HITOTSUBASHI UNIVERSITY

Center for Financial Engineering Education (CFEE)

CFEE Discussion Paper Series No. 2011-1

Estimating Default Probabilities Using Corporate

Bond Price Data

Reiko Tobe

Center for Financial Engineering Education (CFEE)
Department of Economics, Hitotsubashi University
2-1 Naka, Kunitachi Tokyo, 186-8601 Japan

http://www.econ.hit-u.ac.jp/~finmodel



Estimating Default Probabilities Using Corporate
Bond Price Data

Reiko Tobe*
March 13, 2012

Abstract

This paper discusses estimating method of implied default probability from the
interest spread. Instead of using Duffie & Singleton(1999) model directly, we use
statistical estimating procedure of Takahashi(2011). We shall provide a complete
proof of the consistency of the estimator in the Takahashi(2011) model employing
the method of Wald(1949) which gives the proof of consistency of maximum likeli-
hood estimate. We also verify regularity conditions for asymptotic properties of the
estimator in the Weibull survival function case. Furthermore, we provide an empiri-
cal analysis of implied survival probability estimating. In the empirical analysis, we
discuss asymptotic properties using bootstrap method. An interesting finding is that
the number of the data and the existence of the outlier data have a major effect on
the bootstrap estimating results. When we analyze the impact of the bankruptcy of
Lehman Brothers, we observe that the influences differ with the 5 individual compa-
nies.

Keywords: Implied default probability; Statistical model; Parametric model; Pseudo maximum
likelihood estimator; Consistency; Asymptotic normality; Bootstrap;

1 Introduction

In this paper we study estimating method of default probabilities of individual compa-
nies and the representative default probabilities of rating classes. Many rating agencies
publish bond issuer’s rating using their own methodology in measuring creditworthiness
and a specific rating scale. Typically, ratings are expressed as letter grades that range,
for example, from "AAA’ to 'D’ to communicate the agency’s opinion of relative level

of credit risk. For example, a corporate bond that is rated 'AA’ is viewed by some rating
agency's as having a higher credit quality than a corporate bond with a 'BBB’ rating. But
the 'AA rating isn't a guarantee that it will not default, only that, in their opinion, it is
less likely to default than the 'BBB’ bond. Some rating agencies also announce annual
default probabilities of each rating class.

For modeling credit risk, two classes of models exists; structural model and reduced-
form model. Reduced-form model was originally introduced by Jarrow & Turnbull
(1992), and subsequently studied by Jarrow and Turnbull (1995), Duffie and Singleton
(1999) among others. By using Duffie and Singleton(1999) model, we may calculate
"implied default probability” by calibration. "Implied default probability” means default
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probability which is incorporated by the bond prices and it gives us view and expecta-
tions in the market. Takahashi(2011) introduced statistical model for estimating implied
default probability. They assumed observed corporate bond price contains some error. As
a result of containing error term, we can discuss asymptotic properties of the estimator.
In Takahashi(2011), they gave a sketchy proof for consistency and a complete proof for
asymptotic normality. They also recommended using bootstrap method for examining
asymptotic properties when we apply their method to real data.

The first objective of this paper is to give the complete proof of the consistency of
the pseudo maximum likelihood estimator which is proposed by Takahashi(2011). We
employ the method of Wald(1949) which gives the proof of consistency of maximum
likelihood estimate. His proof assumes the compact property and uses the strong law of
large numbers. Similarly, we prove consistency of our estimator under some regularly
conditions using the strong law of large numbers.

Furthermore we shall verify regularity conditions for consistency and asymptotic nor-
mality of our estimator. When we estimate the statistical model of Takahashi(2011), we
may use parametric model for estimating survival function. The parametric models we
consider are exponential model and Weibull model. Needless to say, exponential distri-
bution is a special case of Weibull distribution, we need only to verify the conditions in
the Weibull model. That is the second objective of this paper.

The last objective is to apply our model to real data to estimate default probabil-
ities(survival probabilities). We present several numerical results in this paper. First,
in order to set known constants of our model, we examine comparative study varying
the recovery rate and the coefficient of error term. Second, we compare the results on
two parametric survival functions; exponential survival function and Weibull survival
function. The sum of squared residuals from the exponential survival function turned
out much larger than that of the Weibull survival function. Third, we compare different
recovery models; RM recovery model proposed by Duffie & Singleton(1999) and RT re-
covery model proposed by Jarrow & Turnbull(1995). The examination showed that there
is no great difference between the two. Fourth, we show estimating results and bootstrap
results using 8 individual companies’ data and 5 rating classes’ data on April 16, 2004.
There is a close relation between the distribution of bootstrap estimates and the number
of data. For example, the number of Toyota’s data was only 3 and the estimated bootstrap
distribution of Toyota was quite different from normal distribution. It seems the larger
amount of data(bonds) being used, the more like the bootstrap distribution is normal dis-
tribution. The existence of outlier data also influence upon the distribution of bootstrap
estimates. For example, when we excluded 3 outlier data from the original "AA” class
data, the warps are reduced and the distributions of bootstrap parameter estimates look
more like normal distribution. Kolmogorov-Smirnov test also supported the influence of
outlier data on the estimating results. Finally we apply our statistical estimating method
to time series data. Since we are interested in the impact of the bankruptcy of Lehman
Brothers(September 15, 2008), we use the data from January 4, 2008 to March 31, 2009
and select 5 companies, which might be affected by the bankruptcy. In fact, all 5 compa-
nies’ survival probabilities were declining after the bankruptcy, but the influences differ
with the individual company in some points.

This paper is organized as follows. Section 2 provides a review of statistical estimat-
ing method of implied survival probabilities proposed by Takahashi(2011). The proof of
asymptotic property of our estimator is discussed in Section 3. Some empirical results
are presented in Section 4, and the last Section is devoted to the summary and concluding
remarks.



2 Review of the model and some development

In this section, we provide a brief explanation of Duffie and Singleton(1999), which de-

rive the relationship between the default probabilities and the interest yield. We review
Takahashi(2011) model which is the main model of this paper. We also show the appli-
cation of the model to the different recovery type case.

2.1 Setup and results on implied default probabilities

Throughout this chapte” = {W(t), t < 0} denotes standard Brownian motion, on a
probability spacdl,.#,R) . The filtration{.% }>0 is generated by?". We suppose

there are no arbitrage opportunities in the market and the market is assumed to be com-
plete.

Let P(0,t) be timeO price of the defaultable zero coupon bond (corporate bond) ma-
turing att andP*(0,t) be time0 price of the corresponding default free bond (government
bond). The spread (difference of the yield to maturity between corporate bond and gov-
ernment bondYis thus defined by

1 P(O,t)
Y(O)tlog{P*(O,t)}

Let Q be the unique equivalent Martingale measure, then,

P*(0,t) = ER {exp [— /Ot r(v)dv] }

wherer (v) is an instantaneous risk free spot rate &Wdenotes the expectation under
the measur€ (Harrison and Pliska[1981]). Latbe the time of default, then the survival
functionG(t) is given by

G(t)

QAfr >t}

= exp{—/:/\ (u)du}

whereA (1) is the hazard function. We also I&t be the recovery rate in the event of
default att.

The formula between the survival function and the interest spread varies with the
definition of recovery model. We consider the following two recovery models which are
in common use.

RM Type Recovery (cf. Duffie & Singleton(1999)) By assuming thad x P(1—,t)
is recovered at the time of default, we have

P(t,T) = EQ {exp {_ /tT (r(v) + (1= &) (v))dv] 34}}

whereP(1—,t) is the price of corporate bond just before defaultA lis assumed to be
non random function and to be constant, we have

POt) = EQ{exp{—/Ot(r(v)+(1—5)}\(v))dv}}
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= EQ{exp[—/otr(v)dv} exp[—(l—é)/ot)\(v)dv]}

= P0,1)Q{r >t}17?
= P(0.)G(t)*?

Under RM type recovery, spread becomes

Yo = _t} 'Og{ P*(0.t) }

and implied survival functichis

Gt = (e)*?

RT Type Recovery (cf. Jarrow & Turnbull(1995)) Under RT type recovery,
recovery rate} is formulated as

& =(1-L)P"(t,T)

for a given fractional recovery procegk— Lt). We assume default hazard rate process
be independent (und€)) of short rater and recovery process be constant. With constant
d and non-random, the payoff at maturity in the event of defaulids< 1. Then we have

P(u,s) EQ {exp [— /jr(v)dv} 5 l{r<s +€XP [— ./U.sr(v)dv} Lo lrag|T> u}

S
EQ {exp {— /u r(v)dv} }EuQ{cS-I{KS} +1-lrag|T > u}

P*(u,9) (8+ (1— OER{I{r>/T > u})
8P*(u,) + (1 8)P*(u,5)Qu{T > s}

By settingu = 0, s=t, it follows that

P(O,t) = &P*(0,t)+(1—8)P*(0,1)Qu{T > s}
= 8P (0,t) +(1— 8)P*(0,1)G(t)

Under RT type recovery, spread becomes

_ 1 P(0,1)
Yit) = -3 Iog{ 5 (00 }

_ _tllog{5+<1—6>e<t>},

1in this paper, implied survival function means survival function which is incorporated by the bond price.




and implied survival function is

GH(t) 1% (e*”— 5)
1

P(O,1)
1-6 \ P*(0,t)
where we definér?(t) is the spread under RT type recovery aBdis survival function
under RT type recovery.

In both type of recovery model, the formula is derived which presents the relationship
of the default probabilities and the interest spread. Takahashi(2011) proposed the statisti-
cal model of estimating procedure of implied default probabilities under this relationship.
We review the results in the next subsection.

2.2 Review of the Statistical Model by Takahashi(2011)

We have an exact estimate of the "true” survival function or gaghd the distribution
function of default timer under the equivalent martingale measQxe

T~1-G(t:0) 6ecOCR d>1

Since there may be many sources of errors such as a lack of our information and a noise
in the market, we suppose obsenk(@,t;) contains some error.

P(O,t) =P(O,t)+ohg i=12....n

whereo is unknown constant artg is a known function witthg = 0 andhy is an increas-
ing int. We consider
hy=[1-P*(0,1)]"

for somea. On the other hand?*(0,t;) is supposed to be observed without any error.

After having observeé’(o,ti), i=1,...,n,we calculate "observed spread”
v 1 p(oatl) }
Y({t)=—=lo +O0p: &
) =—ha{ F gy +ona
wherepy, is %. Using the observed spreédti), implied survial functionS(t) in
stead ofG(t) becomes
1
sy = ()"

It is convenient to rewrit&(t) as

So(t) =G % + o



Then we assume the following parametric model. ®éte a subset d’, whered denote
the dimension of the parameter space. We also let

Gt:0)=0Q{r>t:0}

be a survival function parameterized by d-dimensional vegter( 6y, ...,84)’ € ©. After
having observeqﬁi,i =1,...,n}, the pseudo maximum likelihood estimateof 6 is

defined by
2
a - G(ti79)1_5 _3175
¥ = argyeg | Min ! .
o {2
Let L
=(t,0) = G“’Z)

and

then,d may be rewritten as

9 = argyq lmini{E(ti, 0) —x;}>

andX(t) as
X(t)=Z=(t,0)+ o¢.

2.3 Statistical Model under RT Type Recovery

We shall next derive statistical model under RT type recovery. We set the same assump-
tions toP(0,t;), P*(0, 1) andY(t;) as those under RM type recovery. Using the observed
spreadY(t;), implied survival functionS'(t) under RT type recovery in stead G#(t)
becomes

St) = — (e¥-0)

(el )

1 /pOt)

= 15 (p*(O,t) 6) + 1 6apt,et,
1

_ ff

- G(t)+1_6o-pt|£tl

After having observec{éi,i =1,...,n}, the pseudo maximum likelihood estimateof

0 is defined by
. o {(16) (Gﬂ(ti,mé})}
9 =arg.o mle

2

i p[i



Let

and

then,d may be rewritten as

9 = arggeo [minli{zt(ti,e) —xé}zl :

andX(t) as
XH(t) ==(t,0) + o&.

2.4 RM Type Recovery and RT Type Recovery

The pseudo maximum likelihood estimate under RM type recofgfy of 6 is defined

by
[ 16 d-5)2
drm = Ao minzl{G(t"e) é. }]
i=

P

i 1-o
. e(ti,e)“—((eW) )
= arg.o minZ o
1= i

2

c ) 2
n X 1-9 _ o tiY(h)
= arg.o min.Z{G(tu@) > e }
1= i

The pseudo maximum likelihood estima‘iQT of 8 is defined by

3 argy _mini{(la) (Gt(ti’e)_ﬁi)}
RT = cO 2 2y

2

2

Gi(t;, 6) — ﬁ(e*ti?(ti)_(j))
= alggeo m|n o
& 2
(1-8)GH(t,0) (ﬁML®
= alYeo m|n
2
{ (1— 5Git., +o—et W}]
= argee [Min



Statistical RM  Statistical RT RM-RT
Gl9 (1-8)G+d G9

G (6=0.3) (6=0.3) —(1-96)G+9o

1 1 1 0
0.99 0.992989 0.993 -0.000011
0.98 0.985958 0.986 -0.000042
0.97 0.978904 0.979 -0.000096
0.96 0.971829 0.972 -0.000171
0.95 0.964732 0.965 -0.000268
0.94 0.957612 0.958 -0.000388
0.93 0.950469 0.951 -0.000531
0.92 0.943304 0.944 -0.000696
0.91 0.936115 0.937 -0.000885
0.9 0.928902 0.93 -0.001098

Table 1: Simulation of RM model and RT model

Difference betweeiry anddgr is the term

RM : G(t,0)°
RT : (1-90)G'(t,0)+0o

We consider Weibull distribution for the survival functi@t;, 8) andG(t;, 6). Table 1
is a simulation of RM model and RT model f&r=1,0.99,...,0.9.

From Table 1 we can see the differen@& % — {(1— 8)G+ &} is negative in all
cases. The smaller the survival probabilBygets, the larger the differend@' % —
{(1—-95)G+ 9} becomes.

2.5 Calibration

We may also suppose a model in which error term is not contained to the price of de-
faultable bondP(0,t) (and of coursé>(0,t)*). It means we assume that there is no noise
in the market andP(0,t) is determined with no error in the market. Under RM type re-
covery and the assumption of no error term, we can estimate the survival function by the
following equation;

G(t)=G(t,0) 6cOCR d>1

ObserveY(t;) i =1,...,nand then estimaté from
n

§ {suar (o)™}

We can estimate the survival function under RT type recovery in the similar way;

§ = min
6cO

G(t)=G(t,0) 6cOCR d>1
ObserveY(t;) i =1,...,nand then estimaté from




3 Asymptotic Properties

The aim of this section is to justify the estimating method described in the previous
section. We shall first give a complete proof of the consistency of the pseudo maximum
likelihood estimator. We employ the method of Wald(1949) which gives the proof of
consistency of maximum likelihood estimator. Furthermore, we give a verification of the
conditions for the consistency and the asymptotic normality of our estimator in the case
of Weibull survival function.

3.1 Proof of the Consistency

In this subsection, we prove that under certain regularity conditions, our estidhasor
strongly consistent.
Let,

Q(t, %, 8) = {=(t,0) - X}*.
For anyp > 0, let
Q(t,Xt,e,p) = inf Q(taxtvel)v

|8'—8]<p

and, for anyr > 0, let,
Pt X,r) = ‘g‘grQ(t%ﬁ).

We shall now impose some regularity conditions for the consistency:

[Regularity Condition C2] (conditions for the consistency)
1. Iflim_.6 =20,
lim Q(t, X%, 6) = Q(t, X%, )

|—00

for all (t,X) except on a set of measure zero under the true parameter @ctor
The null set may depend dh but not on the sequendé,,i =1,2,...}.

2. For any pair® # @',

=(t,0) #=(t,0'), atleastonet
3. For sufficiently smalp, the expected values
| Qit.%.8,p)dF(x,6%) <

whereg° denotes the true parameter.

4. For the true parameter vect?, we have
/ Q(t, X, 8°)dF (X, 6°) < oo.

5. If limj_w |6] = o, thenlimi_. Q(t, X, &) = o for any (t,X;) except perhaps on a
fixed set of measure zero according to the true parameter v@ttor



Let, 8° be the true parameter vector, then it follows that,

Ego{Q(t, X, 0%)} = Ego { (=(t,6°) —X)?} = 0? (1)
and,
Ego{Q(t,%.0)} = Ego{(z(t,e)_mz}
_ Eeo{(z(t,eo)—Xt+z(t,e)_z(t,90))2}
= Ego{ (2(1,67)— %)+ (2(,0) - =(t,69)°}
= 0%+ (2(,6)-=(t.6%)° )

We consider the case whe@is compact. Le® be a compact subset &f, which
does not contain the true parameter ve&r

[Lemma 1] For any® € ,
Ego{Q(t, %, 8)} > Ego{Q(t, X, 6°)}. 3

Proof. It follows from [C2]-3 and[C2]-4 that the expectated values in (3) exsist.
Lemmal follows easily from (2) an2]-2.

[Lemma 2]
lim Ego {Q(t, X, 6,9)} = Ego {Q(t, X, 6)} (4)

Proof. It follows from [C2]-1 that,

lim Q(t.X.6.p) = Q(t. X, 6). )

except on a set whose probability measure is zero. SP{tex, 0,p) is a decreasing
function of p, andQ(t, X, 8, p) > 0, there exists an integrable functignsuch that

for all p. It follows from (5) and Lebesgue’s Convergence Thotethat

lim [~ Q% 8,p)dF(%. 6% = [ Q(t. X, O)dF (%, 6%). )

2To showllmpﬂoj " Q(t, %, 8,p)dF (X, 8% = [® Q(t,%,8)dF(X,8°) is equivalent to show, for any

sequencd pn; on — 0}, limn_o [, Q(t, X, 8, pn)dF (X, 8°) = [, Q(t, )Q 8)dF(X,6°). SinceQ(t, %, 6, p1)
is integrable fronfC2]-3, then,(6) means for any sequergg; pon — 0}, |Q(t, X, 0, pn)| < Q(t, %, 0,p1).
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Thus, Lemmaz2 is proved.

[Lemma 3]
lim Ego {¢(t,%;,1)} = o0 (8)

Proof. According to[C2]-5,

lim §(t,%.r) = lim

r—oo

inf Q(t,%,0) = 9)
|8]>r

for any (t,X) except on a set of measure zero under the true parameter \&ttor
@ (t,%,r) is an increasing function af. If there existsr > 0 such that the measufe
of a set{(t,X) € Z7;¢(t,X%,r) = o} is positive, then]im,_. ¢ (t,X,r) = c on a set
{(t,%) € Z;¢(t,%,r) =}. So, Lemma3

im [ 9(t.%.r)dF(t, %, 69 =

obviously holds. Thus, we shall merely consider the case WifedX,r) < con{(t,X%) €
Z . Since@(t,X,r) is an increasing function af, we define, for any sequencgri <
rp<...<ri<...

¢/(tvxtarl) = (P(t,X{,rl)
o't X,r) = ot X,ri)—d(t, X, rii1) i=23,...

Since .
Pt Xor) =y ¢'(t.Xr)
j=1
and
¢'(t. % rj) >0,
lim [ (t, X, r)dF(t,%,6° = Iim/i(b’(t,xt,rj)dF(t,Xt,Go) (10)
rj—o [j—o0 J:]-

rj—o

= i i "(t, %, ri)dF(t, %, 6°
m 5 [ ¢t R % 6%)

= 3 /taxta j)dF tvxtaeo
3 [ xR X6

/§1¢’(t,xt,rj)dF(t,Xt,6°)
=

/ruinm¢(t,xt,ri)dF(t,><uG°)

11



The second and fifth equality are from the change the order of infinite summation and
integration and the 6th equal is from (9). Thus, Lemma3 is proved.

[Theorem 1] (The consistency theorem)

Pyo {n'L”lé” - 90} -1 (11)

Proof. Letrg be a positive number chosen such that

Ego{@(t,%,r0)} > Ego{Q(t,%,8°)}. (12)

The existence of such a positive number follows from Lemma3.
Let © be the subset & consisting of all parameter vectérof © for which |6] < ro.
With each parameter vectére ©, we associate a positive valpg such that

Ego {Q(t,%,0,09)} > Ego {Q(t, X, 6°}. (13)

The existence of sucby follows from Lemmal and Lemma2.
To prove thatd, is strongly consistent we have to show that

infg g >l Qti, X, 0) }_ -
Peo{ > 1 Q(ti, X, 6°) >lp=1-¢ (14)

for all n sufficiently large. This means that for allsufficiently large the values a@°
which minimizesy{ ; Q(ti, X, 90), 6,, belongs to neighborhood 6P with probability
one.

Since® is compact, there exists a finite open coverin@of

{06",py)),1=1,... L},

where, 0(6, pg) is a sphere with cente and radiuspg ; © c (6, pi") + ... +

o6, py).
Clearly,
n
Glgf Q(thxtue > mln ZQ t|,Xt|,9 7p9 )
Hence

Peo{ianEéZile(tivxtiye) > 1} > Peo{mlnl 1,..., LZ| 1Q(t|,X[|,6| ape)) >1

Zinle(tivXtiaeo) Z|:1Q(tl7xtl7 )
(15)
Thus from (15) we deduce
_ infged 3ita Q(ti, X, 6) }
! Peo { z{]:l Q(tiaxtia 0) 1
o m|n| 1., LZ| 1Q(tl7xl|76| ’pé))
S 1 Peo { ZI*lQ(th)(tH ) ” 1 (16)
3 min_g..L 57, Q(t, X, 6V, )
B Peo { Z|:1 Q(tlv)(tlv ) S l

12



By the strong law of large numbers, (12) and (13), the right-hand side of (16) is smaller
thane for all n sufficiently large. This completes the proof of Theorem1.

3.2 \Verification of the Regularity Conditions for consistency

We shall now verify the regularity conditions for consistency and the asymptotic normal-
ity of our estimator when we apply Weibull distribution to the survival function. When
we estimate the statistical model of Takahashi(2011), we consider exponential model and
Weibull model for the parametric survival function. Needless to say, exponential distri-
bution is the special case of Weibull distribution, we need only to verify the regularity
conditions in the Weibull model. Weibull survival function is defined in the form of

Guei(61,62,1) = exp{ ~(t0) %}, t>0.

We now verify the conditions of [C2] which is proved in the previous subsecYerification

of the conditions of [C2]. We shall verify the conditions for consistency [C2] in
the Weibull distribution case. Condition [C2]-1 holds clearly. To show [C2]-2, let
(61,6,) # (01, 6;) and define\6, = 6, — 6;. Then,
(te)%—(t6)% = (t6))**o% — (t0))%

- et o)

# 0 at least one
so that(t6;)% + (16])% at least ong. SinceG(t,) = e~ 191 is strictly monotonic,
(t61)% + (16)% impliesG(t, 8) # G(t, 8), and hence th&(t, 8) + =(t, 6') at least one
t.

We next show the existence BfQ(t, X, 8°)] ([C2]-4). The integrand of the expecta-
tion

EIQU%.6%) = [ Qltx.0%)dF(x,6°)

[ (20,69 -x)2dFx, 69)

is written as follows.

{Z(t,6°) -x)? =

(e )10 *)-0p (o) 9P (0
hy b

13



Note that(e‘efz)1*5 is positive constant. Fro@<t, & >0and0< 5 < 1, (e12)1-8 <

1. It follows thats' =% < 1and0 < P*(0,t) < 1. Therefore{=(t, 8%) —x }2 — o ashy — 0

; hy # 0impliesE[Q(t, %, 8°)] < ». So [C2]-4 holds. [C2]-3 can be verified in the same
way. For [C2]-5, iflim|_|6| = o, =(t, 6) — 0. [C2]-5 holds clearly.

3.3 \Verification of the Regularity Conditions for Asymptotic Nor-
mality

The asymptotic normality is proved completely by Takahashi(2011), so we describe the
conditions for the asymptotic normality without proof.

[Regularity Condition C3] (conditions for the asymptotic normality)

1. The pseudo data will be sampled in a way that the time sequénce: 1,2,...}
are selected so that there is a positive definite maid€) andB(6°) for which

lim i_iVar{qJ(Go,ti,X{i)} = lim 0%3(6°% n) = a%(8°) 17)

where(l,m)™" element ofz(6°,n) = %, z{‘=1Var{Lp(6°,ti,X¢i)} is defined by

0 . o
Zael the aem (t|,6 )

and,
n

1202 :
S [aez‘”“)(@(’vtuxo}—J,Ln;Bw(’,n)—B(eO) (18)

n—o N i

where(k,m)!" element oft 1", [(;Lw“)(eo,ti,x[i)} is given by

Ly 83 tj, 0 =(t: 90
ﬁi;_ﬁekde ae.—(“ )} {=(t,6°%) — %}
1nr1 92 _ . P _ .
T n2, 96000 )] L;@k—(t.,e )
107 02 _ P o
+ HI; _deldek_(tl’e )] |:06m_(t|,9 )
107 02 B . - o
' N4 [ 06006m~ =(6.0 )] _ﬁ—(t.,e )
and the(k, m)!" element oB(8°, n) is defined by
1 oT (92 1 0 _. o .
ﬁi; 00md6 =(t,6° )_ [dek:(t"e )_
107 92 . s )
+ ﬁi; 0606, (t.,e)} [dem (t.,e)_
107 92 _ s i
+ Hi: _m—(the ):| |:09| (t|,9) )

14



2. For everyd € O, the time sequencf;,i = 1,2,...} are selected so that
1 n 02
n i; [09. 96m
12 93
n i; [aekae.aem
3. The sequence

{w(eoathxﬁ) = {w(l)(eovthxﬁ)v“'74](d)(605tivxti)i|/7i = 1727}

obeys the multivariate central limit theorem;

2
E(ti,e)} convergesas r> oo, foralllandm  (19)

2
E(ti79)] converges as r» o, forallk, land m. (20)

1
2 n

iVar{wwo,ti,xq)}} _Ziw(eoativxti)_)N(O;'d) asn—oe  (21)

where0 = (0,...,0) is thed dimensional zero vector ang is thed x d identity
matrix.

Next we shall verify the conditions of [C3] in the case of Weibull survival function.

Verification of the conditions [C3]. We next show the conditions of the asymp-
totic normality in the Weibull distribution case. To show condition[C3]-1, consider
(al,aZ)-< oG

a=(al,a2) #0.
42)
062

-5
<e(*‘91>92>1 (1-8)(~t61)%2 @2
(alvaz)' 1-5 P
<e<*f91>92) (1-5)(~161)%2In[—t6y]
Pt
(—t6)62 1-0 6 6 (—t61)% 1-0 62
(e ) (1-3)(~t6)% & (e ) (1-3) (~t6)%In[-t6]

+a2
P P

e\ O . s
(e( t6;) ) ﬁ()tl 0)( t91)92 (algi—’—azm[_teﬂ)

9

= aqal

1-5
Since(e(*wl)ez) >0,1-3>0, (-t61)% <0, 6,/6,>0, In[-t6;] <0 and p, >0

0
by definition,(al,a2) - < dgl
a6,

J_
{(al,az)- ( 99
90,

) is nonzero on an interval. Therefore,

2
> } =a'z(6%a >0
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Since this conclusion is true for ary # 0 , Z must be positive definite matrix. The
existence of a positive matr(6°) can be showed in the similar way .

2 2
Condition [C3]-2 holds by inspection dfs ", (09”79 =(t, 6)) and 150, (W:(t' : 9)) :
(I,mk=1,2). Inthe case ok= 1,1 = 1andm= 1, it follows that

L ((e(t61>92)1_5ti2(1—5)(—'&91)2+92(—1+ 6,)6
N P
(e(ftel)ez)l"stiz(l_ 5)2(~t,61) 2+2% 62+ 2
+ o )
and
10 2
nlzl(delaelael (t"9)>
10 (e< 612 )Htﬁ(lfa)(fti91>‘3+92(f2+92)(f1+92)92
nZ( e}
( 00%) 0 (1 )% () 7% (14 6,)63
o
(e (~t6)° ) t3(1—8)° (—t,6,)>+3% 63
o
(e telez) t3(1—8)2(~t,61)" 3+292922(2+292)>z
o
Since0 <t < T <o, p, = él))) ,0<P*(t)<landa >0, 3", (091061 (t.,@))2

and 15" (aelgelael =(t, 6)) converges as — . The rest case can be verified in the

similar way.
By the equation (17), condition [C3]-3

n
Z (61, %

1
2 n
Zlval’{l.[,l 9 i, % ] ZLIJ 90 i X —>N(0,|d) as Nn— oo

Nl

ZVar{we L X% ]_

is rearranged to

=

W(6°.4,%;) — N(0,0%2(6%) asn— o (22)

Ells
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We have already shown that
1 iVar{qJ(Qo,ti,X{i)} — 023(8%
n.<

is non zero, so that only condition

els 23
im2S [ TR - @3

for anye > Ois needed, wherg- || is the Euclidean norm. Since

VW2 + g2

- wae (6:69) (5(6,60) ~X) [+ |- =(1,69) (=(4, 00) ~x) 2,

¢l

it follows that for anye > O,

- dF —0
n|;/HLI!H>8ﬁHWH W)

asn — oo, from which the condition (23) follows in the Weibull case.

4 Numerical Results

In this section, we present some numerical results. We apply our model to real data to
estimate default probabilities(survival probabilities). We describe data sources at first,
and then show the results of comparative study vargimmndd. We also compare results

on different recovery models and on two parametric distributions. Then we show estimat-
ing results and bootstrap results using 8 individual companies’ data and 5rating classes’
data on April 16, 2004. Finally we apply our statistical estimating method to time series
data(January 2008 to March 2009).

4.1 Data Description

Corporate bond prices and government bond prices were obtained from Bloomberg Fi-
nancial Markets and Japan Securities Dealers Association covering the period April 2003
to March 2009. Specifically, we collected daily price data for OTC Bond Transactions.
We also obtained bond issuer’s rating information from Bloomberg. Rating and Invest-
ment Information, Inc. (R & I) is one of the leading rating companies in Japan and it
grade for bond issuers by the rating categories from AAA to CCC. The data we used in
the comparative study is bond price data of Mitsui & Co., LTD. also known as Mitsui
Bussan on April 16, 2004. We use 1520 individual companies’ data for estimating sur-
vival probabilities on one day, and 5 individual companies’ data for time series analysis.

4.2 Selection of a constantr the recovery rate o

In this subsection, we show the results of comparative study vaoyangdd. For the pur-
pose of equalizing the other conditions, we use only Weibull distribution for the survival
functionG(6,t) in this subsection.
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Figure 1: Sum of the squared residuals otPMitsui Corporation as a functian of

A constanta is defined by

_[1-pPOY*

 P*(0O,t)
The restriction at the maturitpy = 0 suggests thatr > 0. We first considerr = 1.
(It meansp, = 1Pf(0t .) SinceP*(0,t) is near tol with smallt and thenp, takes a

small value, the weight of the data becomes very large with smalVe get biased
estimating results and larger values of sum of squared residuals. Next, we calculate sum
of the squared residuals with differemt, o = 1, 1 Syeees 10 Figure 1 shows the sum of the
squared residuals of Mitsui Corporation as a funct|0rum1ln this case, we see that the
sum of squared residuals is decreasing as 0. We get similar results in most individual
company cases. But as mentioned aboves supposed to take positive value. Since the
sums of the squared residuals with= % are enough small in most cases, weéd be
% throughout the rest of this section.

We next consider about recovery rate. In our model, recovery dais,assumed to
be non-random. We usewhen we calculate the survival function

G(t) = exp{tY(t: P« P)}Ts

1
P\ T3
- (=)

and of course, when calculate pseudo random sample(datajthe statistical model;

«— (oxpfioa[ £ +ope] )

Figurel shows the variation of the survival probability of Mitsui Corporation with the
time to maturity ford = 0.15, 6 = 0.3, = 0.45. The plot "Observed” is the values of
survival probabilities calculated from the bond prices. The line "Model” is the values of
estimated survival probabilities. Table 2 shows the values of the estimated parameters
of Weibull model ford = 0.15, & = 0.3, = 0.45. The recovery raté becomes larger,
survival probability tends to smaller. An interesting results is that the valués afe
the same with differend. Since8; is the shape parameter of Weibull distribution, we
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Figure 2: Variation of the survival probability with the time to maturity for differént

4] 61 6,
0.15 0.01825 1.88807
0.3 0.02023 1.88807
0.45 0.02298 1.88807

Table 2: Estimated parameters of Weibull model for differ@nt

see that the shape of the survival function does not vary with the recovery nateur
model.

The similar results are obtained for the statistical model under RT type recovery (Fig-
ure2, Table 3). Throughout the rest of this section, we set the recoverd tatee0.3.

4.3 Selection of the parametric model

In this subsection, we consider the parametric model for the survival function of our es-
timating model. We use two parametric models for the survival function: exponential
distribution and Weibull distribution. We set the survival function with exponential dis-
tribution Gexp and the survival function with Weibull distributioBwei. Gexp(8,t) and

Gwei(61, 62,1) is defined by

Gexp(6,t) = exp{-t6}, t=0
1.005
1
T3
0.995 4 A Observed(delta=0.15
)
.
0.99 “ Model(delta=0.15)
. I~
ot ¢ Observed(delta=0.3
& 0.985 e served(delta )
.
0.98 . Model(delta=0.3)
0.975 | ® Observed(delta=0.45
)
0.97 Model(delta=0.45)
0.965
0 2 4 6 8

term to maturity

Figure 3: Variation of the survival probability with the time to maturity for differént
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Table 3: Estimated parameters of Weibull model for differ@ntlitsui Corp
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Figure 4. Estimated survival functions of Mitsui & Co. for the exponential and the
Weibull model

Guwei(61,02,1) = exp{—(t6)%}, >0

respectively. Figure 4 shows the estimated survival functions of Mitsui & Co. for the
exponential and the Weibull model. Figure 5 shows the cumulative value of the sum of
squared residuals for the exponential(dotted line) and the Weibull model(staggered line).

Itis clear that the exponential survival function is estimated far from the "Observed”
plot.(See Figure 4. "Observed” plots indicate the survival probabilities calculated from
the interest yields.) And the sum of squared residuals from the exponential survival
function is much larger than that of the Weibull survival function. The result is of course
from the fact that the exponential distribution is allowed less 1 parameter than Weibull
distribution. We shall thus apply Weibull distribution for the rest of our analysis.
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.
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Cumulative Value of Residuals
\
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0.000005 L

o L
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Figure 5: Cumulative value of the sum of squared residuals for the exponential and the

Weibull model
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Figure 6: Cumulative value of the sum of squared residuals under RM type recovery and

under RT type recovery

4.4 Two recovery models; RM type recovery & RT type recovery

As mentioned in chapter 2, the pseudo maximum likelihood estimate of statistical model
under RM type recovery and RT type recovery are defined by

2
R L el 9)1—5 _ S1_—6
d = ar min '

geee Z{ Pti

[ 2
9 = argeo mini (1_5)((325“’9)_5&)

respectively, where,
st) = <e*w) v

1 —tY
5 (e7-9).
We also defined the pseudo maximum likelihood estimate of calibration model under RM
type recovery and RT type recovery as follows:

Q.
—~
—
~—
|

7o .i{G““@)-(e“”“”)ll‘s}zl

Figure 6 shows the cumulative value of the sum of squared residuals of Mitsui & Co.
for the statistical model under RM type recovery(solid line) and that for the statistical
model under RT type recovery(dotted line).

We see from Figure 6 that the lines are lying on top each other and that the difference
between the sum of squared residuals from RM type recovery and RT type recovery is
very small. Table 4 indicates the absolute value of residuals and the sum of the squared
residuals when we apply statistical and calibration model to 10 individual companies.
The above table is for the statistical model and the bottom is for the calibration model.
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Statistical Model
Company RM RT RM/RT
Toyota 0.0000127 0.0000127 RT
NTT Data 0.0016643 0.0015528 RT
Mitsui & Co. 0.0004898 0.0004917 RM
Asahi Breweries| 0.0007438 0.0006811 RT

Kajima 0.0008121 0.0008242 RM
NEC 0.0009871 0.0009972 RM
Kintetsu 0.0015136 0.0015379 RM

Sumitomo Realty] 0.0006707 0.0006997 RT
Cosmo Oil 0.0000993 0.0001037 RM

JAL 0.0015214 0.0015431 RM
Calibration

Company RM RT RM/RT

Toyota 0.0000120 0.0000118 RM

NTT Data 0.0015446 0.0015477 RM
Mitsui & Co. 0.0004964 0.0004982 RM
Asahi Breweries| 0.0005521 0.0005585 RM

Kajima 0.0006030 0.0006375 RM
NEC 0.0008421 0.0007921 RM
Kintetsu 0.0014051 0.0013742 RM

Sumitomo Realty] 0.0006942 0.0007389 RM
Cosmo Oil 0.0000794 0.0000984 RM
JAL 0.0011855 0.0012178 RM

Table 4: The mean of the absolute value of residuals for the statistical model and cal-
ibration under RM type recovery and RT type recovery. Residuals are calculated by
G(t) — G(t). The rightmost item is the model name which take the smaller value of the
sum of squared residuals.
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Figure 7: Estimated survival function of Mitsui Corporation for the statistical model and
the calibration model

The rightmost item is the model name which takes the smaller value of the sum of squared
residuals.

We see that RM model and RT model have little difference in residuals, but the fol-
lowing results are interesting. When we apply calibration estimating model, residuals of
the model under RM type recovery are calculated smaller than that under RT type recov-
ery for all 10 companies, though when applying statistical model, we can’t say which
model has smaller residuals.

4.5 Statistical Model and Calibration

Our estimators of statistical model under RM type recovery and calibration model under
RM type recovery are written as follows

n ) -5 _ -9 2
d = arge minZ{G(t"e)lé s }

i P

min
6cO

_i{em,e) -5 }2]

respectively, where
1
s - (e )

Figure 7 shows the estimated survival function of Mitsui Corporation for the two models;
the statistical model (solid line) and the calibration model(dotted line) and Figure 8 shows
the cumulative values of the sum of squared residuals for the two models, where we take
RM type recovery model.

We find that the residuals calculated by the calibration model are smaller than that by
the statistical model for all 10 companies(See Table 4). We also find that the cumulative
values of the sum of squared residuals for the statistical model are take smaller values than
for the calibration model in the first and second times of cumulation, and the larger values
after the third cumulation(See Figure7). It is because we definéar p;) as a function
of the price of default free borl*(0,t) and a constara for our statistical model. When
the data is close to the maturify; (0,t) becomes nearl§ and sop; gets near t®. That
is the reason of the behavior of the cumulative values of the sum of squared residuals.
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RM RT
91 92 91 92

g(Boots 0.02040 1.89376 0.02051 1.89701

) 0.02023 1.88807 0.02030  1.89005

Bias(6)(Bo°ts | 0.000174 0.00569 0.000211 0.00696
Var(8)(Bots | 0,000010 0.01594 0.000010 0.01600
SD,(1)(B°9 | 0.00319 0.12627 0.00321 0.12651

Table 5: The parameter estimate of the bootstrap estimation for Mitsui & Co. using
statistical model. The notations are given in Appendix.

The bootstrap analysis showed that the estimate of statistical model has some warp.
Table 5 and Table 6 indicate the parameter estimate of the bootstrap estimation for Mitsui
& Co.. Table 5 is for the statistical model and Table 6 is for calibration.

Figure 9 shows the distribution of bootstrap parameter estimate of Mitsui & Co. for
statistical model and Figure 10 shows the distribution of bootstrap parameter estimate for
calibration. The left graph in Figure 9 and Figure 10 shows the histogram of the bootstrap

estimated; ™ and the right graph shows that 85" .
As seen from a comparison between Figure 9 and Figure 10, the distribution for
statistical model has some warp, although that for calibration doesn't.

RM RT
0 6, 01 62

g(Boots 0.02567 2.10442 0.02573 2.10599

) 0.02543 2.0954| 0.02554  2.0988

Bias(8)(B°'9 | 0.000242 0.00907 0.000186 0.00724
Var(6)(Boots | 0,000018 0.02878 0.000018 0.02901
SDé(t)<B°°t3 0.00423 0.16966 0.00425 0.17033

Table 6: The parameter estimate of the bootstrap estimation for Mitsui & Co. using
calibration. The notations are given in Appendix.
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Figure 10: Distribution of bootstrap parameter estimate for calibration

4.6 Estimating results for 8 individual companies

We now present estimating results for individual companies. We(stetbe% and the
recovery rate to be0.3, and use statistical model of Weibull survival function under RM
type recovery. We analyze the following 8 individual companies; Toyota Motor Corpo-
ration, NTT Data Corporation, Mitsui & Co., Ltd., Asahi Breweries, Ltd., Kajima Cor-
poration, Kintetsu Corporation, Japan Airlines Co., Ltd. and Cosmo Oil Co., Ltd.. Table
7 indicates the data information and the parameter estimates of 8 individual companies.
Figure 11 shows the estimated survival function of 8 individual companies.

Toyota’s estimated Weibull shape parameigris the smallest of the 8 companies
and it is nearly 1. That means straight survival function and the almost constant hazard
rate(constant instantaneous default probabilities). When the shape paréfrieﬂerger
than 1, the instantaneous default probabilities declintea® .

Table 8 indicates the bootstrap parameter estimates of 8 individual companies. Figure
12 shows the distribution of bootstrap parameter estimate of 8 individual companies. The

upper graph shows the histogram of the bootstrap estilﬁfa{ﬂ]s2 and the lower graph

shows that o8,
2 .

We see from Table7 and Figurel2 that there is a close relation between the distribu-
tion of bootstrap estimates and the number of data. The number of Toyota’s bonds being
issued on April 15, 2004 was only 3. That explains why the estimated bootstrap distri-
bution of Toyota is quite different from normal distribution. It seems the larger amount
of data(bonds) being used, the more like the bootstrap distribution is normal distribution.
The bootstrap distribution of Mitsui & Co. looks like to have two peaks. The humber of
data and the existence of outlier data may explain this.
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Data Estimating results

Company Rating Observations 6; 6 mean(residuald)
Toyota AAA 3 0.0011 1.0749 0.000013
NTT Data AA 8 0.0165 1.9923 0.001664
Mitsui & Co. AA 7 0.0202 1.8881 0.000490
Asahi Breweries| A 10 0.0207 1.8545 0.000744
Kajima A 11 0.0197 1.5656 0.000812
Kintetsu BBB 15 0.0218 1.5364 0.001514
JAL BBB 9 0.0297 1.6017 0.001521
Cosmo Oil BB 9 0.0242 1.3502 0.000099

Table 7: Information about the data and the parameter estimates of 8 individual compa-
nies. The items "Rating” and "Observations” are the issuer’s rating on April 15, 2004 and
the number of a company’s bonds being issued on April 15, 2004, respecti@ﬁhan’d

"6," are parameter estimates and the rightmost item is the mean of the absolute values of
residuals.

A Observed(Toyota)

Model(Toyota)

©  Oberved(NTT)

Model(NTT)

X  Observed(Mitsui)

Model(Mitsui)

St

©  Obseived(Asahi)

Model(Asahi)

+  Observed(Kajima)

0.94 A = == Model(Kajima)

O  Observed(Kintets
0.93

u)
Model(Kintetsu)

0.92 A Observed(JAL)
0 1 2 3 4 5 6 7

term to maturity

Figure 11: Estimated survival function and 'Observed’ survival probabilities of 8 individ-
ual companies. "Observed” plots are survival probabilities calculated from interest yield
and "Model” line is estimated survival function of our estimating model.
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Toyota NTT Data  Mitsui Asabhi
p{%°9 | 0.00108  0.01824 0.02040  0.02078
6 0.00108  0.01653 0.02023  0.02067
Bias(61)(B°°'S | 0.00000  0.00171  0.00017  0.00011
Var(6;)(Boots | 0.00000 0.00012 0.00001  0.00001

SD, (1)(B°°'9 | 0.00008  0.01113  0.00319  0.00353

Bieoo 1.07462  2.04300 1.89376  1.85723
1.07492  1.99226 1.88807  1.85452
Biag(8;)(Bo°tS | .0.00030  0.05074 0.00569  0.00271
Var(6,)BooS | 0,00021  0.30568 0.01594  0.01484

SDg, (1)(BS | 0.01435 055291 0.12627  0.12182
Kajima Kintetsu JAL Cosmo Qill
0.01968  0.02181 0.02976  0.03553

6 0.01965 0.02176 0.02971  0.02418
Biag(6;)(Bo°tS | 0.00003  0.00005 0.00005  0.01135
Var(6;)(Boots | 0.00000  0.00000  0.00001  0.00000
éle (t)(Boots | 0,00182  0.00195 0.00248  0.00159

pi%°™% | 156630 1.53760 1.60337  1.59484

6, 156563 1.53641 1.60171  1.35018
Bias(6,)(Bots | 0.00067 0.00119 0.00166  0.24466
Var(6,)(Boots | 0.00309  0.00324  0.00430  0.00099
SD,, (1)(B°°'9 | 0.05564  0.05697 0.06560  0.03145

Table 8: The parameter estimate of the bootstrap estimation for 8 individual companies.
The notations are given in Appendix.

~(Boots
1
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Figure 12: Distributions of bootstrap parameter estimates for 8 individual companies.
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Data Estimating results
Class Observations 6; 6,  mean(residuals)
AAA 8 0.0018 1.1348 0.001123
AA 523 0.0010 0.9297 0.002211
A 563 0.0140 1.4778 0.003447
BBB 381 0.0121 1.2030 0.449742
BB 45 0.0263 1.2351 0.936139

Table 9: Information about the data and the representative parameter estimates of 5 rating
classes. The items "Class” and "Observations” are the rating class and the number of
corporate bonds belonging to the class on April 15, 2004, respectivilyahd "6,” are
parameter estimates and the rightmost item is the mean of the absolute values of residuals.
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Figure 13: Estimated representative survival function of 5 rating classes.

4.7 Estimating results of 5 rating classes

In this subsection, we present estimating results for the data of 5 rating classes. As in the
previous subsection, we setto be% and the recovery raté to be0.3, and use statis-

tical model of Weibull survival function under RM type recovery. We analyze 5 rating
classes; AAA, AA, A, BBB, BB. Table 9 indicates the information about the data and
the representative parameter estimates of 5 rating classes. Figure 13 shows the estimated
representative survival function of 5 rating classes. Figure 14 contains 5 separate graphs
of the estimated representative survival functions of rating classes. "Observed” plots in-
dicate the survival probabilities calculated from the interest yields and the "Model” line

is the estimated representative survival function of rating classes.

Table 10 indicates the bootstrap parameter estimates of 5 rating classes. Figure 15
shows the distribution of bootstrap parameter estimates of 5 rating classes. The upper
graph shows the histogram of the bootstrap estirﬁa{@) and the lower graph shows
that of §,™.

As seen in the individual companies’ cases, there seems to be a close relation between
the distribution of bootstrap estimates and the number of data. It seems the larger amount
of data(bonds) being used, the more like the bootstrap distribution is normal distribution.
Though many bonds (523 bonds) were issued by the "AA” class’s companies, the boot-
strap distribution of "AA” class looks like to have some warp. (See Figure 15.) This
may be explained by the existence of outlier data. When we look Figure 14 carefully, we
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Figure 14: 5 separate graphs of the estimated representative survival functions of rating
classes. "Observed” plots indicate the survival probabilities calculated from the interest
yields and the "Model” line is the estimated representative survival function of rating
classes.

AAA AA A BBB BB
6{%°*3 | 0.00238 0.00120 0.01406 0.01222 0.02775
6 0.00180 0.00100 0.01402 0.01211 0.02634

Biag(6;)(Bo°S | 0.00059 0.00021 0.00003 0.00011 0.00141
Var(6;)®o°ts | 0.00000 0.00000 0.00000 0.00001 0.00022
SDj, (1)®°°'S | 0.00223 0.00091 0.00102 0.00235 0.01480

b0 1.15810 0.93420 1.47868 1.20364 1.23848

6, 1.13481 0.92966 1.47782 1.20300 1.23508
Bias(6,)(B0tS | 0.02329 0.00454 0.00086 0.00064 0.00340
Var(8,)Boots | 0.04835 0.01479 0.00133 0.00482 0.08222
SD;, (1) | 0.21991 0.12164 0.03650 0.06941 0.28676

Table 10: The parameter estimate of the bootstrap estimation for 5 rating classes. The
notations are given in Appendix.
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Data Estimating results
Data Observations  Method o1 6,  mean(residuals)
Original 523 Statistical model 0.00100 0.930 0.002210
Calibration 0.00241 1.106 0.002076
No Outlier 520 Statistical model 0.00455 1.293 0.001750
Calibration 0.00431 1.275 0.001749

Table 11: The representative parameter estimates for "AA” original data and for "AA”
no outlier data. Original data are the same as "AA” in Table9. Outlier data are excluded
3 bonds’ price data from the original data.

Original data No outlier data
Statistical model Calibration Statistical model Calibration

;B0 0.00120 0.00257 0.00458 0.00439
6 0.00100 0.00241 0.00455 0.00431
Biag( ) (Boots 0.00021 0.00016 0.00003 0.00008
Var(6y)(Boots 0.00000 0.00000 0.00000 0.00000
éTDél (t)(Boots 0.00091 0.00115 0.00073 0.00100
K-S statistic 0.12476 0.06334 0.02554 0.02927

K-S test reject reject reject reject
Byoo% 0.93420 1.10797 1.29289 1.27692
6, 0.92966 1.10592 1.29266 1.27502
Biag( 6,) (Boots 0.00454 0.00205 0.00023 0.00190
Var(,)(Boots 0.01479 0.01287 0.00253 0.00568
éTaéz (t)(Boots 0.12164 0.11345 0.05034 0.07534
K-S statistic 0.04810 0.01928 0.01272 0.00910
K-S test reject reject not reject not reject

Table 12: The parameter estimate of the bootstrap estimation for "AA” original data and
for "AA” no outlier data. The results of K-S test at 0.05 level are given in the bottom 2
lines.

notice that "Observed” plots of "AA” class contains outlier.

We next show the influence of outlier data on our estimating method using data of
"AA” class. In the "AA” graph of Figure 14, we may see 3 outlier plots among "Ob-
served” plots. We excluded these 3 bonds’ price data from the original data. Table 11
indicates the representative parameter estimates for "AA” original data and for "AA” no
outlier data. Original data are the same as "AA” in Table9 and outlier data are excluded
3 bonds’ price data from the original data.

Table 12 indicates the bootstrap parameter estimates for "AA” original data and for
"AA” no outlier data. Figure 16 shows the distribution of bootstrap parameter estimates
for "AA” original data and for "AA” no outlier data. The upper graph shows the his-

togram of the bootstrap estimaf@<m) and the lower graph shows thatéj_f(m) .

We see from Figure 16 that the warps are reduced by the exclusion of the outlier
data(Compare the left graphs and the middle graphs). We also see that the distributions of
bootstrap parameter estimates using no outlier data look like normal distribution(middle
graphs). We tested these results for normality of the distribution. One of the most useful
tests for normality of the distribution is Kolmogorov-Smirnov test. Gilrestimates
§M j=12m=1,...,M, the Kolmogorov-Smirnov statistic for cumulative normal
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Figure 16: Distributions of bootstrap parameter estimates for "AA” original data and
no outlier data. The left graphs are for original data. Blue(deep) distribution is for sta-
tistical model and pink(pale) is for calibration. The middle graphs are for no outlier
data. 3 bonds’ data are excluded. Green(deep) distribution is for statistical model and
orange(pale) is for calibration. The right graphs are the distributions using statistical
model for original data and no outlier data. Blue(deep) distribution is for original data
and green(pale) is for no outlier data.

distribution functionF (x) is
Dm = sup|Fm(x) — F(X)]

wheresufy is the supremum of the set of distances and

1 M
FM(X) = M_Zlé(m)<xa

wherel 3m _, is the indicator function, equal thif (™ < x and equal td otherwise.
The null hypothesis tha (M j = 1,2,m=1,...,M is normal distributed is rejected at
level 0.05 if

vVMDy > 1.36.

M is 10000in our case.
The Kolmogorov-Smirnov statistiDigogpand the results of K-S test are in Table12.

We got better results by excluding only 3 bonds’ price data from the original 523 bonds’
data,

4.8 Estimation for Time Series Data

So far, we have estimated the survival probabilities of one day. In this subsection, we
estimate the time series survival probabilities. The data we used is daily price data of the
corporate bond and the government bond.

Since we are interested in the impact of the bankruptcy of Lehman Brothers(September
15, 2008), we use the data from January 4, 2008 to March 31, 2009. U.S. house sales
prices peaked in mid-2006 and began their steep decline forthwith. The subprime mort-
gage crisis began to affect the financial sector in 2007. Although Japanese financial firms
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held a few securities backed with subprime mortgages, Japanese economy was affected
by subprime mortgage crisis. We select five companies, which might be affected by
the bankruptcy. Toyota Motor Corporation is a multinational automaker and one of the
world’s largest automobile manufacturers. Toyota has a rating of AAA throughout our
analysis. Mitsui & Co., LTD. also known as Mitsui Bussan, is one of the largest sogo
shosha in Japan. Mizuho Corporate Bank, Ltd. is the corporate and investment banking
subsidiary of Mizuho Financial Group. Tokyu Land Corporation is the 4th biggest real
estate agency in Japan. Japan Airlines Co., Ltd. is an airline in Japan. The airline filed
for bankruptcy protection on January 19, 2010, after losses of nearly 100 billion yen in a
single quarter.

Figure 17 shows the historical survival probabilities of the 5 companies. The survival
probabilities of Tokyu Land Corporation began to decline slowly before the bankruptcy
of Lehman Brothers. Although the risk of subprime mortgages was pointed before the
bankruptcy, the decline is considered by the cause of its own. In 2008, housing values
in Japan decreased by 10 percent with the previous year and the stock price of Tokyu
Land declined all through 2008. The survival probability curves in the graph begin to
drop sharply at November 2009. The bond buyers were likely to avoid the risk in the real
estate market.

We next contrast the graphs of Toyota, Mitsui and Mizuho. We see that the all 3 com-
panies’ survival probabilities were declining after the bankruptcy, but Mizuho’s graph
began to drop first. Since Mizuho Corporate Bank is the corporate and investment bank-
ing subsidiary and was at the core of the financial crisis, the bankruptcy was seem to
make an immediate effect. One month later of the Mizuho's survival probability curve
drop, the survival probabilities of Toyota and Mitsui began to decline more slowly. It
seems the financial crisis spreaded over gradually.

JAL’s steep curve stands out in the graph. The 5 year survival probability varied 80%
to 64% for only 3 months. Itis because JAL was confronted not only with financial crisis,
but also with the rise of oil price and slow cost cut. JAL's prospects seem to have been
considered gloomy by the bond buyers.

5 Conclusion

In this paper, we study estimating method of implied survival probability. We focus on
the statistical estimating model introduced by Takahashi(2011). The advantage of the sta-
tistical estimating model is its ability to discuss asymptotic properties. Our contributions
are the following three points. First, we provide a complete proof of the consistency of
the estimator in the statistical estimating model. Second, we verify regularity conditions
for asymptotic properties of the estimator in the Weibull survival function case. Third,
we provide an empirical analysis of implied survival probability estimating. When we
estimate implied survival probability, instead of using Duffie & Singleton(1999) model
directly, as in previous studies, we apply statistical estimating model which contains some
error term. In the empirical analysis, we discuss asymptotic properties using bootstrap
method.

Several interesting observations can be made. When we apply Weibull distribution to
parametric survival function, the estimating result is much better than that of exponential
distribution. The number of the data and the existence of the outlier data have a major ef-
fect on the bootstrap estimating results. When we analyze the impact of the bankruptcy of
Lehman Brothers, we observe that the influences differ with the 5 individual companies.
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Figure 17: Time series default probabilities of Toyota, Mitsui & Co, Mizuho, Tokyu

Land, JAL
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AppendixA Bootstrap Method

When analyzing the real data, Takahashi(2011) recommends to use the bootstrap method
rather than asymptotic theory. We introduce the bootstrap method of Takahashi(2011),
which is used on the empirical research in section 4.

[Bootstrap Method of Takahashi(2011)] We consider bootstrap estimate &f
We first consider the case of statistical model under RM type recovery. Wexlet

]
X(t) i=1,...,n} be a sequence of the pseudo data, wherex(t) = %. We estimate
the base line estimati# by

9 = argye lmini{E(ti, 6) — %}

where

We estimatdog,,i =1,...,n} by

We define the se of standerdized residuals, from which the bootstrap sampling will be
made (cf.Wu(1986)):

E={a,....8,}
where
o= /-5 @-¢)
' n—-1°"
and
g-lveg
= n2 €.
Ohstep Set
m=1

15'step We choose elements at random froi with replacement, denote (™
EM = {e”,....e"}
2"dstep Constract a bootstrap pseudo sample by

X" ==zt,9)—e™ i=1...n
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3dstep Estimated from the pseudo dat{axt(im),i —=1,...,n} and denote it ad M

3 = argy o [mini{z(ti, 2) _Xt(im)}Z] .

4hste p RepeatlStste pto 3step Mtimes, and denote the estimate by

We define bootstrap estimate by

5 (Booty _

and
Var(Boots(é) _ 1 % (9(m) _5<Boot)) (5(m> _5(Boot>)'
M-1 m=1
respectively.

We next consider bootstrap estimate when using statistical model under RT type re-
covery. The baseline estimafeis given by

IrT = argyco [mini {Eﬁ(ti ,0) — % }2]

where

P
and R
Eﬂ(t,e) _ (1_ 6)G(t7"9RT)
o3
We estimatqog,,i =1,...,n} by
eﬁ*:Ej(t,éRT)—xtji i=1,...,n

Then we constract standerdized residls- {efl, ey efn} and bootstrap estimaf&Boots
in the same way as that of RM type recovery.
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