving the Markov property
- Discrete Stochastic Calculus and Multiperiod Models leading to no-arbitrage pricing of contingent claims
- Theory of risk aversion and utility, risk premia
- Theory of Markov Chains, Applications in Credit Modeling
- Measure-Theoretic Probability, Moments, Characteristic Functions
- Inequalities, and Central Limit Theorems
- Optimal Consumption and Investment Problems
- Interest Rate Theory
- Construction of Brownian motion

QF 205 Computer Technology for Finance

Use of computing technology in the realm of finance

- Collation of financial data e.g. stock, futures, indexes, currency, interest rate, economic data
- Analysis of data for patterns
- Presentation and visualization of information
- Programming live-feed data
- Trading decision-making

QF 301 Structured Finance

- Basic background to derivatives pricing
- Forwards
- Futures
- Options
- Bonds
- Swaps
- Structured products e.g. CDS, CDO, structured bons
- Current market views
 - * about 6 lectures given by practitioners from banks

QF 302 Investment and Financial Data Analysis

Provides fundamental domain knowledge in financial investment theory, in econometrics modeling, and in empirical analyses

- Return Distributions
- Simple Linear Regression and Hedging
- Capital Asset Pricing Model
- Cost of Capital
- Time Series Models
- Market Efficiency and Random Walk
- Predictability of Stock Returns
- Event Studies
- Multiple Linear Regression
- Time Effect Anomalies
- Specification Errors
- Mutli-Factor Asset Pricing Model
- Exchange Rates and risk premia
- Unit Root Processes and PPP
- Conditional Heteroskedasticity

QF 303 Stochastic Calculus and Finance Theory

Introduce students to the mathematics of financial derivatives Continuous time perspectives

- No-arbitrage principle
- Ito calculus
- Girsanov theorem
- Feynman-Kac theorem
- Concepts of arbitrage and risk-neutral pricing in the context of multi-period asset pricing models
- Use of Markov processes
- Martingales, filtration concepts, stopping times in American options
- State price density, martingale representations theorem
- Term structure theories
- Application problems in exotic derivatives pricing

QF 304 Numerical Methods

- Building recombining and non-recombining trees
- Sampling schemes
- Variance reduction techniques
- Monte Carlo and other simulation methods
- FFT
- Hedge computations involving Greeks
- Implied volatilities
- Calibration methods
- Application problems in derivatives and portfolio risks
- Functional language programming: MatLab and Excel VBA

QF 305 Global Financial Risk Management

Understanding Global financial risks

- Basel principles and standards for the management of the key types of risks faced by commercial banks: Market Risk, Credit Risk, and Operational Risk
- The Basel II framework of the three pillars, namely the determination of minimum capital requirements, the supervisory review process, and market discipline
- Discussing different statistical methods to evaluate VAR
- Review of some of the fundamental concepts in risk management for commercial banks
- Bank management and risk measurements of derivatives and portfolios