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Abstract

We propose a method of evaluating the accuracy of the implied default

probabilities. We modify the model proposed by Duffie and Singleton [1999]

to allow the parametric statistical analysis. The pseudo maximum likelihood

estimator is defined and to justify our method we shall prove the consistency

and the asymptotic normality of the estimator. The key step is to define

a pseudo score vector and apply the method of Wald [1949] and a delta

method. We also introduce the bootstrap for estimating the accuracies,

which is similar to that for regression models. To implement our method

to the real data, we shall recommend the bootstrap rather than asymptotic

normality.

Key words and Phases. implied default probability, statistical model,

parametric model, pseudo maximum likelihood estimator, consistency, asymp-

totic normality, bootstrap, delta method.
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Section 1 Introduction.
We are interested in estimating default probabilities of individual private

industry and the average/representative default probability of rating classes

such as AA, BB, etc.. The problem has been an important issues in credit

risk problem in the last few decades. And a naive method is to use the

historical data, such as the binary data telling you if a certain company is

dead or not at a given day, some finance document, account data of each

company, etc., on the one hand. One of the problems of in a historical

method is, of course, we don’t have enough data. It may be extremely

difficult to have a default data for the AAA companies (we should have

said ”might have been” rather than ”may be” in the recent economic situ-

ation though !). On the other hand, we all know that the corporate bond

issued by stable companies are traded at higher prices. This comes from

the fact that traders in the market certainly take their ”subjective” default

probabilities of the companies into account when they price the corporate

bonds. Thus, by considering backward, we may use the prices of the corpo-

rate bonds as ”data” to estimate the default probabilities, see for example,

Duffie and Singleton [1999], Hull [2006] Ch. 29. Indeed, as we shall discuss

briefly below, the spreads of the interest rates may be determined largely by

the credit rating as well as the default probability of the companies being

considered. Although what we shall estimate is the probabilities under the

equivalent Martingale Measure (MG measure for short), they are utilized

in many places, such as pricing derivatives written on the bonds (cf. Hull

[2006]).

Now, in the begging, most of the rating agencies may utilize the historical

data to estimate the default probabilities of companies indirectly and these

probabilities are the key elements for making up the rating table in the very

first time it is determined. Once the rating table is set and companies are

categorizes to one of the rating classes, and after a while, we may be in-

terested in updating a representative default probabilities of theses classes.

Now, when we reestimate the default probabilities of these classes, we may

use the historical data again, where we will be faced with many difficult

statistical problems, such as censoring (Cox [1972], Takahashi [2009]). We

then transform the estimated probabilities into the ones under the equiva-

lent MG measure, if our purpose is to update the price of derivatives.

On the other hand, the use of implied probabilities is free from these data

collecting problems and transformations. With this in mind, we shall take

the latter approach in this paper.

There are several literatures discussing ways to derive the formula ob-
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taining the default probabilities from the spread, they do not discuss the

accuracy of the estimated probabilities. We shall propose a way to estimate

the accuracy of the estimated default probability from the interest spread.

The key idea is to consider the implied default probability as a pseudo

data and we allow the ambiguity when the corporate bond price of a de-

faultable company is determined in the market. Hence we suppose that the

observed spreads contain error terms. We shall briefly review the results of

Duffie and Singleton [1999] in Section 2, the statistical model and method

is presented in Sections 3 and 4. We shall present and prove the consistency

and the asymptotic normality of our estimator to justify our method in

Section 5. Finally in Section 5 we introduce a bootstrap method and some

empirical results are given in Section 6.

Our method makes it possible to perform the statistical inference to the

individual default probability and the ”representative” probability of the

rating classes.
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Section 2. Preliminaries
Let (Ω, F, Pr) be the probability space, on which Standard Brownian

motion {W (t), t ≥ 0} is defined. We also let {Ft = σ(W (s), s ≤ t)},
(Ft ⊂ F for all t ≥ 0) be a Brownian filtration. We further suppose

that {W (t), t ≥ 0} is the only source of uncertainty in our model, and there
are no arbitrage opportunities in the market, and the market is assumed

to be complete. These are the standing assumptions throughout the rest of

the paper and won’t be stated again. With this in mind, we shall review

some results on the relation between the default probability and the spread

of the interest rates.

Let P (t, T ) = Pk(t, T ) (t ≤ T ≤Τ) be the time t price of the defaultable

zero coupon bond maturing at T , where the suffix k indicates the rating

class to which the company of the interest is classified. The suffix k may

be omitted if there is no confusions. We also let P ∗(t, T ) be the price of

the corresponding default free bond. It follows that the yield to maturity

R(t, T ) = Rk(t, T ) and R
∗(t, T ) are given by

R(t, T ) =
−1
T − t logP (t, T )

R∗(t, T ) =
−1
T − t logP

∗(t, T )

respectively under the no-arbitrage conditions with the continuos com-

pounding. The spread between the risk free and risky interest rate is thus

defined by

Υ(t) = Υ(t : P ∗, P ) = R(t, T )−R∗(t, T )

=
−1
T − t log

P (t, T )

P ∗(t, T )
(1)

Now to determine P ∗(t, T ) and P (t, T ), we let Q be the unique equiva-

lent Martingale measure, then the standard theory of mathematical finance

asserts that
P ∗(t, T )
B(t)

= EQ{ 1

B(T )
|Ft},

where B(t) = exp{−
Z t

0

r(u)du} and r(u) is an instantaneous risk free spot
rate and EQ denotes the expectation under the measure Q (Harrison and

Pliska [1982]).

On the other hand, the derivation of P (t, T ) is troublesome. Several

authors have discussed the problem, and we will review here the result of

Duffie and Singleton [1999] among others. Now, to determine P (t, T ), the

default probability, as well as the proportion and the time at which the

recovery of the debt is made are playing important roles.
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To fix the idea, let us write τ = τk be the time of the default whose

survival function is given by

G(t) = Gk(t) = Q{τ > t}

= exp{−
Z t

0

λ(u)du}, (2)

where λ(t) is the hazard function (rate). We note that some authors consider

the hazard rate and thus the survival function is a random process, we do

assume the hazard rate (function) is a usual non random function.

By assuming that 100×δ% of the debt is recovered at the time of default,

we have

P (t, T ) = EQ{exp{−
TZ
t

R(u)du}|Ft}

where,

R(u) = r(u) + λ(u)(1− δ)

(cf. Duffie and Singleton [1999]). If δ is also assumed to be non-random, it

follows that

P (t, T ) = EQ

⎧⎨⎩exp{−
TZ
t

R(u)du}|Ft

⎫⎬⎭
= EQ

⎧⎨⎩exp{−
TZ
t

r(u) + λ(u)(1− δ)du}|Ft

⎫⎬⎭
= EQ

⎧⎨⎩exp{−
TZ
t

r(u)du}・exp{−(1− δ)

tZ
0

λ(u)du}|Ft

⎫⎬⎭
= P ∗(t, T )G(T |t)(1−δ),

where G(T |t) is a version of the conditional survival function Q{τ > T |Ft}.
Now to avoid tedious conditional arguments, we shall fix the present time

t, and we may suppose without losing too much generality that T = t and

t = 0 . This will help us to simplify the notations and argument significantly

and, hence, the survival function may be written in terms of the spread,

G(t) = exp{−tΥ(t : P ∗, P )} 1
1−δ (3)

[Note 1] If the recovery is made at the maturity day, we have a slightly
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different formula:

G#(t) = exp{−tΥ(t : P ∗, P )−δ }/(1−δ)

=

∙
P (0, t)

P ∗(0, t)

¸ 1
1−δ

(4)

(cf. Kusuoka et. al. [2001]).//

If either relation (3) and/or (??) hold exactly and δ is known as well

as we can observe G(t) or G#(t) for every t, we are all set. We have an

exact estimate of the ”true” survival function for each t and the distribution

function of τ under the equivalent martingale measure Q.
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Section 3. Statistical Models.
Even if we suppose the theory is complete, there may be many sources

of errors when P (0, t) is determined in the market, such as a lack of our

information and a noise in the market, the assumption of being able to de-

termine the price P (0, t) without error is unrealistic. Therefore, the implied

survival function is calculated with some errors and it may be reasonable

to consider a statistical model for the realized (or determined price of the

defaultable bond) P (0, t). On the other hand, we shall suppose that P ∗(0, t)

is observed without any error, as we shall set it the base line of the anal-

ysis. Although we start from the continuos time model, we suppose that

both P (0, t) and P ∗(0, t) are observed in the discrete fashion and that we

confine ourselves to the time points {t = ti, i = 1, ..., n} ⊂ (0,Τ]. Then our
observed defaultable bond prices (the prices of risky bond) determined in

the market, are assumed to be

P (0, ti) + σhtiεti , i = 1, 2, ..., n (5)

where we have set P (0, ti) are the ”theoretically true” prices of the default-

able bonds maturing at ti, ε
0
ti
s are i.i.d. random variables with mean 0

and variance 1, and σ is an unknown constant. The term hti has an im-

portant role in our model. Since, P (0, 0) = P ∗(0, 0) = 1, we need to assume

h0 = 0, and it may be reasonable to suppose that ht is a increasing in

t. On the other hand, it will make the whole analysis unnecessary com-

plicated if we assume ht is an unknown function of t. We, thus, suppose

that ht is a known function of t, or more concretely, a function of the form

ht = h(t, P
∗(0, t)) and as examples, we sometimes consider

ht = [1− P ∗(0, t)]α (6)

or

ht = [1− P ∗(0, t)]α P ∗(0, t), (7)

for some α > 0. It follows that we will observe random variable St = S(t)

in stead of Gt = G(t), where we have set,

St = S(t) = { exp { log[ P (0, t)
P ∗(0, t)

+ σρtεt]}}
1

1−δ (8)

and

ρt =
ht

P ∗(0, t)

If we specify the function ht as above, we have

ρt =
[1− P ∗(0, t)]α
P ∗(0, t)

or [1− P ∗(0, t)]α (9)
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It is convenient to rewrite the equation (8) as,

S1−δt = S(t)1−δ = G1−δt + σρtiεt (10)

If we denote the observed Sti by sti = s(ti) i = 1, ...n, a non-parametric

estimator of the survival function may be obtained by smoothing the se-

quence {s(ti) i = 1, ...n} and we may consider some statistical properties
of the estimated curves. In some situation, however, we have extra infor-

mation about the shape of the survival function, and in this case we may

assume a parametric model. Formally, we shall set

[Definition 1. Parametric Model] Let Θ be a subset of Rd, where

d denotes the dimension of the parameter space. We also let

G(t :θ) = Q{τ > t :θ} (11)

is a survival function parametrized by d − demensional (unknown) vector
θ = (θ1, ...,θd)

0 ∈Θ, where 0 denotes the transpose.//

In the standard statistical analysis, we relay on the samples generated

by the assumed model (11) for performing statistical inferences. Although

there are no such data here, a sequence of implied estimates of the survival

functions are available and we shall use these estimates as ”DATA” of the

statistical inferences. We now define

[Definition 2. Pseudo Data (RandomSample)] Let {Sti = S(ti :
θ), i = 1, ..., n} be a sequence of implied survival functions defined in (10).
And we denote the observed sequence by {sti i = 1, ...n}. We call {Sti ,
i = 1, ..., n} a Pseudo Random Sample, and {sti i = 1, ...n} a pseudo
sample (data).//

To estimate the unknown parameter vectors, we apply the least square

criterion and we define the pseudo maximum likelihood estimate ϑ̂ of θ as

follows;

[Definition 3. P seudo M.L.E.] In the parametric model (11), after

having observed {sti , i = 1, ...n}, the pseudo maximam likelihood

estimate ϑ̂ of θ is defined by

ϑ̂ = ϑ̂(n) = argθ ∈ Θ[min

nX
i=1

{G(ti,θ)
1−δ − s1−δ

ti

ρti
}2] (12)

We often omit n for simplifying the notations, unless it is necessary. The

estimator θ̂ = θ̂(n) of θ is also defined by (12), with s1−δti
replaced by
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S1−δ
t . The drawback of this formulation is that ti should be strictly bigger

than 0. We shall come back to this point below.//

We shall justify our estimator (12) by showing that they are consistent and

asymptotically normal in Sections 5. Now, to make the analysis easier, we

shall transform the functions and variables so that the model has constant

variances in time. Since, ρ0 = 0, the careful readers have noticed that we

have to impose some restriction when we define the homoscedastic models

(12). Therefore, for some positive constant c, we let,

Ξ (t,θ) =
G(t,θ)1−δ

ρt
for t > c (13)

and

Xt = X(t) =
S1−δ
t

ρt
and xt = x(t) =

s1−δt

ρt
for t > c

In practice, we may choose c

0 < c < min{ti, i ≥ 1}.
With this new notations, (10) may be rewritten as

X(t) =Ξ (t,θ) + σεt (14)

and (12) becomes,

ϑ̂ = ϑ̂(n) = argθ ∈ Θ[min

nX
i=1

{Ξ (ti,θ)− xti}2] (15)

[Note 2] The choice of α is another interesting problem. At the maturity,

both P (0, 0) and P ∗(0, 0) are set equal to 1, it follows that there is no error

determining P (0, 0) and ρ0 = 0 follows immediately (cf.(9)). It suggests to

us that α > 0. If we take α large, then the weight of these data with small

t become larger. We have made small data analysis on some AA company

and it is found that the fitting of the Webull model is good when α = 0.

But, the choice of α = 1 gives us a rather biased result. Based on the small

data analysis we made, the mean squared error is decreasing as α→ 0. We

have observed that the MSE is stabilized in the range α ≤ 0.3. (cf. Picture
1)

[Note 3] As to the value for δ, we shall simply follow the ”tradition”

that δ = 0.3. The value also may be calculated implicitly from the ”data”,

we do not take the position in this paper.
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Section 4. Pseudo Score Vectors. Throughout the end of this
paper, we shall suppose t > c, we do not repeat thee assumption unless it is

necessary. The statistical model defined above contains several parameters,

θ, α and δ. The role of α and δ are somehow different from θ, and they

should be determined before the statistical analysis of the parameter θ is

performed. Hence, we shall define a d × 1 vector valued pseudo score
function (vector) ψ(θ, t, x) for the parameter vector θ, where we have

assumed that both α and δ are given constants. Let,

ψ(θ, t, xt) =
1

2
[
∂

∂θ
{Ξ (t,θ)− xt}2]

= [
∂

∂θ
Ξ (t,θ)]{Ξ (t,θ)− xt} (16)

=

µ∙
∂

∂θ1

Ξ (t,θ)

¸
, ...,

∙
∂

∂θd

Ξ (t,θ)

¸¶0
{Ξ (t,θ)− xt}

If there is no confusions, we use the gradient and you may rewrite the above

equation as,

ψ(θ, t, xt) = [OΞ (t,θ)]{Ξ (t,θ)− xt}

where the gradient is taken with respect to the vector θ. And, the similar

notation:

ψ(θ, t, xt) = [ψ
(1)
(θ, t, xt), ...,ψ

(d)
(θ, t, xt)]

0

will be used whenever it is necessary, where

ψ
(l)
(θ, t, xt) =

∙
∂

∂θl

Ξ (t,θ)

¸
{Ξ (t,θ)− xt} (17)

We note that under the regularity conditions to be specified below, a

pseuedo m.l.e. θ̂ is obtained by the differentiation in (15), and it is

given as a solution of

Ψ (θ̂) =Ψ (θ̂, n) =

nX
i=1

ψ(θ̂, t,Xti) =

⎛⎜⎜⎜⎜⎜⎜⎝

Pn

i=1ψ
(1)
(θ̂, ti, Xti)

・

・

・Pn

i=1ψ
(d)
(θ̂, ti,Xti)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

(18)

We are now in the position to present the regularity conditions [C1] under

which we shall obtain the basic properties of ψ(θ, t,Xt) =

[ψ
(1)
(θ, t,Xt), ...,ψ

(d)
(θ, t,Xt)]

0 which are similar to that of the ”usual

score” vectors. The important relation in the usual score business, such

as ”the expectation of the negation of the second order derivatives and the

square of the first order derivatives” do not hold here though.
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[Note 4. Intuitive Justification of the Psudo score function]

The use of the pseudo score function may be ”justified” by the following

special case, where we will assume that the distribution of the error term

εt is N(0, 1). Since, X(t) = Ξ (t,θ) +σεt, it follows that the density

function of X(t) becomes

f(x : t,θ) =
1p
2πσ

exp{ −1
2σ2

(x−Ξ (t :θ))2},

where σ is assumed to be known. And the score function is given by,

−1
σ2

[
∂

∂θ
Ξ (t,θ)] {Ξ (t,θ)− x}

This is the same as our pseudo score function up to the constant multipli-

cation. (cf. (16))//

[Regularity Condition C1]

1. The minimum in (12) is attained inside the parameter space Θ.

2. For each t > 0, Ξ(θ, t) is three times continuously differentiable with

respect to θ.//

We shall present some properties of the pseudo score vector function be-

low;

[Lemma 1]. Under the regularity condition [C1],

(ⅰ). the expectation of the pseudo score vector ψ(θ, t, St) is

Eθ{ψ(θ, t,Xt)} = (0, ..., 0)0 = 0, for all θ and t > c.

(ⅱ). The (l,m)th element of the variance covariance matrix, Covθ{ψ(θ, s,Xs),ψ(θ, t,Xt)}
is given by

[Covθ{ψ(θ, s,Xs),ψ(θ, t,Xt)}](l,m)

(19)

={ σ2
h

∂
∂θl

Ξ (t,θ)
i h

∂
∂θm

Ξ (t,θ)
i

0

if { s = t

else

In view of (19), we shall write:

V arθ{ψ(θ, t,Xt)} =σ2 [∇Ξ (t,θ)] [∇Ξ (t,θ)]
0

(20)
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Proof. (ⅰ).From the equation (14), the lth element of Eθ{ψ(θ, t,Xt)}
is

Eθ{ψ(l)
(θ, t,Xt)} = Eθ

½∙
∂

∂θl

Ξ (t,θ)

¸
{Ξ (t,θ)−Xt}

¾
=

∙
∂

∂θl

Ξ (t,θ)

¸
Eθ{σ²t} = 0

(ⅱ). For the covariance matrix, it is also straight forward that from the

independence of Xs and Xt, for t 6= s, the (l,m)th element of the covariance
matrix is given by

[Covθ{ψ(θ, s,Xs),ψ(θ, t,Xt)}](l,m) = Eθ{ψ(l)
(θ, s,Xs)ψ

(m)
(θ, t,Xt)}

=

∙
∂

∂θl
Ξ(s,θ)

¸ ∙
∂

∂θm
Ξ(t,θ)

¸
× Eθ ({Ξ(s,θ)−Xs} {Ξ(t,θ)−Xt})

= {
σ2
h³

∂
∂θl
Ξ(t,θ)

´³
∂

∂θm
Ξ(t,θ)

´i
0

if {
s = t

else //

The additivity of the variance matrix is also easily seen. We simply record

the result in

[Lemma 2] For any s 6= t, we have

V arθ{ψ(θ, s,Xs)+ψ(θ, t,Xt)} =V arθ{ψ(θ, s,Xs)}+V arθ{ψ(θ, t,Xt)} //

Now, to discuss the asymptotic normality of θ̂(n), we shall expand

Ψ (θ̂, n) into Taylor series in θ about the true parameter vector θ
0
,

and for this purpose we need the gradient vector and the Hessian matrix of

ψ(l)(θ, t,Xt). The following lemmas are also simple, but we present them for

the recording purpose as they are notationally very confusing and tedious;

we should go slowly and carefully.

[Lemma 3] The mth element of the gradient vector ∇ψ(l)(θ, t,Xt),
which is denoted by [∇ψ(l)(θ, t,Xt)](m), and the (k,m)th element [ ∂

2

∂θ2ψ
(l)(θ, t,Xt)]

(k,m)

of the Hessian matrix ∂2

∂θ2ψ
(l)(θ, t,Xt) of ψ

(l)(θ, t,Xt) are given respec-

tively by

12



[∇ψ(l)(θ, t,Xt)](m)

=

∙
∂

∂θm

∂

∂θl
Ξ(t,θ)

¸
{Ξ(t,θ)−Xt}+

∙
∂

∂θl
Ξ(t,θ)

¸ ∙
∂

∂θm
Ξ(t,θ)

¸

∙
∂2

∂θ2
ψ(l)(θ, t,Xt)

¸(k,m)
=

∙
∂

∂θk

∂

∂θm

∂

∂θl
Ξ(t,θ)

¸
{Ξ(t,θ)−Xt}

+

∙
∂

∂θm

∂

∂θl
Ξ(t,θ)

¸ ∙
∂

∂θk
Ξ(t,θ)

¸
+

∙
∂

∂θk

∂

∂θl
Ξ(t,θ)

¸ ∙
∂

∂θm
Ξ(t,θ)

¸
(21)

+

∙
∂

∂θm

∂

∂θk
Ξ(t,θ)

¸ ∙
∂

∂θl
Ξ(t,θ)

¸
//

It follows that the expectation under θ of the gradient vector and the Hessian

matrix are given by,

Eθ

½h
∇ψ(l)(θ, t, St)

i(m)¾
=

∙
∂

∂θl
Ξ(t,θ)1−δ

¸ ∙
∂

∂θm
Ξ(t,θ)1−δ

¸
(22)

and

Eθ

(∙
∂2

∂θ2
ψ(l)(θ, t,Xt)

¸(k,m))
=

∙
∂

∂θm

∂

∂θl
Ξ(t,θ)

¸ ∙
∂

∂θk
Ξ(t,θ)

¸
+

∙
∂

∂θk

∂

∂θl
Ξ(t,θ)

¸ ∙
∂

∂θm
Ξ(t,θ)

¸
(23)

+

∙
∂

∂θm

∂

∂θk
Ξ(t,θ)

¸ ∙
∂

∂θl
Ξ(t,θ)

¸
//

Combining with Lemma 1, we have,

[Lemma 4] For l,m = 1, ..., d

Eθ

½h
∇ψ(l)(θ, t,Xt)

i(m)¾
=
1

σ2
[V arθ{ψ(θ, t,Xt)}](l,m) // (24)
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Section 5. Asymptotic Properties.
In order to justify our estimating procedure (15) or (12), we shall prove

the consistency and the asymptotic normality of our estimator θ̂ under

the additional regularity conditions [C2] and [C3] specified below. We shall

first give a sketchy proof of the consistency by the method of Wald [1949].

For this purpose, we shall suppose that the parameter space Θ is compact

subset of Rd. We also introduce the new notations. For any ρ > 0, let,

Q(t,Xt, θ) = {Ξ (t,θ)−Xt}2

and,

Q(t,Xt, θ, ρ) = inf
|θ0−θ|<ρ

Q(t,Xt, θ
0).

We shall now impose some regularity conditions for the consistency:

[Regularity Condition C2 ] (Conditions for the consistency)
1. For any pairs θ 6= θ0,

Q(t,Xt, θ) 6= Q(t,Xt, θ0), at leat one pair (t,Xt)

2. If limi→∞ θi = θ

lim
i→∞

Q(t,Xt, θi) = Q(t,Xt, θ)

for all (t,Xt) except on a set of measure zero under the true parameter

vector θ0. The null set may depend on θ, but not on the sequence {θi, i =
1, 2, ...}.
3. For any pairs θ 6= θ0,

Ξ(t, θ) 6= Ξ(t, θ0), at leat one t (25)

//

We are now ready to present and give a heuristic proof of the consistency.

[Theorem 1] In addition to the conditions [C1] and [C2], we suppose

that the parameter space is compact, then the pseudo m.l.e. θ̂ is consistent

estimator of θ: under the probability measure Prθ0 , we have

θ̂
P−→θ

0
as n→∞ (26)

14



Proof (Sketch). Let, θ
0
be the true parameter vector, then it follows

that,

σ2 = Eθ0{Q(t,Xt, θ0)} (27)

≤ Eθ0{Q(t,Xt, θ)}

= σ2 +
h
Ξ (t,θ

0
)−Ξ (t,θ)}

i2
First, we suppose the parameter space is finite,

Θ = {θ0, θ1, ..., θK}

Then, from (27), under the probability measure Prθ0, the strong law of large

numbers tells us that

lim
n→∞

1

n

nX
i=1

Q(ti, Xti , θ
0) = σ2

and for all k = 1, 2, ...,K,

lim
n→∞

1

n

nX
i=1

Q(ti,Xti , θ
k) = σ2 + lim

n→∞
1

n

nX
i=1

h
Ξ (ti,θ

0
)−Ξ (ti,θ

k
)}
i2
(28)

The left hand side of () is strictly larger than σ2 by [C2]-3, it follows that

Pθ0{ lim
n→∞

Pn

i=1Q(ti, Xti , θ
k)Pn

i=1Q(ti, Xti , θ
0)
=∞} = 1 for all k = 1, 2, ...,K (29)

Hence, the consistency follows easily from (29).

We next consider the case where Θ is compact. Let, Θ̃ be a compact

subset of Θ, which does not contain the true parameter vector θ0. Then for

any θ ∈ Θ̃, there is a positive constant ρθ for which,

Eθ0{Q(t,Xt, θ, ρθ)} > Eθ0{Q(t,Xt, θ0)}. (30)

The existence of such ρθ follows from [C2 ]-2, [C2 ]-3, and (25). Since,

Θ̃ is compact, there is a finite open covering of Θ̃

{O(θ(l), ρθ(l)), l = 1, 2, ...L}

where, O(θ, ρ) is a sphere with center θ,and radius ρ. Since,

min
θ∈Θ̃

nX
i=1

Q(ti, Xti , θ) ≥ min
l=1,...,L

nX
i=1

Q(t,Xt, θ
(l), ρθ(l))

it suffices to prove

Pθ0{ lim
n→∞

Pn

i=1Q(t,Xt, θ
(l), ρθ(l))Pn

i=1Q(ti, Xti , θ
0)

=∞} = 1 for all l = 1, 2, ..., L (31)

15



By (30) and again by the strong law of large numbers, (31) follows readily

and the theorem is proved. //

We shall next consider the asymptotic normality of the pseudo m.l.e.

Although the assumption of compactness may be removed with little effort

and the complete proof will be published elsewhere, we only have proved

the consistency of our estimator under rather stringent conditions. The

consistency under the more general conditions of the estimator is necessary

for the asymptotic normality. Therefore, in the rest of this section, we shall

suppose without proof the consistency under more general conditions. In

fact, Regularity Condition [C3]-5 below includes the weak consistency of

the estimator.

To prove the asymptotic normality, we shall use a delta method which is

similar to that of applied to the regression problems. And for this purpose,

we shall first expandΨ (θ̂) about the true parameter vectorθ
0
. It follows

that

0 =Ψ (θ̂) =

nX
i=1

ψ(θ̂, ti, Xti) (32)

=

nX
i=1

ψ(θ
0
, ti, Xti) +

∂

∂θ
Ψ (θ

0
)(θ̂−θ

(0)
) +Rem,

where we have set

∂

∂θ
Ψ (θ

0
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pn

i=1

h
∇ψ(1)

(θ
0
, ti, Xti)

i0
・

・

・Pn

i=1

h
∇ψ(d)(θ0

, ti,Xti)
i0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

Pn

i=1
∂

∂θ1
ψ(1)(θ

0
, ti, Xti), ...,

Pn

i=1
∂

∂θd
ψ
(1)
(θ

0
, ti,Xti)

・

・

・Pn

i=1
∂

∂θ1
ψ
(d)
(θ

0
, ti, Xti), ...,

Pn

i=1
∂

∂θd
ψ
(d)
(θ

0
, ti, Xti)

⎞⎟⎟⎟⎟⎟⎟⎠
and

Rem =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(θ̂−θ
0
)
0Pn

i=1
∂2

∂θ2ψ
(1)(θ

(1)∗
, ti, Xti)(θ̂−θ

0
)

・

・

・

(θ̂−θ
0
)0
Pn

i=1
∂2

∂θ2ψ
(d)(θ

(d)∗
, ti,Xti)(θ̂−θ

0
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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=
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(θ̂−θ
0
)0 0 ・ 0 0

0 (θ̂−θ
0
)0 ・ 0

・ ・ ・ ・ ・

・ ・ ・ ・ ・

0 ・ ・ 0 (θ̂−θ
0
)0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Pn

i=1(
∂2

∂θ2ψ
(1)(θ

(1)∗
, ti, Xti)Pn

i=1(
∂2

∂θ2ψ
(2)(θ

(2)∗
, ti, Xti)

・

・Pn

i=1(
∂2

∂θ2ψ
(d)(θ

(d)∗
, ti, Xti)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(θ̂−θ

0
)

=
1

2
I ⊗ (θ̂−θ

0
)0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Pn

i=1
∂2

∂θ2ψ
(1)(θ

(1)∗
, ti,Xti)Pn

i=1
∂2

∂θ2ψ
(2)(θ

(2)∗
, ti,Xti)

・

・Pn

i=1
∂2

∂θ2ψ
(d)(θ

(d)∗
, ti, Xti)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(θ̂−θ

0
)

where θ
(l)∗

are intermediate vectors with k θ
(l)∗ − θ

0 k≤k θ̂ − θ
0 k

for l = 1, ..., d and k・ k is the usual Euclidean distance, and ⊗ is the

Kronecker’s product. We shall now present the regularity conditions for the

asymptotic normality:

[Regularity Condition C3 ]
1. (Conditions for the convergence of covariance matrices): The pseudo

data will be sampled in a way that the time sequence {ti, i = 1, 2, ...} are
selected so that there is a positive definite matrix Σ(θ

0
) and B(θ

0
) for

which

(ⅰ)

lim
n→∞

1

n

nX
i=1

V ar{ψ(θ0
, ti, Xti)} = lim

n→∞
σ2Σ(θ

0
, n) = σ2Σ(θ

0
) (Say)

(33)

where (l,m)th element of Σ(θ
0
, n) = 1

nσ2

nX
i=1

V ar{ψ(θ0
, ti, Sti)} is defined

by

1

n

nX
i=1

∂

∂θl
Ξ(ti,θ

0)
∂

∂θm
Ξ(ti,θ

0)

and,

(ⅱ)

lim
n→∞

1

n

nX
i=1

∙
∂2

∂θ2
ψ(l)(θ0, ti, Xti))

¸
= lim

n→∞
B(θ

0
, n) = B(θ

0
) (Say) (34)

17



where (l,m)th element of 1
n

nX
i=1

h
∂2

∂µ2ψ
(l)(θ0, ti, Xti)

i
is given by

1

n

nX
i=1

∙
∂3

∂θk∂θm∂θl
Ξ(ti,θ

0)

¸©
Ξ(ti,θ

0)−Xt
ª
+
1

n

nX
i=1

∙
∂2

∂θm∂θl
Ξ(ti,θ

0)

¸ ∙
∂

∂θk
Ξ(ti,θ

0)

¸
(35)

+
1

n

nX
i=1

∙
∂2

∂θk∂θl
Ξ(ti,θ

0)

¸ ∙
∂

∂θm
Ξ(ti,θ

0)

¸
+
1

n

nX
i=1

∙
∂2

∂θm∂θk
Ξ(ti,θ

0)

¸ ∙
∂

∂θl
Ξ(tiθ

0)

¸

and (l,m)th element of B(θ
0
, n) is defined by

1

n

nX
i=1

∙
∂2

∂θm∂θl
Ξ(ti,θ

0)

¸ ∙
∂

∂θk
Ξ(ti,θ

0)

¸
+
1

n

nX
i=1

∙
∂2

∂θk∂θl
Ξ(ti,θ

0)

¸ ∙
∂

∂θm
Ξ(ti,θ

0)

¸
(36)

+
1

n

nX
i=1

∙
∂2

∂θm∂θk
Ξ(ti,θ

0)

¸ ∙
∂

∂θl
Ξ(ti,θ

0)

¸
Note that the difference between (35) and (36) comes from the weak law

of large numbers and (38) below. The matrices Σ(θ
0
) and B(θ

0
) may

depend on the sequence {ti, i = 1, 2, ...}.
2. For every θ ∈ Θ, the time sequence {ti, i = 1, 2, ...} are selected so

that

1

n

nX
i=1

∙
∂2

∂θl∂θm
Ξ(ti,θ)

¸2
converges as n→∞, for all l and m, (37)

1

n

nX
i=1

∙
∂3

∂θk∂θm∂θl
Ξ(ti,θ

0)

¸2
converges as n→∞, for all k, l and m,

(38)

(39)

3. Under the condition (33) the sequencen
ψ(θ

0
, ti,Xti) = [ψ

(1)(θ
0
, ti, Xti), ...,ψ

(d)(θ
0
, ti, Xti)]

0, i = 1, 2, ....
o

obeys the multivariate central limit theorem;"
nX
i=1

V ar{ψ(θ0
, ti, Xti)}

#− 1
2 nX
i=1

ψ(θ
0
, ti,Xti)

d−→ N(0, Id) as n→∞

where 0 = (0, ...,0)
0
is the d dimensional zero vector and Id is the d × d

identity matrix.
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4. For any bounded symmetric matrix D(l), l = 1, ..., d, the rate of conver-

gence of the pseudo M.L.E. to the true parameter vector θ
0
is fast enough

so that we have, for each l = 1, ..., d

√
n

(
(θ̂−θ

0
)0
Ã
1

n

nX
i=1

∙
∂2

∂θ
2
ψ(l)(θ

(0)
, ti, Xti)

¸!
(θ̂−θ

0
)

)
p→0 (40)

as n → ∞. Here bounded matrix means that every element of the matrix
is bounded. //

[Theorem 2] Under the conditions [C1],and [C3],

√
n(θ̂−θ

0
)

d−→ N(0,σ2Σ(θ
0
)
−1
) as n→∞

Proof. We first rearrange the terms (32) and multiply both side by
√
n ,

we have

√
n(θ̂−θ

0
)

= −
∙
1

n

∂

∂θ
Ψ (θ

0
, n)

¸−1
1√
n

nX
i=1

ψ(θ
0
, ti, Xti)−

∙
1

n

∂

∂θ
Ψ (θ

0
)

¸−1
1√
n
Rem

=Ⅰ+Ⅱ (say). (41)

To analyses the denominator of Ⅰ, note that the (l,m)th element of
1
n

h
∂
∂µ Ψ (θ

0
, n)
i
is (by Lemma 3)

1

n

nX
i=1

∙
∂

∂θl
Ξ(ti,θ)

¸ ∙
∂

∂θm
Ξ(ti,θ)

¸
+
1

n

nX
i=1

∙
∂2

∂θl∂θm
Ξ(ti,θ)

¸
{Ξ(ti,θ)−Xti} .

The convergence of 1
n

nX
i=1

h
∂2

∂θl∂θm
Ξ(ti,θ)

i2
(cf. [C3]-2) guarantees that the

second term in the above equation converges to zero in probability. Hence,

as n→∞, we have∙
1

n

∂

∂θ
Ψ (θ

0
, n)

¸
v
"
1

nσ2

nX
i=1

V ar{ψ(θ0
, ti, Xti)}

#
(42)

And eventually
h
1
n

∂
∂µ Ψ (θ

0
, n)
i
converges to

h
σ2Σ(θ

0
)
i
in probability

as n gets larger. To analyses the numerator of Ⅰ, in view of (42), we write

Ⅰ as,

−
∙
1

n

∂

∂θ
Ψ (θ

0
, n)

¸− 1
2

"
1

σ2

nX
i=1

V ar{ψ(θ0
, ti,Xti)}

#− 1
2 nX
i=1

ψ(θ
0
, ti, Xti)

Hence, combined with [C3]-3, we have
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Ⅰ
d→−

h
Σ(θ

0
)
i− 1

2

N(0,σ2Id) as n→∞

We shall next consider Ⅱ. As above, the denominator converges to

Σ(θ
0
). Since θ

(l)∗
converges to θ0 in probability fort each l = 1, 2, ..., d,

the numerator is proved to be equivalent to

√
n

(
(θ̂−θ

0
)0
Ã
1

n

nX
i=1

∙
∂2

∂θ
2
ψ(l)(θ

(0)
, ti, Xti)

¸!
(θ̂−θ

0
)

)

and thus by the condition [C3]-4, Ⅱ converges to zero in probability as

n→∞. We have proved the theorem. //

[Notes on the conditions [C1] and [C3] ] Condition [C1] is a stan-

dard one and it looks OK. But, as some readers may have already noticed

that some of the conditions in [C3] are strong and look strange. If the

time sequence {ti, i = 1, 2, ...} is chosen equally spaced, the convergence
of 1

n

nX
i=1

V ar{ψ(θ0
, ti, Xti)} may be guaranteed by the following integral

comparison test:

1

n

nX
i=1

V ar{ψ(θ0
, ti, Xti)}→

Z T

c

| ∂
∂θl
Ξ(t,θ0)

∂

∂θm
Ξ(t,θ0)|dt <∞, as n→∞

Similar integral representation will be possible for the other terms related

to ∂2

∂θm∂θl
Ξ(t,θ), ∂3

∂θk∂θm∂θl
Ξ(t,θ), and

h
∂2

∂θl∂θm
Ξ(t,θ)

i2
. //

Now, the main mission of Theorems 1 and 2 are to justify our estimation

method and we do not intend to use the theorems to construct a confidence

regions and/or testing in the application. For the practical purposes, we

shall invoke bootstrap to evaluate the accuracy of the estimate. We shall

discuss this in the next section more extensively.
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Section 6. Bootstrap.
When we implement our method to the real data, it is easy to obtain the

pseudo m.l.e. ϑ̂ of θ by (18) numerically. And, theoretically, we can derive

a confidence region of θ from Theorem 1. The approximated 100(1− α)%

confidence region (interval) is given by

(θ − θ̂)0Σ(θ̂)(θ − θ̂) ≤ σ2

n
c1−α, (43)

where c1−α is defined by Pr{Z 0Z ≤ c1−α} = 1−α, and Z is a d dimensional
standard normal random vector. The difficulties arise when we calculate

(approximate) Σ(θ). The (l,m)th element of Σ(θ) may be approximated

by
R T
c

∂
∂θl
Ξ(t,θ) ∂

∂θm
Ξ(t,θ)dt, and most of the cases these integrals are not

given in the closed form and, therefore, the confidence region may be ob-

tained only numerically. Likewise, we can obtain the confidence intervals

of linear combinations of the elements of θ only numerically in many of the

applied aspects. We also note that the accuracy of the central limit theorem

depends heavily on the sample size, and in our situation, we cannot expect

a good normal approximation, as we do not have enough samples.

Hence, when we come up to analyses the real data, we recommend the

reader to use bootstrap rather than asymptotic theory. Although, we have

not fully justified the validity of the bootstrap, the results of previous section

suggests that the bootstrap will works on this problem too. The method we

apply here is similar to that of bootstrap for regression model. We simply

describe the procedure as follows. We shall suppose the parametric model

for continuity of the arguments, the assumption may be removed without

too much effort. Needless to say, we suppose the model (14).

[Bootstrap]We let {xti = x(ti) i = 1, ...n}, be a sequence of the pseudo
data, where xt = x(t) =

s
1−δ
t

ρt
. As in (15), we estimate the base line estimate

ϑ̂ by

ϑ̂ = argθ ∈ Θ[min

nX
i=1

{Ξ (ti,θ)− xti}2]

where Ξ (t,θ) =
G(t,θ)1−δ

ρt
. We estimate {σεti i = 1, ..., n} by

e∗ti =Ξ (ti, ϑ̂)− xti , i = 1, ..., n (44)

And we define the set E of ”standerdized” residuals, from which the boot-

strap sampling will be made (cf. Wu [1986]):

E = {et1 , ..., etn}

where

eti =

r
n

n− 1
¡
e∗ti − ē∗

¢
, and ē∗ =

1

n

nX
i=1

e∗ti .
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0th Step. Set

m = 1

1st Step. We choose n elements at random from E with replacement,

denote it E∗(m)

E∗(m) = {e∗(m)t1
, ..., e

∗(m)
tn

}

2nd Step. Construct a bootstrap pseudo sample by

x
∗(m)
ti

=Ξ (ti, ϑ̂) + e
∗(m)
ti

i = 1, ..., n

3rd Step Estimate θ from the pseudo data {x∗(m)ti
, i = 1, ...n} and denote

it as ϑ̂
∗(m)

ϑ̂
∗(m)

= argθ ∈ Θ[min

nX
i=1

{Ξ (ti,θ)− x∗(m)ti
}2]

4th Step. with m = m+1, Repeat the Step 1st to 3rd M times, and denote

the estimate by

ϑ̂
∗(1)
, ..., ϑ̂

∗(M)

and we define bootstrap estimate of by

ϑ̃
(Boots)

=
1

M

MX
m=1

ϑ̂
∗(m)

(45)

5th Step. Construct the estimate of bias and variance of ϑ̂ by

Bias(Boots)(ϑ̂) = ϑ̃
(Boots) − ϑ̂ (46)

and

V ar(Boots)(ϑ̂) =
1

M − 1
MX
m=1

(ϑ̂
∗(m) − ϑ̃(Boots))(ϑ̂∗(m) − ϑ̃(Boots))0 (47)

respectively. We also define the bootstrap estimate of the distribution func-

tion of ϑ̂ by

1−G(Boots)(t1, ..., td) = 1

M
#{m : ϑ̂

∗(m) ≤ (t1, ..., td)0} (48)

Of course, the marginal distribution may be obtained much easier. And,

the naive confidence region for θ is given by the (??). In the next section,

we shall apply our estimation procedure together with the bootstrap to the

real data.
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Section 7. Numerical Examples.
In this section, we shall apply our statistical model and the estimation

procedure to the bond prices of ACOM, TOYOTA as examples for the

individual companies. We also study the representative default probabilities

of classes AAA and BBB. We shall estimate the default probabilities of these

companies as well as the some rating classes as of April 15, 2003. Although,

when we implement the method, regularity conditions C1, C2 and C 3 are

not fully investigated, the results in this section suggest us the validity of

our method numerically.

The parametric models we shall consider are (i) Exponential and (ii) We-

bull models. We denote the survival function of the exponential Gexp(t, θ)

and of the Weibull by GWei(t,θ). Here, we have set

Gexp(t, θ) = exp{−tθ}, t ≥ 0
GWei(t,θ) = exp{−(tθ1)θ2}, t ≥ 0, and θ = (θ1, θ2)

respectively. The detail of the analysis are presented in the pictures and

the tables, we shall simply summarize the rough observation. We have first

apply both Exponential and Weibull distributions to the data from ACOM

and TOYOTA with α = 1
3
and δ = 0.3. The MSE from the Exponential

distribution are larger than that of Weibull and this can be also seen visually

in the Pictures 2 and 3 for ACOM, and Pictures 6 and 7 for TOYOTA. It is,

of course, a natural consequence, as Weibull allows two parameters, whereas

the exponential has only one. We, thus, apply Weibull for the rest of the

analysis (AAA and BBB). The pictures of the estimated survival functions

for AAA and BBB are presented in the Pictures 10 and 14 respectively. The

bootstrap estimate of the histogram of each parameters for ACOM are given

in the Pictures 4 and 5. The corresponding normal curve is superimposed in

Picture 4 to see how the asymptotic normality of the estimator is attained

by intuitive manner. The results from ACOM and BBB (Pictures 15 and 16)

look good in the sense the histograms are well approximated by the normal

(We do need to test them statistically though). The results from TOYOTA

are disastrous (Pictures 8 and 9). Also, Pictures 12 and 13 show us that

the distributions are rather biased to the left. These may be explained by

the number of ”data”. We only have 3 for TOYOTA and 7 for AAA. This

small analysis shows the statistical method we proposed seem to attain the

satisfactory results.

Acknowledgement: The author thanks to Reiko Tobe for her su-
perb help obtaining the all numerical results in Section 7. Thanks are also
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Picture 1 MSE as a function of α

Ⅰ－ⅱ Survival Functions:
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Ⅰ-ⅲ　Bootstrap Distribution of θ_1^ and θ_2^
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Picture 4 Bootstrap Distribution of  θ_1^
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Picture 5 Bootstrap Distribution of  θ_2^
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Picture 5 Bootstrap Distribution of  θ_2

θ_1 θ_2
tilde(theta) 0.002421 1.7369783
hat(theta) 0.002425 1.73641
Bi (h ( h 3 3E 06 0 0005683Bias(hat(th -3.3E-06 0.0005683
Var(hat(th 3.07E-09 0.0002015

5.54E-05 0.0141958

Table 1 Summery Statistics
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Ⅱ－ⅰ　Survival Functions
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Ⅱ-ⅱ　Bootstrap Distribution of θ_1^ and θ_2^ 
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θ_1 θ_2  
tilde(theta) 0.002255 0.542792
hat(theta) 0.002237 0.542834
Bias(hat(th 1.75E-05 -4.20E-05
Var(hat(th 8.22E-08 0.005312
SD(hat(the 2.87E-04 7.29E-02
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θ_1 θ_2

tilde(theta) 0.000607 1.600027
hat(theta) 0.0005277 1.53878
Bias(hat(th 7.94E-05 0.061247
Var(hat(th 1.67E-07 0.199537
SD(hat(the 4.09E-04 4.47E-01

Table 4 Summery Statistics
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Picture 12 Bootstrap Distribution of  θ_1^
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BBB 2003/4/15
Number of Repetion bm=10000

alpha=1/3
weibull

  

theta1 theta2theta1 theta2
bootstrapEstimator tilde(theta)^ 0.012926 1.151379
MLE hat(theta) 0.012752 1.15057
Bias Bias(hat(the 0.000174 0.000809
Variance Var(hat(the 5.27E-06 0.016635
StandardDiviation SD(hat(thet 0.002297 0.128982
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Picture 14 Bootstrap Distribution of  θ_1^
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Picture 15 Bootstrap Distribution of  θ_2^
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