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SMOOTHED VERSIONS OF STATISTICAL FUNCTIONALS

FROM A FINITE POPULATION �

Hitoshi Motoyama�� and Hajime Takahashi���

We will consider the central limit theorem for the smoothed version of statistical
functionals in a �nite population� For the in�nite population� Reeds ����	
 and Fern�
holz ����
 discuss the problem under the conditions of Hadamard di�erentiability of
the statistical functionals and derive Taylor type expansions� Lindeberg�Feller�s cen�
tral limit theorem is applied to the leading term� and controlling the remainder terms�
the central limit theorem for the statistical functionals are proved� We will modify
Fernholz�s method and apply it to the �nite population with smoothed empirical dis�
tribution functions� and we will also obtain Taylor type expansions� We then apply the
Erd�os�R�enyi central limit theorem to the leading linear term to obtain the central limit
theorem� We will also obtain su�cient conditions for the central limit theorem� both
for the smoothed in�uence function� and the original non�smoothed versions� Some
Monte Carlo simulation results are also included�

Key words and phrases � asymptotic normality� central limit theorem� di�erentiable
functional� empirical distribution function� �nite population� functional Taylor se�
ries expansions� Hadamard di�erentiable� in�uence function� kernel smoothing� o�cial
statistics� opinion poll� simple random sampling� statistical functional� survey sam�
pling� uniform topology�

�� Introduction

We will consider the central limit theorem for the statistical functionals in a �nite

population� A reason why we assume an in�nite population is to simplify both the the�

ory and the computation� However� in the area of sampling surveys �o�cial statistics�

opinion poll� etc��� the sample size is fairly large compared to the population size� and

thus it may be inappropriate to apply classical statistical theory� especially large sample

theory� directly to these problems� On the other hand� the progress of modern computer

technology makes it possible to work directly with �nite population problems in many

This version ����������� This paper has been subsequently published in the Journal of Japan

Statistical Society� December ����� Vol� 	�� No�	� pp�
����
�

�This article is a part of the �rst author�s doctoral thesis submitted to Hitotsubashi University�
��The Graduate School of Economics� Hitotsubashi University� �� Naka Kunitachishi Tokyo Japan

and Statistical Information Institute for Consulting and Analysis� �	� MinamiAoyama Minatoku

Tokyo Japan� This research is supported in part by the GrantinAid for Scienti�c Research from the

Ministry of Education� Culture� Sports� Science and Technology ����	��
� ��		��
� and in part a grant

from the ��st Century COE Program �Research Unit for Statistical Analysis in Social Sciences� at

Hitotsubashi University�
���The Graduate School of Economics� Hitotsubashi University� �� Naka Kunitachishi Tokyo Japan�

This research is supported in part by the GrantinAid for Scienti�c Research from the Ministry of

Education� Culture� Sports� Science and Technology ����	��	�

	



areas of statistical applications� and methods based on resampling� such as the bootstrap

method� help us to measure the accuracy of the estimators� Here� the justi�cation of

resampling methods may depend on the central limit theorem for the estimators and

we will prove the asymptotic normality of the estimators by applying the theory of sta�

tistical functionals developed by von Mises �	
���� Reeds �	
��� Fernholz �	
���� and

Takahashi �	
���� among others�

We will also consider smoothed versions of the empirical distribution functions� Al�

though it may sound strange in the �nite population problem� in some practical situa�

tions it is reasonable to assume that the underlying distribution function converges to

the continuous distribution function as the population size goes to in�nity� Here we have

implicitly assumed the probability space where continuous distribution functions are also

de�ned� The �nite probability spaces are embedded in the space which makes it possible

to consider the limits operation� In this case� the smoothed bootstrap may be applied�

and it is worth considering the smoothed version of the empirical distribution function

and the statistical functionals de�ned on it� For these reasons� we will derive asymptotic

normality of smoothed statistical functionals for a simple random sample from a �nite

population� The non�smoothed version will be obtained as a simple corollary to our

results�

To �x the idea� we let ��N� � fx�� � � � � xNg be a mutually distinct �nite population

of size N � and a simple random sample �X��X�� � � � �Xn� is taken from ��N� without

replacement� More precisely� let ���� � � � � �N � take all possible permutations of �	� � � � � N�

with common probability �N ����� and Xi � x�i� 	 � i � n�

De�ne a population distribution function �d�f��

FN�x� �
	

N

NX
i��

I����x��xi��

and an empirical distribution function �X��X�� � � � �Xn� by

Fn�x� �
	

n

nX
i��

I����x��Xi��

Let T be a statistical functional de�ned on the set of distribution functions� including

both the population distribution function and all empirical distribution functions �see von

Mises �	
���� Fernholz �	
���� Reeds �	
��� Takahashi �	
����� then the parameter of

interest is expressed by T �FN� and its naive estimate may be given by T �Fn�� However�

as a �nite population distribution function tends to become a smooth function as N gets

larger� it may be more appealing to replace Fn by its smoothed version eFn� the kernel

distribution function estimator� which is to be de�ned below� This type of statistic

T � eFn� is used in the context of the smoothed bootstrap �Silverman and Young �	
����

Young �	

��� and smoothed quantiles �Falk �	
����� Fernholz �	

�� derives asymptotic

�



normality of smoothed statistical functionals in I�I�D� settings� We consider the �nite

population counterpart and obtain its asymptotic distribution� In order to ensure that the

population distribution converges to the su�ciently continuous distribution function� we

need the following Assumption A� This is the standing assumption to be used throughout

this paper�

Assumption A� There exist some sequences BN � � and constant M � � satis�

fying the condition

� � inf
N
BN � sup

N
BN �M ���	�	�

such that for any bounded set B � R

jFN�x�� FN�y�j � BN jx� yj� O�	�N�� as N ���	���

holds uniformly in x� y � B�

Assumption A represents the situation where the population distribution goes to the

Lipschitz continuous function uniformly in any bounded set of R as N � �� Also we

note that Assumption A assures that the amount of jumps of FN are at most O�	�N��

Now� we have used and will often use Landau�s notation and its probabilistic version�

for fpn� n � 	g and fqn� n � 	g� pn � o�qn�� as n � �� if pn
qn

� �� as n � ��

�pn � op�qn�� as n � �� if pn
qn

� � in probability� as n � �� and pn � O�qn�� as

n � �� if jpn
qn
j � M for all n � 	 and some � � M � �� �pn � Op�qn�� as n � �� if

P�jpn
qn
j � M� � 	 � � for all n � 	� � � � � 	� and some � � M ����

We are ready to de�ne a smoothed empirical distribution function� For each n � 	�

a kernel d�f� estimator eFn is de�ned by taking the convolution of Fn with some density

kn� eFn � Fn 	 kn� In our case�

eFn�x� � Fn 	 kn�x� �
Z
Fn�x� t�kn�t�dt�	���

�
Z
Fn�x� t�dKn�t� �

Z
Kn�x� t�dFn�t�

�
	

n

nX
i��

Kn�x�Xi��

where Kn�x� �
R x
�� kn�t�dt�

We will next de�ne a regular kernel sequence fkn� n � 	g� which will be used to de�ne

our smoothed empirical distribution function� Let k be a symmetric kernel function �not

necessarily nonnegative� satisfying
R
k�x�dx � 	 and let fan� n � 	g be a sequence of

positive real numbers� The sequence of kernels fkn� n � 	g de�ned by

kn�x� �
	

an
k
� x
an

�
� n � 	��	���

will be called a kernel sequence if an � o�	�� as n � �� Note that if fkn� n � 	g is a

kernel sequence� then the sequence of d�f� Kn�x� �
R x
�� kn�t�dt converges weakly to the

�



d�f� �� where

��x� �

����� �� x � �

	� x � �
��	���

We will consider a restricted class of the kernel sequences� which will be called a reg�

ular sequence� A regular sequence will be needed when we prove the op�n�
�
� � convergence

of the remainder terms of the Taylor series expansion of the statistical functionals�

Definition �� �Fernholz ������ ����	
 A kernel sequence fkng is regular if

there exists a sequence fbng of positive real numbers such that bn � o�n����� andZ
jtj�bn

jkn�t�jdt � o�n�������	��

Cs�org�o and Horv�ath �	

�� considers the similar but more restrictive regularity con�

ditions in investigating the asymptotic properties of smoothed empirical and quantile

processes in I�I�D� settings� Imposing these types of regularity conditions on kernel might

be unavoidable to some extent without imposing more smoothness conditions on popu�

lation distributions �Yukich �	

�� and van der Vaart �	

����

We close this section with some comments� Campbell �	
��� proposes the use of

statistical functionals in the �nite population and gives a sketch of the proof for the

asymptotic normality in various sampling schemes� She� however� uses essentially the

I�I�D� result in proving the asymptotic normalities� We will �ll in the incompleteness of

her arguments and give legitimate proofs for these results� Some of the related results on

the �nite population problem are obtained by Motoyama and Takahashi ������� where

the rate of convergence to a normal distribution of statistical functionals in simple random

sampling is obtained� For L�statistics in survey sampling problems� we refer readers to

Shao �	

���

�� Statistical Functionals

We will brie�y review the theory of statistical functionals� We start with the de��

nition of statistical functionals for the distribution functions on a �nite population� We

then de�ne the three typical di�erentiations of the functionals� and the theory of Taylor

series type expansions� The conditions under which the linear part of the expansions

obeys the central limit theorem� and the conditions and the choice of the topology which

guarantee the convergence of the remainder terms to zero as fast as o�n�
�
� � in probability�

are the main issue of this section� We will modify the arguments of Reeds �	
�� and

Fernholz �	
��� for the �nite population problems with the usual empirical distribution

functions� and then for the smoothed distribution functions�

Let 	 be the parameter of interest� We suppose that 	 is a functional of the underlying

distribution FN and we write 	 � 	N �FN�� We also let Tn � Tn�X�� � � � �Xn� be an

�



estimator of 	� Then it is tempting to write Tn � 	N�n�Fn�� We will formalize this in a

manner so that that we can conduct rigorous mathematical arguments in the following

manner�cf� Fernholz �	
��� 	

����

Definition �� When Tn � Tn�X�� � � � �Xn� can be written as a functional T of

the empirical distribution function Fn� Tn � T �Fn�� where T does not depend on n� then

T is called a statistical functional� The domain of T is assumed to contain the empirical

d�f�s for all n � 	� as well as the underlying true d�f� FN � Unless otherwise speci�ed� the

range of T will be the set of real numbers� Moreover� we call T � eFn� a smoothed statistical

functional where eFn is the smoothed empirical distribution function considered above�

Example �� �Sample mean
 The simplest statistic may be the sample mean�

Tn�X�� � � � �Xn� �
	

n

nX
i��

Xi�

Then for a general distribution function G� the functional de�ned by

T �G� �
Z
xdG�x�

satis�es Tn�X�� � � � �Xn� � T �Fn��

Example �� �Sample quantile
 We de�ne a statistical functional for a distri�

bution function G by

T �G� � G���q�� � � q � 	� G���q� � inffx � q � G�x�g�

It follows that the q�th sample quantile is given by the statistical functional de�ned by

T �Fn� � X�dnqe��

where dxe is the smallest integer not less than x and X��� � � � � � X�n� are the order

statistics of X�� � � � �Xn�

Example �� �L�estimator
 Statistics of the form

T �Fn� �
sX
i��


iF
��
n �qi�� F��

n �q� � inffx � q � Fn�x�g

where q�� � � � � qs are numbers in ��� 	��

Example � �M�estimators
 Let � be a real valued function of two variables

and let Tn be de�ned implicitly by

nX
i��

��Xi� Tn� � ��

�



The corresponding functional is de�ned as a solution T �G� � 	 ofZ
��x� 	�dG�x� � ��

Estimators of this form are called M�estimators�

Let X��X�� � � � �Xn be a simple random sample without replacement from a �nite

population x�� � � � � xN with distribution function FN � Then FN�X��� � � � � FN�Xn� is a

simple random sample without replacement from the �nite population f	�N� � � � � 	g� Let

U�
n�x� � �

n

Pn
i�� I���x��FN�Xi�� be the empirical distribution function of fFN�X��� � � � � FN�Xn�g�

Then

Fn�x� �
	

n

nX
i��

I����x��Xi�

�
	

n

nX
i��

I���FN�x���FN�Xi�� � U�
n 
 FN�x��

Now� the monotone increasing and continuous version of FN with F���FN�x�� � x

and FN�F��
N �u�� � u will be given by

FNS�x� �

���������������������������������������

FN�x���� �
�FN�x����

�
arctan�x� x���� x � x���

FN�x�i�� x � x�i��

i � 	� � � � � N

FN�x�i�� �
FN �x�i�����F�x�i��

x�i����x�i� �x� x�i�� x � �x�i�� x�i	�� 

�x�i� �� x�i	����

i � 	� � � � � N � 	

	 � �
N

arctan�x� x�N�� x � x�N�

����	�

where x��� � x��� � � � � � x�N� are the ordered characteristics of the population�

FNS de�ned above is the strictly increasing continuous function �but not a distribution

function�� satisfying FNS�xi� � FN�xi� for all i � 	� � � � � N and kFNS � FNk � O�	�N��

Hence� de�ning Un�x� � �
n

Pn
i�� I���x��FNS�Xi��� we also have

Fn�x� �
	

n

nX
i��

I���FN�x���FNS�Xi�������

�
	

n

nX
i��

I���FNS�x���FNS�Xi�� � Un 
 FNS�x��

A statistical functional T induces a functional � of d�f�s Un by

� �Un� � T �Fn� � T �Un 
 FNS�������

Generally� for each FN � we de�ne a statistical functional � of d�f� G on ��� 	 by

� �G� � T �G 
 FNS������





whenever the right hand side is de�ned� Hence� we can restrict our attention to d�f�s

concentrated on ��� 	 and view them as elements of D��� 	 � the space of right continuous

real valued functions on ��� 	 which have left limits�

If T is a statistical functional and � is the functional induced in D��� 	 by ������ the

asymptotic properties of T �Fn� and T � eFn� may be determined by the di�erentiability

of � � The asymptotic properties depend on the type of the di�erentiations� We will

consider three di�erent type of di�erentiations� and they are de�ned in the following�cf�

Fernholz �	

����

Definition �� Let � be a functional de�ned on an open subset A of a normed

vector space V and let g � A�

�� The functional � is Gateaux di�erentiable at g if there exists a continuous linear

functional � �g de�ned on V such that

lim
t��

� �g � th�� � �g�� � �g�th�

t
� ������

for each h � V� In this case � �g will be called the Gateaux derivative of � at g�

	� The functional � is Hadamard di�erentiable at g if for any compact subset K � V�


	��� holds uniformly for h � K� The linear functional � �g will be called the Hadamard

derivative of � at g�

� The functional � is Fr�echet di�erentiable at g if for any bounded subset B � V� 
	���

holds uniformly for h � B� The linear functional � �g will be called the Fr�echet derivative

of � at g�

Since singleton is compact� and the compact set is bounded� Fr�echet di�erentiability

implies Hadamard di�erentiability which in turn implies Gateaux di�erentiability�

For a statistical functional T and a d�f� FN � the in�uence function of T at FN is a

real valued function IFT�FN de�ned by

IFT�FN �x� �
d

dt
T �FN � t��x � FN ��jt������

where �x is the d�f� of the point mass one at x� i�e� �

�x�s� � ��s� x� �

����� �� s � x

	� s � x
�

If T and � are de�ned as above� then the Gateaux derivative � �U of � at uniform

distribution function U and the in�uence function of T at FNS are related by

IFT�FNS
�x� � � �U ���x � FNS� 
 F��

NS�������

�



since

IFT�FNS
�x� � lim

t��

T �FNS � t��x � FNS��� T �FNS�

t

� lim
t��

� �U � t��x � FNS� 
 F��
NS�� � �U�

t
� � �U ���x � FNS� 
 F��

NS��

where we have used the fact that F��
NS�FNS�x�� � x and FNS�F��

NS�u�� � u hold from the

monotone increasing property and the continuity of FNS�

Note� Since FNS is a monotone increasing function� using the �right��continuity of

FNS we have

F��
NS�FNS�x�� � inffx� � FNS�x�� � FNS�x�g

� inffx� � FNS�x�� � FNS�x�g � x�

And� from the continuity of FNS� we have

FNS�F��
NS�u�� � FNS�inffx � FNS�x� � ug� � u�

Here and in what follows� we assume

Z
IFT�FNS

�x�dFN�x� �
	

N

NX
i��

IFT�FNS
�xi� � �������

by appropriate choice of additive constant�Reeds �	
��� p��� and Ser�ing �	
���� pp�����

��� Lemma A��

Under Assumption A� we will prove the following proposition which corresponds to

Theorem ��� of Fernholz �	

	� for the I�I�D� case�

Proposition �� Let X�� � � � �Xn be a simple random sample without replacement

from a �nite population with distribution function FN � Let Fn be the empirical distribution

function and let eFn be the smoothed empirical distribution function de�ned by 
��� with

a regular kernel sequence fkng� Then� we have

p
n sup
���x��

j eFn�x�� Fn�x�j � � a�s� n�N ������
�

Proof� The proof will be given in the Appendix of this article�

In order to evaluate the linear part of the smoothed statistical functional� we will

show that the in�uence function of the smoothed statistical functional may be obtained

by smoothing the in�uence function of the original functional� We will prove the next

lemma under the slightly weaker conditions of Lemma � of Fernfolz �	

��� which is

suitable for our purpose�

�



Lemma �� Suppose � is Gateau di�erentiable at the uniform distribution function

U with derivative � �U � If the in�uence function IF � IFT�FNS is Lebesgue�Stieltjes integrable

with respect to functions of bounded variation� we have

� �U� eUn� �
	

n

nX
i��

fIF�Xi� � � �U �U�����	��

where eUn � eFn 
 F��
NS and fIF � IF 	 kn�

Note that when a function g is right continuous having left limit� and a function h is

a �right��continuous monotone nondecreasing function having left limit� it is easily seen

that the composition g 
 h is a right continuous function having left limits�

Proof� Let ti� i � 	� � � � �m be �� � t� � � � � � tm � �� and !ti� i � 	� � � � �m� 	

are middle points ti � !ti � ti	�� Then as t� � ��� tm � �� maxi�ti	� � ti� � ��

Kn�x � �x 	 kn is approximated uniformly on R by the sum

S �
mX
i��

�Kn�ti	���Kn�ti���x�
ti�

Therefore� Kn�x 
 F��
NS may be approximated by the function of the form S 
 F��

NS in

the space D��� 	 �

It follows from the linearity of � �U and ����� that

� �U �S 
 F��
NS� �

mX
i��

�Kn�ti	���Kn�ti���
�
U��x�
ti 
 F��

NS�

�
mX
i��

�Kn�ti	���Kn�ti���IF�x� !ti� � � �U �U������		�

Since IF is Lebesgue�Stieltjes integrable with respect to Kn� the sum ���		� converges tofIF�x� � � �U �U� for each given x�

Hence from the continuity of � �U � we have

� �U �Kn�x 
 F��
NS� � fIF�x� � � �U�U��

Since� eUn � eFn 
 F��
NS �

	

n

nX
i��

Kn�Xi

 F��

NS�

it follows that

� �U� eUn� �
	

n

nX
i��

fIF�Xi� � � �U �U��

�� Remainder terms

In this section we will show the convergence in probability of the remainder terms

from the linear approximations�






Suppose that � � D��� 	 � R is di�erentiable at U � Also let the remainder term be

Rem�tH� � � �U � tH�� � �U�� � �U�tH��

It follows from the de�nition of the Hadamard di�erentiability that for any compact

K � D��� 	 � we have

lim
t��

Rem�tH�

t
� �

uniformly in H � K�

In evaluating the remainder term� choosing the norm or metric which give topolo�

gies plays an essential role� Usually� D��� 	 is equipped with the Skorohod topologies

�Billingsley �	


��� However� in Skorohod topologies� pointwise addition of functions is

not a continuous operation and D��� 	 is not a topological vector space �Billingsley �	


�

p�	�� Problem	����� Hence in order to utilize von Mises�s di�erentiation theory� we adopt

the uniform norm topologies�

Nevertheless� problem still remains after adopting the uniform norm� It is well known

that under the uniform norm the empirical distribution function may not be a random

element of D��� 	 under some circumstances �cf� Billingsley�	


� pp�	���	��� Fern�

holz �	
��� pp�������� We show the result along the line of Fernholz� Consider the

situation that n � 	 and values of the population characteristic are distributed �inde�

pendently of the sampling structures� uniformly on ��� 	 � De�ne F� as the corresponding

empirical distribution function� i�e�

F��x� � �X��

The random variable X� induces a probability measure  on ��� 	 by �B� � P�X� � B�

for any Borel set B � ��� 	 � Since the value of X� is uniformly distributed� and from the

fact n � 	�  coincides with the Lebesgue measure on ��� 	 �

Now� we de�ne the open ball Ox in D��� 	 with center �x�x � ��� 	 � and radius

	�� as Ox � fG � D��� 	 � kG � �xk � 	��g� Ox is open in D��� 	 � so for any subset

B � ��� 	 � OB � x�BOx is also open�

For any x � ��� 	 � X� � x if and only if �X� � Ox� so if F� is a measurable element

then

P�X� � B� � P�F� � OB�

for any set B � ��� 	 � However� then all subsets of ��� 	 are Lebesgue measurable� which

is false�

We will overcome this di�culty by using the method of Reeds �	
�� and Fernholz

�	
���� �Note� Dudley �	

�� 	

�� and Dudley and Norvai"sa �	


�� and the references

therein proposed the use of p�variation norm with high feasibility of Fr�echet di�erentia�

bility� However� we adopt Hadamard di�erentiation because the usefulness of Dudley�s

method to the �nite population asymptotics is yet unknown to us��

	�



To start with� we will de�ne the distance between a function H � D��� 	 and a set

K � D��� 	 by

dist�H�K� � inf
G�K

kH �Gk
where

kH �Gk � sup
��x��

jH�x��G�x�j�
We include the next lemma for completeness�

Lemma ���Fernholz �����	� pp������� Lemma ����
 Let Q � D��� 	 �R� R

be a function and for any compact set K � D��� 	 � we suppose

lim
t��

Q�H� t� � �

holds uniformly in H � K� Let � � � and let �n be a sequence such that �n � ��

Then for any compact set K � D��� 	 � there exists n� � 	 for which if for all n � n��

dist�H�K� � �n implies

jQ�H� �n�j � ��

Since�
p
n�Un�U� is not a random element of D��� 	 � it may not be measurable and

no probabilistic statement may be made on this term� In order to overcome the di�culty�

Reeds uses the inner probability �Reeds �	
��� pp������� Fernholz �	
���� p����� Using

his method� we will obtain the next lemma which is a modi�cation of Fernholz �	
����

p��� Lemma ����� for the �nite population�

Lemma �� Let #Un � #Fn 
 F��
NS� Then� for any � � �� there is a compact set

K � D��� 	 and a positive sequence �N�n � � such that

P��dist�
q

Nn��N� n��#Un �U��K� � �N�n� � 	� ��

Proof� Let �Un�U�� be the continuous version of Un�U de�ned by Ros�en �	
���

it is a constant � function in the intervals ��� �� and �
� 	 where � and 
 are the smallest

and the largest jump points respectively� and for all t � ��� 
 � it is obtained by the

linear interpolation between the left endpoints of constancy intervals for Un � U � Under

Assumption A� the di�erence between the original function and the continuous version

is of the order O�n���� hence we have

k�Un � U�� � �Un � U�k � O�n��� a�s����	�

Next� by Proposition 	�

k #Un � Unk � sup
t
j #Fn�F��

NS�t��� Fn�F��
NS�t��j

� sup
x
j #Fn�x�� Fn�x�j

� o�n����� a�s�

		



Combining above inequalities� we have

k� #Un � U� � �Un � U��k � k� #Un � U� � �Un � U�k� k�Un � U� � �Un � U��k
� o�n����� a�s�

The random element �Nn��N�n������Un�U�� converges weakly to Brownian bridge

W � in C��� 	 as min�n�N�n� �� �Ros�en �	
���� It follows that the set of probability

measures P � fP��Pn�n � 	g is relatively compact� where Pn is a probability measure

of �Nn��N � n������Un � U�� and P� denotes the probability measure for Brownian

bridge in the space C��� 	 � We also note that the space C��� 	 is a completely separable

metric space under the uniform norm� It follows from the converse part of the Prohorov�s

Theorem that P is tight and therefore for any � � � there exists a compact set K � C��� 	 

for which� for any integer n � 	�

Pn�K� � 	 � ��

From the de�nition of Pn� the above equation is tantamount to

P
�
�Nn��N � n������Un � U�� � K

�
� 	 � ��

We note here that remembering the sample Xi � x�i� 	 � i � n where ���� � � � � �N�

take all possible permutations of �	� � � � � N�� Denoting $non%�sample X�
i � i � 	� � � � � N�n

as X�
i � x�n�i and de�ning the analogue of the empirical distribution function F �

N�n as�

F �
N�n�x� �

	

N � n

N�nX
i��

I����x��X
�
i ��

Using the fact

n�Fn�x�� FN�x�� � ��N � n��F �
N�n�x�� FN�x���

we have

Fn�x�� FN�x� � �N � n

n
�F �

N�n�x�� FN�x���

or equivalently

F �
N�n�x�� FN�x� � � n

N � n
�Fn�x�� FN�x���

So we may assume here and in the sequel that n�N � 	��� �This is essentially the same

argument of Erd�os and R�enyi �	
�
���

Since� C��� 	 � D��� 	 � K is also compact in D��� 	 � Since k�Un�U��� � #Un�U�k �

o�n�
�
� � and by writing

q
Nn��N � n�� #Un�U� �

q
Nn��N � n�f�� #Un�U���Un�U����

�Un � U��g� it can be seen easily that whenever
q
Nn��N � n��Un � U�� � K holds we

have �using n�N � 	���

dist�
q
Nn��N � n�� #Un � U��K� � �N�n�

	�



It follows that

P��dist�
q
Nn��N � n�� #Un � U��K� � �N�n� � 	� ��

It is interesting to note that the empirical distribution function may not be a measur�

able function in D��� 	 under the uniform norm� while the remainder term is a measurable

function� This can be proved by showing that both the statistical functional and the in�

�uence function are measurable� then the remainder term� as a di�erence of these terms�

becomes measurable�

It is now possible to evaluate the error under the probability measure�

Lemma � If K � D��� 	 is an arbitrary compact set for which

Rem�tH�

t
� �� as t� �

uniformly in H � K� then q
Nn��N � n�Rem�#Un �U�

p� ��

Proof� Let � � �� Then by Lemma �� there exists a compact set K � D��� 	 and

a positive sequence �N�n � � for which

P��dist�
q
Nn��N � n�� #Un � U��K� � �N�n� � 	 � ����

It follows that there is a measurable set En for which

En � fdist�
q
Nn��N � n�� #Un � U��K� � �N�ng

and

P�En� � 	� �

for all n�

We now apply Lemma � to Q�H� t� � Rem�tH��t� We �nd a constant �N� n � � and

a positive integer n�� such that if n� N � n � n� and dist�H�K� � �N� n�

j
q
Nn��N � n� Rem�

q
�N � n��NnH�j � �

follows� Hence� for all n� N � n � n� and H �
q
Nn��N � n�� #Un � U�� we have

P�j
q
Nn��N � n� Rem� #Un � U�j � �� � P�En� � 	� ��

Hence the lemma follows�

Remark �� Under the same conditions of Lemma  and Lemma �� we can prove

for the unsmoothed case q
Nn��N � n� Rem�Un �U�

p� ��

Proof� The proof is similar to and simpler than those of Lemma � and Lemma ��

	�



�� Asymptotic Normality

We will present and prove our main results of this paper� We will give the asymptotic

normality of the smoothed statistical functionals under the Hadamard di�erentiability in

Theorem 	� We will also prove in Theorem � and Theorem � the asymptotic normality

for smoothed and non�smoothed functionals respectively� under the condition which is

given in terms of the original non�smoothed in�uence function� Combining Theorem

� and Theorem �� we claim that the asymptotic distributions of smoothed statistical

functionals are the same as the those of non�smoothed functionals�

For small samples Fernholz �	

�� proved that smoothed functionals are more e�cient

than non�smoothed ones when some regularity conditions are placed on the in�uence

function in I�I�D� settings� For related results for the cases of smoothed bootstrap� we refer

readers to Silverman and Young �	
���� Hall� DiCiccio and Romano �	
�
�� Polansky and

Schucany �	

��� and the references therein�

Theorem �� Let X�� � � � �Xn be the sequence of a random sample chosen with�

out replacement from the distribution function with the Assumption A� And we also let

fkng be the sequence of regular kernels with �nite �rst moment� Let T be a statisti�

cal functional and � is the induced statistical functional on D��� 	 by ������ Suppose

� is Hadamard di�erentiable at U with the in�uence function IF � IFT�FN� which is

Lebesgue�Stieltjes integrable with respect to functions of bounded variations� SupposefIF � E�fIF �
PN

i��
fIF�xi��N and � � ��N � Var�fIF �

PN
i���

fIF�xi�� fIF���N ���

If the IF satis�es the Lindeberg condition of Erd�os�R�enyi�

lim
n�N�n��

P
P� �fIF�xi�� fIF��PN
i���

fIF�xi�� fIF��
� � for any � � ��

where� P� is the subset of P � f	� � � � � Ng such that

jfIF�xi�� fIFj � �

r
n
�
	� n

N

�
�N �

Then � as n and N � n ���

�T � eFn�� T �FNS����N�n
d� N��� 	��

where ��N�n � N��N�	 � n�N��n�N � 	� � �N � n���N�n�N � 	��

Proof� It follows from Lemma 	 that

�T � eFn�� T �FNS����N�n

� �� � eUn�� � �U����N�n

� � �U � eUn � U���N�n � Rem� eUn � U���N�n

�
n	

n

nX
i��

fIF�Xi�
o
��N�n � Rem� eUn � U���N�n�

	�



Since both the in�uence function and the functional are measurable� the above equa�

tion tells us that Rem� eUn � U� is an random element in D��� 	 � Also� by the cen�

tral limit theorem of Erd�os and R�enyi �	
�
� and H�ajek �	
��� the �rst term in the

right most side of the above equation converges in distribution to N��� 	� as n and

N � n � �� Also� we note that by Lemma � the second term Rem� eUn � U���N�n��q
nN��N � n�

q
�N � 	��NRem� eUn � U���N �

q
n�N � 	���N � n�Rem� eUn � U���N �

converges to � in probability� The theorem follows from Slutzky�s lemma�

The next theorem is the central limit theorem for smoothed functionals under the

Erd�os�R�enyi condition for the original non�smoothed in�uence function� which is the

extension of Theorem 	 of Fernholz �	

��� In order to prove the theorem� we need the

following lemma which is a modi�cation of Lemma � of Fernholz �	

���

Lemma �� Let fkng be the sequence of regular kernels with �nite �rst moment�

and X�� � � � �Xn be the sequence of a random sample chosen without replacement from the

distribution function with Assumption A� Suppose that FNS de�ned before have bounded

derivatives fNS � F �
NS� If the function � is bounded function and Lebesgue�Stieltjes

integrable with respect to functions of bounded variation�

	p
n

nX
i��

�#��Xi�� ��Xi��
p� ��

Proof� First we write

	p
n

nX
i��

�#��Xi�� ��Xi�� �
p
n

	

n

nX
i��

�#��Xi�� ��Xi��

�
p
n
Z

�#��x�� ��x��dFn�x�

�
p
n
ZZ

���x� t�� ��x��kn�t�dt dFn�x��

We divide the range of integration of the inner integral�

p
n
Z

���x� t�� ��x��kn�t�dt �
p
n
Z
jtj�bn

���x� t�� ��x��kn�t�dt

�
p
n
Z
jtj�bn

���x� t�� ��x��kn�t�dt�

The second term of the above equation is dominated by

p
n
Z
jtj�bn

j��x� t�� ��x�jjkn�t�jdt�

which converges to � from the de�nition of the regular kernels and the fact that � is a

bounded function�

As for the �rst term� we integrate the term with respect to FN
p
n
ZZ

jtj�bn
���x� t�� ��x��kn�t�dtdFN�x�

�
p
n
Z
jtj�bn

Z
���x� t�� ��x��dFN�x�kn�t�dt�

	�



From the assumption� a sequence of functions FNS de�ned before have bounded deriva�

tives fNS for which

kFN � FNSk � O�
	

N
��

From the assumption that function � is bounded� it follows that there is a positive

constant C � �� such that

j
Z

���x� t�� ��x��dFNS�x�j � j
Z
��x� t�fNS�x�dx�

Z
��x�fNS�x�dxj

� j
Z
��x��fNS�x�� fNS�x � t��dxj

� Cjtj�

Hence�

j
Z

���x� t�� ��x��dFN�x�j
� j

Z
���x� t�� ��x��d�FN�x�� FNS�x� � FNS�x��j

� j
Z

���x� t�� ��x��d�FN�x�� FNS�x��j
�j
Z

���x� t�� ��x��dFNS�x�j

� O
� 	

N

�
� Cjtj

from the assumption that � is bounded�

By substituting the above into the original equation� we have

� C
p
n
Z
jtj�bn

jtjjkn�t�jdt � O
�pnbn

N

�
� �C

p
nbn � o

� 	

N

�
� ��

Theorem �� In addition to the conditions of Theorem �� we assume that IF �

IFT�FNS is a bounded function and FNS has bounded derivatives�

Also suppose IF � E�IF �
PN

i�� IF�xi��N and � � ��N � Var�IF �
PN

i���IF�xi� �
IF���N ���

Replacing the Erd�os�R�enyi condition of Theorem �� if the IF satis�es the Lindeberg con�

dition of Erd�os�R�enyi�

lim
n�N�n��

P
P� �IF�xi�� IF��PN
i���IF�xi�� IF��

� � for any � � ��

where� P� is the subset of P � f	� � � � � Ng such that

jIF�xi�� IFj � �

r
n
�
	 � n

N

�
�N�

	



Then� as n and N � n ���

�T � eFn�� T �FNS����N�n
d� N��� 	��

where ��N�n � N��N�	 � n�N��n�N � 	� � �N � n���N�n�N � 	��

Proof� It follows from Lemma 	 that

�T � eFn�� T �FNS����N�n � �� � eUn�� � �U����N�n

� � �U � eUn � U���N�n � Rem� eUn � U���N�n

�
n	

n

nX
i��

fIF�Xi�
o
��N�n � Rem� eUn � U���N�n�

Using the argument of Erd�os and R�enyi �	
�
� �the same argument in the proof of

Lemma ��� Remembering the sample Xi � x�i� 	 � i � n where ���� � � � � �N� take

all possible permutations of �	� � � � � N�� Denote %non%�sample X�
i � i � 	� � � � N � n as

X�
i � x�n�i�

Using the fact
nX
i��

IF�Xi� �
N�nX
i��

IF�X�
i � �

NX
i��

IF�xi��

we have
	

n
�
nX
i��

IF�Xi��
NX
i��

IF�xi�� � � 	

N � n
�
N�nX
i��

IF�X�
i ��

NX
i��

IF�xi���

So we may assume that n�N � 	���

By Lemma �� we have �using n�N � 	���q
N�n�N � n�

nX
i��

�fIF�Xi� � IF�Xi��
p� �

The theorem follows from the central limit theorem for the �nite population �Erd�os and

R�enyi �	
�
� and H�ajek �	
���� and Lemma ��

The last theorem� when compared to the previous Theorem �� displays that both

the smoothed and non�smoothed statistical functional have the same distribution in the

limit�

Theorem �� Under the same conditions of Theorem 	� we have� as n and N � n

���

�T �Fn�� T �FNS����N�n
d� N��� 	��

where ��N�n � N��N �	 � n�N��n�N � 	� � �N � n���N�n�N � 	�� � � ��N � Var�IF �PN
i���IF�xi�� IF���N ��� and IF � E�IF �

PN
i�� IF�xi��N�

Proof� The proof is performed in a similar manner as those of Theorem 	 and

Theorem ��

	�



We �rst note

�T �Fn�� T �FNS����N�n

� �� �Un�� � �U����N�n

� � �U �Un � U���N�n � Rem�Un � U���N�n

�
n	

n

nX
i��

IF�Xi�
o
��N�n � Rem�Un � U���N�n�

Since both the in�uence function and the functional are measurable� the above equa�

tion tells us that Rem�Un � U� is a random element in D��� 	 � Also� by the cen�

tral limit theorem of Erd�os and R�enyi �	
�
� and H�ajek �	
��� the �rst term in the

right most side of the above equation converges in distribution to N��� 	� as n�N �
n � �� Also� we note that by Remark 	� the second term Rem�Un � U���N�n��q
nN��N � n�

q
�N � 	��NRem�Un � U���N �

q
n�N � 	���N � n�Rem�Un � U���N �

converges to � in probability� The theorem follows from Slutzky�s lemma�

�� Monte Carlo Simulation

In this section� we present Monte Carlo simulation results for sample median

F��
n ��������	�

and inter�quartile range

F��
n ������ � F��

n ������������

These statistics are often used �ex� Deaton �	

�� p��� Table 	��� Consumption and

income for panel households� C&ote d�Ivoire� 	
����� because they are less a�ected by

outliers which may appear in wide class of data�

���� Quasi�populations

We use the following simulated log�normal quasi�populations of di�erent sizes whose

mean and standard deviation of the distribution on the log scale is � and ��� respectively�

�i� generated values of log normal random number of size 	� ���

�ii� generated values of log normal random number of size �� ���

�iii� generated values of log normal random number of size 	�� ���

We use these populations because they approximate many economic variables such

as household income and savings�

	�



���� Construction of the Con�dence Intervals

To construct the con�dence intervals� we calculate the in�uence functions of the

median and the inter�quartile range�

As is well�known�cf� Huber �	
�	��� the in�uence function of a non�smoothed median

is

IFT�F �x� �
�x�F����	�� � ���

f�F��������

�

�����
��

�f�F����	���
x � F�������

�
�f�F����	���

x � F�������

and the in�uence function of a non�smoothed inter�quartile range is

IFT�F �x� �
�x�F����	���� 	 � ����

f�F���������
� �x�F����	���� 	 � ����

f�F���������
�

where F is an underlying distribution function and f is its density�

In order to obtain the in�uence functions of the smoothed functionals� we utilize the

following Lemma of Fernholz �	

���

Lemma ���Fernholz �����	� Proposition �
 Let k be �xed� and de�ne the

smoothed functional eT for general distribution function G as�

eT �G� � T �G 	 k�������

If T is Gateaux di�erentiable in a neighborhood of FNS including eF � F 	 k� then

IFeT�F � IFT�eF 	 k������

Utilizing this lemma� we calculate the in�uence functions of smoothed functionals�

Let K�x� �
R x
�� k�t�dt be the distribution function with respect to kernel k� and let #f

be the density function with respect to the smoothed �cumulative� distribution eF � F 	k�

Then� the in�uence function of the smoothed median is

IFeT�F �x� �
K�x� F�������� � ���

#f�F��������

and the in�uence function of the smoothed inter�quartile range is

IFeT�F �x� �
K�x� F���������� 	 � ����

#f�F���������
� K�x� F��������� � 	 � ����

#f �F���������
�

In our simulations� we smooth two functionals with uniform distribution U ����	� ��	 �

which satis�es the conditions of regular kernel and it is easy to calculate the convolutions�

Using these in�uence functions，we construct the con�dence intervals as follows�we

describe the non�smoothed case� smoothed case is similar��

	




�i� Calculate the variance of the in�uence function ��N as

��N � Var�IF �
NX
i��

�IF�xi�� IF���N������

IF � E�IF �
NX
i��

IF�xi��N�����

�ii� Approximate
T �Fn�� T �FN�

�N�n
�����

with standard normal distribution ���N�n � N��N �	 � n�N��n�N � 	� � �N �
n���N�n�N � 	���

�iii� Construct a one�sided 	���	 � �� con�dence interval as

�
��� T �Fn� � �N�nz


i
�����

and a two�sided 	���	 � �� con�dence interval ash
T �Fn�� �N�nz
��� T �Fn� � �N�nz
��

i
���
�

where z
 is the upper �' point of the standard normal distribution．

���� Results of Monte Carlo Simulations

In order to evaluate the fruits of theoretical facts� we calculate the empirical coverage

ratio of con�dence intervals constructed by our normal approximations� The simulated

samples of sampling fractions 	�' and ��' are chosen 	��� ��� times repeatedly� then the

relative frequencies that the intervals contain the true value of parameter are evaluated�

We can judge that the intervals are precise when the empirical coverage probability is close

to the nominal con�dence coe�cient� Although readers may claim that these sampling

fractions are extraordinarily high in reality� in a strati�ed population or in a selected unit

of population� fractions of these types are not exceptional�

In what follows� the numbers in parentheses in tables for two�sided intervals are the

lengths of the intervals�

As a whole� except for the slightest di�erence between the smoothed and the un�

smoothed cases� we can see the following features�

�i� All the intervals� especially the cases with population sizes larger than ����� display

better features for both the one�sided and two�sided situations�

�ii� The case when the sampling fraction is 	�' is better than the case of a sampling

fraction ��' in small sample situations�

��



�iii� The intervals of higher con�dence coe�cients perform better than those of lower

con�dence coe�cients．

Compared to the case of a sampling fraction of 	�'� the case of ��' seems to be

not as good when population and sample sizes are relatively small� However� our normal

approximations show good performance for large size samples� so they are very useful for

application to large scale sample surveys�

Table �� Onesided con�dence intervals for sample medians�sampling fraction�����

����one�sided
 ����one�sided
 ����one�sided


sample size ��� ������� ������� ������

population size ����

sample size ��� ������� ���	�� ������

population size ����

sample size ���� ������� ������ ������

population size �����

Table �� Twosided con�dence intervals for sample medians�sampling fraction���� length of

intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size ��� ������ ���	��� �������

population size ���� �������
 ��������
 ���������


sample size ��� ����		 ������� �������

population size ���� ��������
 ���	��	��
 ���������


sample size ���� ������� ������ �������

population size ����� ��������	
 ���������
 �����	��


�	



Table 	� Onesided con�dence intervals for sample medians�sampling fraction	����

����one�sided
 ����one�sided
 ����one�sided


sample size �� ���� ������� �����		

population size ����

sample size ���� ����	 ������� ������	

population size ����

sample size ��� ������ ������� �����		

population size �����

Table 
� Twosided con�dence intervals for sample medians�sampling fraction	��� length of

intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size �� ������ ���	��� �������

population size ���� ���������
 �����		
 ��������


sample size ���� ������� ������ �������

population size ���� ������	���
 ����������
 ������	��


sample size ��� ������� ������� ����		�

population size ����� ����������
 ���	�����
 ���������


Table �� Onesided con�dence intervals for smoothed sample medians�sampling fraction�����

����one�sided
 ����one�sided
 ����one�sided


sample size ��� ������� ������ ������

population size ����

sample size ��� ������� ���		� �������

population size ����

sample size ���� ������ ������	 ����

population size �����

��



Table �� Twosided con�dence intervals for smoothed sample medians�sampling fraction����

length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size ��� ������ ���	��� �������

population size ���� ���	����
 �����	��
 �����	���


sample size ��� ������� ������� ������

population size ���� ��������
 ���	�����
 ��������


sample size ���� ������� ������� �������

population size ����� ��������
 ���������
 ����	����


Table �� Onesided con�dence intervals for smoothed sample medians�sampling fraction	����

����one�sided
 ����one�sided
 ����one�sided


sample size �� ���� ������ ������

population size ����

sample size ���� ������� ������� �����

population size ����

sample size ��� ������ ������� �����		

population size �����

Table �� Twosided con�dence intervals for smoothed sample medians�sampling fraction	���

length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size �� ������� ���	��	 ������	

population size ���� ���	��	��
 �������
 �������	


sample size ���� �����	� ������� ������

population size ���� �������	�
 ����������
 ���������


sample size ��� ������� ������� �������

population size ����� ������	���
 ���	�����
 ��������	�


��



Table �� Onesided con�dence intervals for sample interquartile ranges�sampling fraction�����

����one�sided
 ����one�sided
 ����one�sided


sample size ��� ������� ������� ������

population size ����

sample size ��� �����	 ������ �������

population size ����

sample size ���� ������ ������� �������

population size �����

Table ��� Twosided con�dence intervals for sample interquartile ranges�sampling fraction����

length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size ��� ������� ���		�	 �������

population size ���� ��������
 ����	���
 �	�	����


sample size ��� ����� ������ �������

population size ���� ��������
 ����	���
 ��������


sample size ���� ����� ���	��� �����

population size ����� �������
 ���		���
 ��������


Table ��� Onesided con�dence intervals for sample interquartile ranges�sampling fraction	����

����one�sided
 ����one�sided
 ����one�sided


sample size �� ������	 ������ ����	��

population size ����

sample size ���� ������� ����	�� �������

population size ����

sample size ��� ������� ������� ������

population size �����

��



Table ��� Twosided con�dence intervals for sample interquartile ranges�sampling fraction	���

length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size �� ������� �����	 ������

population size ���� ����	���
 ���������
 ������


sample size ���� ������ ���	�� �����

population size ���� ����������
 ������		
 ���������


sample size ��� ������ ���	��� ������

population size ����� ���	�����
 ������	
 ���������


Table �	� Onesided con�dence intervals for smoothed sample interquartile ranges�sampling

fraction�����

����one�sided
 ����one�sided
 ����one�sided


sample size ��� ����� ������� �����

population size ����

sample size ��� ������ ������� ������

population size ����

sample size ���� ������� ������� �������

population size �����

Table �
� Twosided con�dence intervals for smoothed sample interquartile ranges�sampling

fraction���� length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size ��� ������� ���	�		 �������

population size ���� ��������
 ��������
 �	�		�	�


sample size ��� ������� ������ �������

population size ���� ���������
 �������
 ������


sample size ���� �����	 ���	��� ������

population size ����� ����	���
 ���	�����
 �����	�	�


��



Table ��� Onesided con�dence intervals for smoothed sample interquartile ranges�sampling

fraction	����

����one�sided
 ����one�sided
 ����one�sided


sample size �� ������ ������ ������

population size ����

sample size ���� ����	�� ������ �������

population size ����

sample size ��� ������� ������� ������

population size �����

Table ��� Twosided con�dence intervals for smoothed sample interquartile ranges�sampling

fraction	��� length of intervals in parentheses��

����two�sided
 ����two�sided
 ����two�sided


sample size �� ������	 ������ ������

population size ���� ����	����
 �������	
 ����	�


sample size ���� ������	 ���	�� ������

population size ���� ���������
 ��������
 ���������


sample size ��� ������� ���	�� �������

population size ����� ����������
 ���������
 ���������


�



��



Appendix

The proof of Proposition 	 will be shown along the lines of Fernholz �	

	�� and for

this purpose we �rst show the following lemma� A covering C of R is a collection of

intervals whose union is R� The intervals need not have �nite length�

Lemma �� Let X�� � � � �Xn be a simple random sample without replacement from a

�nite population with distribution function FN � Let fCng be a sequence of coverings of R

such that the number of intervals in each Cn is O�n�� for some constant �� Suppose that

maxI�Cn PFN �I� � maxI�Cn PFN �X � I� � o�n����� where PFN stands for the probability

generated by FN � If Tn is the maximum number of X�s with values in any I � Cn� then

Tnp
n
� ��

as n�N �� a�s��

Proof� For each n � 	� de�ne YI as the number of Xi�s with values in I � Cn� Then

YI is a random variable from a hypergeometric distribution with probability function

p�y� �

�
N��

y

��
N������
n�y

�
�
N
n

� � y � �� 	� � � � �min�n�N����

where �� � PFN �I�� Note that �� � o�n����� as n�N ���

For any � � �� and k � b�pnc� we have

P�Tn � �
p
n� � X

I�Cn
P�YI � �

p
n� �

X
I�Cn

P�YI � k��

Using the well known identity of hypergeometric distribution�

p�y � 	�

p�y�
�

�N�� � y��n� y�

�y � 	��N �N�� � n � y � 	�
�

max��� n � N�� �N� � y � min�n�N���� 	�

we have the following inequalities for k � n�� �See Feller �	
�� for binomial case��

P�YI � k� � P�YI � k�
�k � 	���N � n��	� ��� � �n� k� � 	�

�k � 	���N � n��	 � ��� � �n� k� � 	�� �N�� � k��n� k�

� P�YI � k�O�	��

from �� � o�n������

It follows from Stirling�s formula that

P�YI � k� �
�

�N����N �N���n�N � n�

��k�N�� � k�N�n � k��N � n � �N�� � k��

	���

�
N�	 � ����N � n�

N�N � n� �N�� � k��

	N�
N��

N�	 � ����N�	� ���� �n� k��

	N��

�
�N�� � k��n� k�

k�N�	 � ���� �n � k��

	k�
n�N � n� �N�� � k��

�n� k��N � n�

	n
�

��



Here we have�
�N����N �N���n�N � n�

��k�N�� � k�N�n � k��N � n � �N�� � k��

	���

� O�n�����
N�	 � ����N � n�

N�N � n� �N�� � k��

	N
� O�	��

N��

N�	� ����N�	 � ���� �n� k��

	N��

� O�	��

So for su�ciently large n�N and a constant C ���

P�YI � k� � C


n��

�
p
n

��pn� n

n � �
p
n

�n
�

Recalling the fact 

n

n � �
p
n

�n
� e�

p
n	O����

we have

P�YI � k� � C


n��

�
p
n

��pn
e�
p
n

� C�e��
p
n

for some constants C and C� and su�ciently large n� as k � b�pnc � n�� for large n�

Therefore

P�Tn � �
p
n� � C� X

I�Cn
e��

p
n � O�n��e��

p
n

since the number of intervals in Cn is O�n��� Hence

�X
n��

P�Tn � �
p
n� ���

and since � � � was arbitrary� the �rst Borel�Cantelli Lemma implies that

Tnp
n
� � a�s�

Now we will prove the proposition�

Proof� De�ne the function Q on R	 by

Q�t� � sup
x

�FN�x � t�� FN�x���

It is easily seen that Q��� � �� limt��Q�t� � 	�and

Q�s � t� � sup
x

�FN�x � s � t�� FN �x��

� sup
x

�FN�x � s � t�� FN �x� t� � FN�x � t�� FN �x��

� sup
x

�FN�x � s � t�� FN �x� t�� � sup
x

�FN �x� t�� FN�x��

� Q�s� � Q�t��

�




Since fkng is regular� there exists a positive sequence fbng satisfying the condition of

De�nition 	� We may assume b��n � o�n� without any restrictions� or else we may replace

bn by maxfbn� n���g�
Let Qn � Q�bn� and de�ne x� � ��� xi � F��

N �iQn� for iQn � 	 and xk � � for

k � inffi � iQn � 	g� The intervals I� � ���� x� � I� � �x�� x� � � � � � Ik � �xk�����

de�ne a covering Cn of R�

From Assumption A�

jQ�t��Q�s�j � j sup
x

�FN�x � t�� FN�x��� sup
x

�FN �x� s�� FN�x��j

� �M jt � sj� O
� 	

N

�
�

So� we have

PFN �Ij� � FN�xj�� FN�xj��� � �Qn � �Mbn � O
� 	

N

�
� o�n������

The number of intervals in Cn satis�es the relationship k � Q��
n �	� Since b��n � o�n�

as n�� we have nbn �� and hence Q�nbn� � 	� so for su�ciently large n� Q�nbn� �

	��� We see Q��
n � O�n� from Q�nbn� � nQ�bn� � nQn� Therefore fCng satis�es the

assumption of Lemma 	�

For any x � R� x � Ij for some j� we have �x�bn� � IjIj�� and �x�bn� � Ij Ij	��
Hence if jtj � bn� then p

njFn�x� t�� Fn�x�j � �Tnp
n
�

where Tn is de�ned as in Lemma � Therefore�

p
nj eFn�x�� Fn�x�j � p

n
Z
jFn�x� t�� Fn�x�jjkn�t�jdt

� p
n
Z
jtj�bn

jFn�x� t�� Fn�x�jjkn�t�jdt

�
p
n
Z
jtj�bn

jFn�x� t�� Fn�x�jjkn�t�jdt

� �Tnp
n

Z
jtj�bn

jkn�t�jdt�
p
n
Z
jtj�bn

jkn�t�jdt�

The �rst term of the last inequality converges almost sure to zero by Lemma 	 and the

second term converges to zero since fkng is a regular sequence� The proposition follows�

Corollary �� Under the assumption of Proposition ��


a� The smoothed and non�smoothed Kolmogorov�Smirnov statistics
p
n supx j eFn�x� �

FN�x�j and pn supx jFn�x�� FN�x�j have the same asymptotic distribution�


b� For x such that � � f� � FN �x� � f� � 	 in su�ciently large N � the normalized

smoothed empirical process has a normal distribution as a limit

p
n� eFn�x�� FN�x����N�n

d� N��� 	�� n�N � n���

��



where �N�n � ��N � n���N � 	��FN �x��	� FN�x���

Proof� By triangular inequality�

p
n sup

x
jFn�x�� FN �x�j � p

n sup
x
j eFn�x�� Fn�x�j

� p
n sup

x
j eFn�x�� FN�x�j

� p
n sup

x
jFn�x�� FN�x�j�p

n sup
x
j eFn�x�� Fn�x�j�

Hence� �a� follows from proposition 	�

Dividing

p
nf eFn�x�� FN�x�g �

p
nf eFn�x�� Fn�x�g�

p
nfFn�x�� FN�x�g�

�b� follows from the proposition and the asymptotic normality of the hypergeometric

distribution�Eeden and Runnenburg �	
����
p
nfFn�x��FN�x�g�� d� N��� 	� as n and

N � n ���
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