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1 Introduction

We propose a Bayesian procedure to estimate heteroscedastic variances of

the regression error term, when the form of heteroscedasticity is unknown.

As pointed out by Amemiya (1985, p.199), the crucial ω vector1 cannot be

consistently estimated because as the number of parameters increases, the

sample size also increases at the same rate, leading to the lack of identi-

fiability of ω. In asymptotics framework, Eicker (1963) and White (1980)

independently developed a well-known consistent variance-covariance ma-

trix estimator (“HCCM” hereafter) for the OLS regression coefficient esti-

mator. The methodology we propose in this paper is a Bayesian that uses

information obtained from the HCCM, in terms of a candidate density of a

Metropolis-Hastings (“M-H” hereafter) algorithm in Markov Chain Monte

Carlo simulation. The lack of identifiability of ω poses no problem. For one

thing, as in Amemiya (1985) we use an orthogonal regression that circum-

vents possible underidentifiability of ω, and we shall explain this method in

detail later2. Second, we impose a prior on ω so that the vector becomes

identifiable in a Bayesian context.

The trend in the HCCM literature seems to be how to improve the finite

sample performance of tests of the linear restriction(s) on the coefficient

vector, e.g., Long and Ervin(2000) and Godfrey (2006), among others. We

note that our focus in this paper is in the direct estimation of the elements

ω vector. There are papers that deal with statistical inferences of regression

coefficients, when the scedastic function of the error term is unconstrained.

Robinson (1987), for example, assumes it to be a function of regressors, and

1The ! vector has in its elements, all the normalized diagonal elements of variance-
covariance matrix of the regression error term. The normalization rule for the matrix is
given just below equation (1).

2Amemiya op cit proposes and uses an orthogonal regression to obtain a better per-
forming GLS.
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derives an GLS estimator that is more efficient than the existing ones. Our

Bayesian estimation of heteroscedasticity should sharpen posterior density

of regression coefficient vector β and/or lead to a better predictive density.

It may also lead to more efficient estimator of β in terms of asymptotic

theory framework as well.

We need to discuss the direct estimation of the ω vector. In financial

returns, ω is nothing but the volatility. In order to access an option pricing,

what we need to do first is to come up with a reasonable estimate of volatility.

Our estimation of ω needs no parametric model for the volatility process

such as the GARCH model, since we use information obtained from the

HCCM estimation, in our MCMC simulation. If we wish to estimate a

volatility process in time series data nonparametrically, what we usually do

is to calculate a historical volatility series. But this is just a descriptive

statistic without a theoretical background. Moreover, when it comes to

cross section data, historical volatility calculation breaks down for obvious

reasons. Our Bayesian method, on the other hand, should provide a good

deal of theoretical support for cross sectional data.

Our strategy to estimate the ω vector is Bayesian. After assuming a

usual prior density for the parameters in the regression model, we are able to

write down a joint posterior density. The usual parameters such as regression

coefficients may be easily simulated using the Gibbs sampler scheme. It is in

the simulation of the elements of ω that we use the HCCM. We use results

from HCCM to form the candidate density in the M-H algorithm.

The rest of this paper is organized as follows. In section 2, we set our

regression model. Prior pdf’s are assumed here, and the joint posterior pdf

is derived. Section 3 starts out with our Bayesian MCMC calculation by a

3



Gibbs sampler. We propose to use the Eicker–White result to simulate ω by

a M-H scheme. Our numerical illustration and an empirical investigation of

the stock prices of Japanese pharmaceutical and biomedical companies, are

given in section 4. Section 5 concludes.

2 The Model and the Joint Posterior pdf

Suppose a heteroscedastic regression model,

y = Xβ + ε, (1)

where X ∼ n × K is a purely exogenous variable matrix, ε ∼ N(0, σ2Ω),

Ω = diag(ω) = diag(ω1, . . . , ωn), ω ⊂ �n
+, tr(Ω) =

∑n
i=1 ωi = n, σ2 > 0,

and n is the sample size3. Let the column vector θ be all the parameters in

the model, i.e., θ′ = (β′ σ2 ω′) ∼ 1× (K + 1 + n). The likelihood function,

then, becomes

p(y|θ,X) ∝ |Ω|−1/2σ−n exp
(
− 1

2σ2
(y − Xβ)′Ω−1(y − Xβ)

)
. (2)

Assuming that the components of θ are independent a priori, and specif-

ically the prior of β is diffuse, we obtain the following prior pdf under the

tr(Ω) = n assumption:

p(θ) ∝ |σ2 Ω|−1/21
[ω,ω ]

(ω), (3)

where “1
[ω,ω ]

(ω)” designates an indicator function such that it takes on the

value one if an element of the ω vector is contained in the range [ω, ω], and

zero otherwise.

We shall discuss how we obtained the upper bound ω and the lower

bound ω. Our scaling assumption of ω is given by
∑n

i=1 ωi = n. This means
3“tr(Ω) = n” is a technical assumption that is often emplyed for identifiability purpose

in regression models with heteroscedastic error term. See, e.g., Greene (2008, p.158).
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that the sample mean of ω is one, i.e., ω̄ = 1. Consider a rather extreme

case that ten percent of ωi’s have ten times the magnitude of ω̄ = 1, i.e.,

10% of elements of ω is ωi = 10. This leaves the rest of ninety percent

of ωj’s, zeros only, i.e., ωj = 0 for j �= i, where the i belong to the first

ten percent of the entire n. Hence, along with the assumption ωi > 0 for

i = 1, . . . , n, the fact that ω̄ = 1 encourages us to set a certain range for

each ωi that depends on the sample size, n. In the rest of this paper, our

sample size in simulation and also empirical investigation, is fifty. We may,

therefore, safely set (ω, ω) = (0.025, 12.5), say. What does this imply?

Consider an example of the first four observations taking up the bulk of the

entire volatility. That is
4∑

i=1

ωi = 46 while
50∑
i=5

ωi = 4. If this is the case, our

ω and ω may be given by

4
46

= 0.087 > 0.025 = ω and
46
4

= 11.5 < 12.5 = ω.

The above implies that even in this extreme case, our lower bound, ω, is far

smaller than the average of the latter forty six ωi’s, while our upper bound,

ω, far exceeds the average of the first four ωi’s. We emphasize that this data

dependent prior on the bounds of ωi for i = 1, . . . , n, are relatively easy to

set, since the only information needed to form it is n. We also emphasize

that our experiments show insensitivity of MCMC draws to the bounds,

in the sense that the results are robust to the values of approximately ten

percent changes in the values of (ω, ω). Our prior pdf for θ in this paper is

given by

p(θ) ∝ σ−1 |Ω|−1/21
[0.025, 12.5]

(ω), (4)

and this replaces equation (3). Note that this specification of (ω, ω) amounts

to

(ω, ω) = (0.025/50, 12.5/50) = (0.0005, 0.25)
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that is ω = 0.05 percent of n, while ω = 25 percent of n. This is the rule

of thumb that we recommend. When implementing this “rule of thumb,”

around ten percent of each bound, should be explored.

Our joint posterior pdf is proportional to the product of equation (2)

times (4):

p(θ|y,X) ∝ |Ω|−1σ−n−1 exp
(
− 1

2σ2
(y − Xβ)′Ω−1(y − Xβ)

)
1

[0.025, 12.5]
(ω)

(5)

3 Posterior Simulation: MCMC

We shall simulate β and σ using a Gibbs sampler, and then combine a

Metropolis-Hastings (“MH” hereafter) algorithm to simulate the entire θ4.

3.1 Simulating β

Let θ−˛ represent a vector θ without β. Then the Gibbs sampler for β

starts out with

β(1)|θ(0)
−˛ ∼ p(β|θ(0)

−˛,y,X),

where the superscript r in β(r) denotes the rth simulated β (thus r = 0 is

the initinal value) for r = 1, . . . , R, and R is the number of replications in

the MCMC. The conditional probability in the right hand side represents

a fully conditional posterior pdf of β, where a notation “A ∼ p(·)” is used

to indicate that a value A is generated from p(·) pdf. We use the OLS

estimated residual vector e = y −Xβ̂ to obtain s2 = e′e/(n−K), and this

is used as the initial value of σ2. Next, note that it is pretty reasonable to

set the initial values of ω, ω(0), as ω(0) = ιn, where ιn ∼ n × 1 is a vector

of all one’s. This comes from the scaling assumption of ω, i.e., ω̄ = 1. As a

4Following several sections, in particular the Gibbs sampler subsection, may seem to
be a textbook content. But the notations introduced in these subsections are needed in
the subsection where we outline simulation of ! (Section 3.3).
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result, our initial value vector becomes θ
(0)
−˛ = (s2 ι′n)′. Notice that the full

conditional distribution of β given θ−˛ is

β|(θ−˛,y,X) ∼ N
(
β̂, σ−2(X ′Ω−1X)−1

)
.

Then, using θ
(0)
−˛, we may generate β(1) from a multivariate normal condi-

tional density:

β(1) ∼ N
(
β̂, s2(X ′X)−1

)
,

where it turns out that the diagonal elements of the initial value of Ω is

simply diag(ιn) = In. In r ≥ 2 iterations, above β(1) generation scheme is

replaced by

β(r) ∼ N
(
β(r−1), σ(r−1)2(X ′Ω(r−1)−1

X)−1
)

, (6)

however.

3.2 Simulating σ

We, next, turn to generation of σ. The conditional posterior pdf of σ be-

comes

p(σ|θ−ff2,y,X) ∝ σ−n−1 exp

(
−ε′Ω−1ε

2
/σ2

)
, (7)

where ε = y−Xβ. This is the kernel of an inverse gamma pdf, IG
(

n

2
,
ε′Ω−1ε

2

)
5.

The initial value of θ−ff2 becomes θ
(0)
−ff2 = (β(1)′ ιn)′, hence σ(1) is generated

as follows:

σ(1)|θ(0)
−ff2 ∼ IG

(
n

2
,

ε(1)′ε(1)

2

)
,

5We denote f(x|α, β) ∝ x
−(α+1)

exp(−β/x)1[0,+∞)(x) distribution as IG(α, β), in-
verse gamma with parameters α and β. Such x has E(x) = β/(α − 1) for α > 1,
and Var(x) = β2/((α − 1)2(α − 2)) for α > 2. See, e.g., Robert and Casella (2004,
p.582). Our fully conditional σ pdf is given in equation (7), however, has σ2 in the
denominator in the exponential function. To match the inverse gamma expression to
the above, make a transformation of random variables from x to σ and we obtain

f(σ|α, β) ∝ σ
−(2α+1)

exp(−β/σ2)1[0,+∞)(σ). IG(·) expression in the text, thus, follows.
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where ε(1) = y − Xβ(1). For r ≥ 2 simulations, the above is replaced by

σ(r)|θ(r−1)
−ff2 ∼ IG

(
n

2
,

ε(r)′Ω(r−1)−1
ε(r)

2

)
. (8)

3.3 Simulating ω Using HCCM Information

3.3.1 Conditional pdf of ωi

Let us now derive conditional distribution, ωi|θ−ωi
,y,X. It is easy to see

that the conditional distribution of ω is in the form,

p(ω|θ−!,y,X) ∝ |Ω|−1 exp
(
− 1

2σ2
ε′Ω−1ε

)
1

[0.025, 12.5]
(ω).

Inside the exponential function in the above, ε′Ω−1ε becomes ε′Ω−1ε =
n∑

t=1

(
εi√
ωi

)2

= ε∗
′
ε∗, where ε∗ = (ε∗1, . . . , ε∗n)′ ∼ n × 1 and ε∗i = εi/

√
ωi,

since Ω = diag(ω). Note also |Ω|−1 =
n∏

t=1

ω−1
i , we then have for a particular

ωi,

p(ωi|θ−ωi
,y,X) ∝ ω−1

i exp

(
− ε2

i

2σ2
/ωi

)
1

[0.025, 12.5]
(ωi),

where εi = yi−x′
iβ and xi is the ith row of X. The above is not a tractable

pdf for two reasons, however. First, if we did not have a bounds constraint,

[ω, ω], this function cannot be integrated, i.e.,
∫ ∞

0
ω−1

i exp

(
− ε2

i

2σ2
/ωi

)
dωi

is not finite. Secondly, even if we let the first parameter of the inverse

gamma pdf to be some positive value no > 16, it would be awfully difficult

to simulate a truncated inverse gamma random variable that has parameters,

IG(no,
ε2
i

2σ2
), in a Gibbs scheme, i.e., always accepting whatever is generated.

3.3.2 HCCM Information to be used in M-H

Let us, for a moment, depart from the problem of generating ωi, and see

what the sampling theory has to tell us about the heteroscedastic ε. An
6We note that setting such no > 0, when it is not, is quite arbitrary. To deal with this

possibly unidentified conditional posterior pdf, we propose to set bounds on the ! vector,
and employ an M-H scheme, as discussed in section 3.3.3, below. Instead of this avenue
of approach, we might assume a prior on the first parameter in the inserve gamma pdf,
to turn our model to a hierarchical Bayes model.
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OLS estimated residual vector, e = (e1, . . . , en)′, is already defined for

equation (1). Eicker (1963) and White (1980)’s result may be used to

form a sandwitch variance-covariance matrix estimator of β̂, HCCM, that

is consistent:
(

1
n

X ′X
)−1

Ĥ

(
1
n

X ′X
)−1

, where Ĥ =
1
n

n∑
i=1

xix
′
ie

2
i and

X ′ = (x1, . . . ,xn) ∼ K × n. Under the usual assumptions such as a full

rank matrix lim
1
n

X ′X ≡ Q < ∞, it is well known that

Ĥ
p−→ H = lim

σ2

n
X ′ΩX = lim

σ2

n

n∑
i=1

xix
′
iωi (9)

holds. We may, hence, postulate a multivariate regression model of the

following:

Ĥ = H + V , (10)

where V ∼ K ×K is an error term matrix that is constrained to make both

H and Ĥ > 0. 7 After some manipulations (see the appendix to this

paper), the above becomes

ĥ = Xnσ2ω + v, (11)

where ĥ = vech(Ĥ) ∼ K ′ × 1, Xn = [vech(x1x
′
1) . . . vech(xnx′

n)] ∼ K ′ × n,

ω = (ω1 . . . ωn)′ ∼ n × 1, and ω ⊂ �n
+, v = vech(V ) ∼ K ′ × 1, and K ′ ≡

1
2K(K + 1). This is a regression of K ′ dimension ĥ variable on K ′ × n

explanatory variable matrix Xn. Hence the degrees of freedom, here, is df =

K ′−n, and under the usual situations such “df” could even be negative, i.e.,

the ĥ regression is unestimable. We have now found that the ω parameters

in equation (11) are identifiable only when the β vector in equation (1) is

identifiable. To restate,

the ω vector is identifiable if the inequalities K ′ > n and n > K

simultaneously hold.

7We use the notation “A > 0” to denote that the matrix A is positive definite.
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In a typical case like n = 50 and K = 3, ω is unidentifiable since K ′ = 6,

however, take a case like n = 20 and K = 10 then K ′ = 55 which makes ω to

be identifiable. But this is, indeed, a rare case. ω may become identifiable

if the column dimension of X increases, then, the “sample size” in equation

(11), i.e., K ′, should also increase. What we need to do is to increase K ′

without altering e, estimated regression residual vector from equation (1),

that constitutes a part of dependent variable in equation (11).

Amemiya (1983) proposed “partially generalized least squares” estima-

tion method to improve upon efficiency over OLSE. We may use his idea to

circumvent the problem that we stated in the previous paragraph. Let the

regressor matrix in equation (1) to be

Z = (X W ) ∼ n × (K + KW ), (12)

where we require that W is orthogonal to all the variables in equation

(1), i.e., W ′(y X) = 0 ∼ KW × (K + 1) 8. It is easy to see that b

and e from equation (1) remain the same even after we regress y on Z

instead of X alone. We now note that the the identifiability condition

given in the previous paragraph becomes K ′′ > n and n > K, where

K ′′ ≡ (K + KW )(K + KW + 1)/2. We could now increase KW to the extent

that K ′′ > n condition is satisfied9. In summary, we now have the control

over the number of additional orthogonal variables, KW , so that the above

two conditions are met, while the e vector is unchanged.

8It is well known that the OLSE of ˛ for the transformed regression, Z′y = Z′X˛ +
Z ′›, is identical to the OLSE for the original equation. Incidentally, Amemiya op.cit.
showed that the GLS estimator for the transformed model is more efficient than the
OLSE.

9For instance, take the previous numerical case of n = 50 and K = 3. If we set
7 < KW < 47 then the conditions are satisfied
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3.3.3 HCCM Information Accomodated in Candidate Density

We have thus shown that using Z instead of X as the regressor matrix in

equation (1), the ω vector is always identifiable. Let the OLSE of σ2ω be

σ2ω̂. “σ2” has no hat on it since in our Bayesian MCMC, σ2 is already

generated in the previous step by the Gibbs sampler scheme. We turn to an

M-H algorithm, to generate ωi. For this purpose, we use a truncated normal

as our candidate generating density:

ωi ∼ N(ω̂i, c̃ × ω̂2
i )1ωi∈(.25, 12.5), (13)

for i = 1, . . . , n where c̃ is a constant that has been determined in the

following way. In the footnote that discusses inverse gamma distribution

(footnote 7), we see that Var(x) = E(x)2(α− 2)−1 for x ∼ IG(α, β). Hence,

if we were to let α a little over “2” so that the variance would not vanish, then

almost any value of c̃ suffices. The value ought to be such that the average

acceptance rate in the independence chain M-H to be 20% to 50%. The value

we came up with is c̃ = 15 after some experiments, and the acceptance rate

for such candidate generating density function, in our experiment, is 33%,

which is reasonable10. For r ≥ 2 sequence, equation (13) has been emplyed

as the candidate generating density.

3.4 Hybrid of Gibbs Sampler and M-H

Let us describe our MCMC sequence in its entirety. For the parameter vector

θ = (β′ σ ω′)′, we set the initial value θ(0) = (β̂
′
s2 ι′n)′ to generate the first

round θ(1). Note here that we first draw β(1), hence β̂ is not really needed in

θ(0). What we actually need is θ
(0)

−β
. The sequence of our MCMC continues

10In M-H, an acceptance rate between 20% and 50% is regarded as reasonable, e.g., see
Koop (2003, p.98). In fact in a series of experiments, we found that the average acceptance
rate of 21% when c̃ = 10, 49% when c̃ = 25, and 58% when c̃ = 35. We may add that
despite these differences in the average acceptance rates, however, the results are fairly
robust.
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in the way specified by equations (6), (8) and (13) for r ≥ 2, combining the

Gibbs sampler and M-H. The details of monitoring and diagnostic checking

concerning this MCMC sequence, is given in the next section.

4 Numerical and Empirical Investigation

We first generate a data set to make sure that our Bayesian procedure works.

After that, we move on to use a Japanese stock price data set to show

that our Bayesian method can be used to estimate stock return volatilities

without assuming any structure on them a priori.

4.1 Numerical Illustration

For the generation purpose, we let the parameters of our model be β =

(1, 3,−2)′; σ2 = 10; sample size n = 50; X = (ιn ,x2,x3) ∼ n × 3, where

ιn is an n × 1 vector of all one’s, x2 ∼ N(3, In), and x3 ∼ N(6, 22In). As

to ω, we need to specify total of 50 elements. We generated ωi’s using an

uniform random number generator. Assigned ωi’s will be given in a chart

that compares them to the Bayesian posterior mean values, later (see Figure

1 below). Using these prespecified set of parameter values, we generated

data on y. This is used to generate W matrix to form Z = (X W )11. By

regressing y on Z, we obatin one set of e ∼ n× 1, and hence a ĥ ∼ K ′′ × 1

vector. We now have one sample of y, X and ĥ.

In the MCMC computation, we drew total of 30,000 θ’s. After some

experiments, using such diagnostics devices as Geweke’s (1992), we decided

to throw away the first 10,000 simulated values as burn-in’s, and took every

fifth drawn values after that to lessen the possible serial correlation inherent

in MCMC. The average acceptance rate in the M-H step was 33%. We

11In our GAUSS programming, we used the “NULL(·)” command to obtain W ∼
n × KW that is orthogonal to X. NULL command uses the QR decomposition to obtain
the orthogonal complement of X.
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Figure 1: Posterior Means of the 50 ωi’s

now have a set of 20, 000/5 = 4, 000 simulated values for each of σ2 and

ωi’s (i = 1, . . . , 50) available. Since giving 50 posterior pdf’s would not

contribute to the understanding of our procedure, we decided to present

posterior means of the fifty ωi’s, and this is given in Figure 1.

Fifty assigned ωi values are given using a solid line, and posterior means

using a dotted line. We see that there are some discrepancies between the

true (or given) value and the posterior mean value, however, mostly they

are close. Their closeness may be observed more clearly for the first five ωi’s

of Figure 1, in Figure 2. In particular, posterior means of ω1 to ω3, i.e.,

E(ω1|data) to E(ω3|data), are seen to follow randomly assigned values very

closely. To further this argument, we used some pseudo R–squared measures

e.g., given in Wooldridge (2002, pp.465-466), as measures of closeness to the

assigned (or true) ω. Let one of such pseudo R–squared be R̃
2
[E(ω|data)].

In all cases that we computed, we found R̃
2
E(ω|data) to be significantly

larger than R̃
2
homogeneous, where R̃

2
homogeneous is the pseudo R–squared

13



Figure 2: Posterior Means of the First Five ωi’s

measure for the homogeneous case, i.e., ω = “a constant vector.” This shows

our E(ωi|data)’s closeness to the assigned ωi.

We depicted the marginal posterior pdf’s of the first two σ2ωi’s in Figure

3. We see that the two marginal posterior pdf’s seem to be equipped with

typical characteristics of a variance pdf, i.e., a gamma like shape with a

hump close to the origin and skewed to the right. We emphasize that the

shapes have been obtained without any prior shape information on them.

This fact may indicate an appropriateness of our MCMC simulator.

We next examine the posterior standard deviations computed from the

marginal densities of ωi’s. The 50 posterior standard deviations are given

in Figure 4. We observe that they tend to fluctuate a lot. For instance,

posterior standard deviation of ω1 and ω2 are slightly less than “1.8” while

that of ω4 is close to zero. An interesting observation may be made, when

we compare Figure 4 to Figure 1 or to Figure 2. There is a tendency that

14



Figure 3: Marginal Posterior’s of σ2ω1 and σ2ω2

Figure 4: Posterior Standard Deviations of the 50 ωi’s
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posterior means and standard deviations, move in the same direction. This

may be interpreted to come from the fact that marginal posterior pdf of ωi’s

are in gamma like shape12.

4.2 Empirical Investigation: Japanese Stock Returns

4.2.1 Theoretical Model

In this section, we use a panel data set to show that our procedure works

well in practice. Saying “panel data set” may be far stretched, however,

since we do not implement, for example, random effects model. We carry

out a two-step time series to cross section regressions, in a way similar to

the Fama-Macbeth procedure (see e.g., Cochrane (2001 p.244)). We used

data on the daily stock prices of fifty Japanese pharmaceutical/ biomedical

venture capital companies. To obtain an excess return series, we used 10-

year Japanese Government Bond (JGB) rate for the risk free rate. For the

market return, we used TOPIX. The sample period is from May 6, 2005 to

April 28, 2006, hence the sample size is 245 in total. We obtained stock

return data and the JGB data from Yahoo Finance and Nikko Financial

Intelligence web site, respectively.

We begin with a multifactor multivariate return generating equation:

R = (ιT F )

(
α
B

)
+ ε, (14)

where R = (R1 · · ·RN ) ∼ T × N is a T period excess returns for N firms,
α = (α1, . . . , αN ) ∼ 1 × N vector of constants,
B = (β1 · · ·βN ) ∼ F × N is a matrix of beta’s,
F = (f1 · · · fF ) ∼ T × F is a matrix of F factors,
ε = (ε1 · · · εN ) ∼ T × N matrix of error terms,

N is the number of stocks, and T is the time series sample size. When F = 1

the above reduces to a single factor return generating equation:

R = (ιT f)

(
α
β

)
+ ε, (15)

12Suppose a gamma distributed random variable γ has E(γ) = θ, then its standard
deviation becomes SD(γ) = θ/

√
η, where η is the scale parameter.
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where F = f is a T × 1 vector of one factor,
B = β is a 1 × N vector of beta’s.

Equation (15) is just a set of N time series regressions. We obtain an OLSE

of β , β̂ ∼ 1× N from equation (15). Define sample mean of R to be an N

dimensional vector R̄, we then obtain a cross sectional regression model

R̄ = β̂
′
λ + u, (16)

where R̄ =
1
T

R′ιT = (R̄1 · · · R̄N )′ ∼ N × 1 vector of average excess returns,

λ ∼ 1 × 1 scalar is a risk premium associated with the factor f ,
u ∼ N × 1 is a vector of pricing errors.

Equation (16) is the one factor type CAPM without an intercept term given

in Cochrane op.cit., p.235, among others13.

In this section so far, we have used a set of notations that are common in

empirical finance, and in this paper it corresponds to equation (1). We, thus,

need to clarify the notational correspondences between the ones used so far

in the current section, and in the previous subsections. The correspondences

are given in below.

R̄ ∼ N × 1 (corresponds to y in (1),
β̂
′ ∼ N × 1 (corresponds to X in (1)),

u ∼ N × 1 (corresponds to ε in (1)),
λ ∼ scalar (corresponds to β in (1)),
F = 1 is the number of factors (corresponds to K in (1)),
N the number of stocks (corresponds to n in (1)).

4.2.2 Bayesian Test of Hetoroscedasticity

Since we do not know whether our data set exhibits a heteroscedasticity or

not, we carried out a Bayesian test of heteroscedasticity a la Lancaster(1994,

p.149). In equation (1) or equivalently in the present case equation (16),

13This specification is found e.g., in Cochrane op.cit. equation 12.10. We have regressed
with an intercept term, and the OLSE of it is 0.003 (0.048) and the slope estimate is 0.104
(0.062), where the figures inside the parentheses are estimated standard errors. Without
an intercept term, the slope estimate is 0.108 (0.024), and there is very little difference
whether we include an intercept term or not.
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under the null hypothesis of homogeneity, H0, we have ε ∼ N(0, σ2I
N

).

Hence, letting εi = R̄i− β̂iλ, we have E(ε2
i −σ2)2 = E(ε4

i −σ2ε2
i +σ4) = 2σ4,

under H0, since our normality assumption on εi calls for E(ε4
i ) = 3σ4. Lan-

caster op.cit., thus, proposes T (λ, σ2) =

(∑N
i=1(ε̂

2
i − σ2)2

N

)
− 2σ4, where

ε̂i = R̄i − β̂iλ̂ and λ̂ is an MCMC generated value, to be used in a Highest

Posterior Density Interval (HPDI) test. This test would reject H0 if the mass

of the T statistic distribution does not contain “zero,” i.e., homoscedastic-

ity14.

It is easy to draw λ and σ from their respective marginal posterior pdf,

since each pdf boils down to an univariate normal and an IG, respectively.

We will not discuss the details of the MCMC procedure involved in sim-

ulating T under H0. Simulated T statistic is shown in Fig. 4. Our cal-

culations show that for the distribution of T , P (T < 0) = 0.016, which is

smaller than the usual significance level even if we multiply it by 2, i.e.,

0.016×2 = 3.2% < 5%, say. We would safely reject H0. We also carried out

several well-known sampling theory heteroscedasticity tests. They all reject

H0.

4.2.3 Empirical Estimation of ωi’s

The MCMC simulation procedure, here, is exactly the same as the one

discussed in the numerical illustration of section 4.1. Posterior means and

standard deviations are given, respectively, in Figures 5 and 6 in below.

Since we have confirmed that our method works in section 4.1, we need to

14Lancaster op. cit. does not call T , a test statistic, however. He rightfully regards T
as a “checking” device. For one thing, the empirical distribution obtained from simulated
T is not the marginal posterior pdf under H0. In other words, we (or Lancaster op cit.
too) did not compute the posterior pdf of the T statistic. Secondly, in a sampling theory
framework, obviously plimT = 0 under H0 as N → ∞. This implies that whether T > 0
or T < 0 is not known under the alternative hypothesis as N → ∞. It seems like we ought
to take a 100(1 − α)% HPDI of the T statistic, and reject H0 if it does not contain zero,
where α is a significance level. This is in essence, what we did.
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Figure 5: Marginal Posterior pdf of the T Statistic

Figure 6: Marginal Posterior Means of the σ2ωi’s
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Figure 7: Marginal Posterior Standard Deviations of the σ2ωi’s

make sure that our results may be reasonable as an empirical investigation.

In the U.S. and world wide, starting with a seminal paper by Banz

(1981) many observed “size effect” that is the smaller the company is the

higher its return15. This phenomenon could be naively associated to the

mean-variance efficiency to yield a thesis that says smaller companies are

expected to be more riskier, i.e., the smaller the size, the larger the mean

and volatility of returns. In this section, we intend to investigate whether

larger (smaller) size companies have smaller (larger) ωi’s.

For the fifty stock data, we now collected the market value of its equity

(MVE) data from Yahoo Finance (in one billion yen)16 . We then drew a

graph with the MVE on the horizontal axis, and the σ2ωi’s on the vertical

15For the size effect in Japan, see e.g., Chan and Chen (1991), among others.
16Berk (1997) among others, however, examined the so-called size effect and proposed

that a size of a company should not be measured by MVE but some other variables such
as sales.
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Figure 8: Volatility versus Size: σ2ωi’s and MVE

axis. This is shown in Figure 7. The downward sloping solid line in Figure

7, is the OLS estimated line. This figure clearly shows the larger the MVE,

the smaller the volatility as measured by σ2ωi. We further selected two

stocks (1) that has large MVE and small σ2ωi, and (2) that has small MVE

and large σ2ωi, to see what the marginal posterior pdf’s of σ2ωi of these

companies look like. Specifically, we chose Taisho Pharmaceutical Co., Ltd.

for (1), and Site Support Institute Co., Ltd. for (2). They are given in

Figures 8 below. Notice that the two charts have different horizontal axis

scale. The smaller MVE stock has very large volatility (see the lower chart)

compared to the that of the larger MVE stock (see the upper chart). The

two pdf’s have quite reasonable shapes. We conclude that our Bayesian

estimation of volatility supports the view that the smaller the size of the

stock, the larger is the volatility.
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Figure 9: Marginal Posterior pdf of σ2ωi for Taisho Phamaceutical Co. and
Site Support Institute

5 Concluding Remarks

In this paper, we proposed a fully Bayesian method to estimate regression

error term scedastic function ω without assuming any structure on it. One

unique feature of our methodology is in using the Eicker-White result in

a candidate generating function in our M-H step of MCMC. We have sup-

plied a numerical example, and also an empirical example to show that our

method works reasonably. Finally, as demonstrated in our empirical re-

search, obtaining W such that W ′(y X) = 0 is no problem since W is not

found as an empirical data but rather computer generated data.

One possible arbitrariness might remain in this paper. That is, a reader

might feel uneasy about our setting bounds for ω prior pdf. As we suggested

in footnote 8, we may adopt a hierarchical Bayes model.
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Appendix : Derivation of equation (11)

H is defined by H = X0ΩX. Our purpose in this appendix is to derive

equation (9) in the text, ı.e., h ≡ vech(H) = Xnω. To this effect, we note

the following series of lemmas.

Lemma 1 . vec(H) = (X ′ ⊗ X ′)vec(Ω) ∼ K2 × 1.

proof : Just use the usual vec(ABC) = (C ′ ⊗ A)vec(B) formula. See,

e.g., Lütkepohl (1996, p.97).

Lemma 2 . X ′⊗X ′ = [(x1⊗x1) . . . (x1⊗xn)] . . . [(xn⊗x1) . . . (xn⊗xn)] ∼

K2 × n2.

proof : Note X ′ = (x1 . . . xn) ∼ K × n, and the result follows.

Lemma 3 . vec(H) = [(x1 ⊗x1) . . . (xn ⊗xn)]ω, where ω = (ω1 . . . ωn)′ ∼

n × 1.

proof : Note

vec(Ω) = vec(diag(ω)) = (ω1 0 · · · 0 ... 0 ω2 0 · · · 0 ... · · · ... · · ·ωn)′ ∼ n2×1,

where ω′ = (ω1, . . . , ωn), “diag(ω)” denotes a diagonal matrix with the

vector ω in its diagonal. Note that vec(Ω) is a vector of size n2 × 1,

and picks up the columns (xt⊗xt) only for t = 1, . . . , n from X ′⊗X ′.

Lemmas 1 and 2, in conjunction with the above proves the lemma.

Lemma 4 . xt ⊗ xt =vec(xtx
′
t) ∼ K2 × 1.
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proof : Use the vec(AB) = (B′ ⊗ A)vec(Ip) relationship, where p is the

column dimension of A (see e.g., Lütkepohl (1996, p.97)). In the

present case p = 1, hence, vec(Ip) is equal to a scalar one.

We now define a matrix that converts a vec(A) type vector to a vech(A)

vector.

Definition of LK ′ matrix : Let K ′ ≡ K +(K − 1)+ . . .+1 = 1
2K(K +1)

and define

LK ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0
0...

Ik−1

0...
0...

Ik−2

· · · · · ·
0

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼ K ′ × K2.

In essence, the diagonal submatrices of LK ′ shrink from IK , IK−1 . . . IK−j . . .

to IK−(K−1) = 1 but each submatrix is preceded by a zero matrix 0j ,

where 0j ∼ (K − j) × j. Such LK ′ converts vec(A) to vech(A) for a

K × K square matrix A as follows.

Lemma 5 . Let A ∼ K ×K square, then vech(A) = L
K′vec(A) ∼ K ′× 1.

proof : Let A = (a1 . . . aK) ∼ K × K and aj ∼ K × 1. Also let, for

instance,

aj(−1,2) = (a3j a4j · · · aKj)′ ∼ (K − 2) × 1,
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i.e., aj(−1,2) deletes the first two elements from aj . Then,

LK′vec(A) = LK′

⎛
⎜⎜⎝

a1
...

a
K

⎞
⎟⎟⎠ = LK′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
. . . . . .

0
a2(−1)
. . . . . .

0
0

a3(−1,2)
. . . . . .

...
a

KK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= vech(A).

Lemma 6 . vech(xtx
′
t) = LK′vec(xtx

′
t).

proof : Omitted.

We are now, in a position to derive the vech(H) = Xnω relationship.

Use Lemmas 2 to 4 on the Lemma 1 relationship to obtain

vec(H) = [vec(x1x
′
1) . . . vec(xnx′

n)]ω.

Further, use Lemmas 5 and 6 to obtain the following.

vech(H) = LK′vec(H)ω

= [LK′vec(x1x
′
1) . . . LK′vec(xnx′

n)]ω

= Xnω.

where Xn = [vech(x1x
′
1) . . .vech(xnx′

n)] ∼ K ′ × n.
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