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within-subject covariance matrices, which are often unavailable in
reality. Thus we propose an estimator when the covariance matrices
are unknown and depend only on the index variable. To achieve this
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1. Introduction. Suppose we have a scalar response Y , and two p-
dimensional and q-dimensional covariate vectors X and Z. Longitudinal
data consist of (Y

ij

,X
ij

,Z
ij

, T
ij

), i = 1, . . . , n, j = 1, . . . ,m
i

, where Y
ij

,
X

ij

= (X
ij1, . . . , Xijp

)T and Z
ij

= (Z
ij1, . . . , Zijq

)T are respectively the
values of Y , X and Z of the ith subject at the jth observation time T

ij

2
[0, 1]. Such kind of data are commonly acquired for various purposes, such
as evidence based knowledge discovery and empirical study, in a wide range
of subject areas. When the subjects are changed to clusters and the T

ij

’s are
observations on some index variable other than time, they are usually called
clustered data. We assume that all the covariates are uniformly bounded for
technical reasons. Besides, we let Z

ij1 ⌘ 1 and suppose X
ij

has no constant
element for all i and j.

For i = 1, . . . , n, denote

X
i

= (X
i1, . . . ,Ximi)

T , Z
i

= (Z
i1, . . . ,Zimi)

T , and T
i

= (T
i1, . . . , Timi)

T .

A popular model for longitudinal data analysis is the semivarying coe�cient
model, which is specified by

E(Y
ij

|X
ij

,Z
ij

, T
ij

,X
i

,Z
i

, T
i

)(1.1)

= E(Y
ij

|X
ij

,Z
ij

, T
ij

) ⌘ µ(XT

ij

� +ZT

ij

g(T
ij

)) = µ
ij

,

where AT stands for the transpose of a matrix A. In model (1.1), µ(x) is a
known strictly increasing smooth link function, � is an unknown regression

coe�cient vector, and g(t) =
�

g1(t), . . . , gq(t)
�

T

is a vector of unknown
smooth functions. Define

(1.2) ✏
i

= (✏
i1, . . . , ✏imi)

T = Y
i

� µ
i

, and ⌃
i

= Var(✏
i

|X
i

,Z
i

, T
i

),

where Y
i

= (Y
i1, . . . , Yimi)

T , µ
i

= (µ
i1, . . . , µimi)

T , and ⌃
i

is an m
i

⇥ m
i

positive definite matrix depending on X
i

, Z
i

, and T
i

, i = 1, . . . , n. This is
a standard marginal model in longitudinal data analysis [24].

Model (1.1) consists of a parametric component, which provides informa-
tion on the constant impacts of some important covariates, and a nonpara-
metric component which captures the dynamic impacts of the other covari-
ates. In this way the model is able to reflect unknown nonlinear structures in
the data while retaining similar interpretability as the classical linear models
at the same time. There is an extensive literature on the variable selection,
structure identification, estimation, and inference issues [6, 8, 12, 22, 25].
In particular, often of primary interest is to have access to the parametric
component while the nonparametric component is viewed as the nuisance
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part. In this regard, it is well known that assuming independence or some
mis-specified working covariance structure yields less e�cient estimation of
the constant coe�cients. Therefore, a substantial portion of the existing lit-
erature aimed at improving the e�ciency via modeling and estimating the
within-subject covariance structure [6, 7, 10, 18, 26, 27, 28], which is itself
a challenging task.

In this article, we focus on the identity link function and make contribu-
tions to the e�cient estimation problem for model (1.1) in three directions.
First, we allow some of the m

i

’s to tend to infinity. As far as we know,
this setup has not been treated before and the problem is nontrivial. Our
results also hold when the m

i

’s are uniformly bounded and ✏
i

satisfies the
sub-Gaussian property. See the supplement [5] for the details. When all of
the m

i

’s are diverging, that is, if we have densely observed data, it becomes
a kind of functional data problem and is out of the scope of this paper.
Second, we study explicit expression of the semiparametric e�ciency bound
for estimation of � and asymptotic normality of the generalized estimat-
ing equations (GEE) spline estimator under general covariance structures
and error distributions. Using the true covariance matrices in the GEE es-
timation leads to optimality among all GEE estimators of the parametric
component. Furthermore, it achieves the semiparametric e�ciency bound
when the errors are conditionally normal. Our results are in parallel to that
for partially linear and partially linear additive models given by [13] and
[4] respectively. Those models are among a rich variety of semiparametric
ways of modeling longitudinal data, and they di↵er from semivarying coef-
ficient models in that their nonparametric components admit more direct
additive expressions. Partially linear (additive) models were also considered
by [14, 15, 16, 17, 23], among which [14, 15, 16, 23] used kernel method and
[17] used spline estimation.

Our third contribution is to deal with adaptive e�cient estimation when
the within-subject covariance matrices are estimated nonparametrically us-
ing the data at hand. Notice that [4] ignored this practical issue and did
not consider estimation of the covariances, and [13] suggested using some
parametric specification which can be estimated

p
n-consistently. We con-

sider the case where the nonparametric within-subject covariance matrices
depend only on the observation times but not on the other covariates. Such
assumptions are reasonable because we do not assume that the observation
times are regular across di↵erent subjects or they are dense. Indeed, with
irregular and/or sparse observation times, estimating the covariances in a
completely nonparametric way, by letting them to be dependent on all of
the T

ij

, X
ij

and Z
ij

nonparametrically, is particularly problematic and even
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unreliable as the curse-of-dimensionality problem arises. Our covariance es-
timator is constructed based on residuals yielded by an initial estimation.
The final estimator of the true value of � is then given by plugging-in the
covariance estimates to the GEE spline estimation. We show the asymptotic
equivalence of our final estimator to the oracle e�cient estimator which uses
the true covariance matrices in the GEE spline estimation.

The above result is partly motivated by the study of [14] on e�cient esti-
mation in partially linear models under the same nonparametric covariance
structure. However, the kernel profile method taken by [14] involves only
local linear regression, thus, to achieve semiparametric e�ciency it requires
some complicated iterative backfitting calculation except for the identity link
function [15, 16]. By comparison, our approach to estimating the parametric
and nonparametric components in the mean function is di↵erent and much
simpler. We ingeniously use both spline approximation and local linear es-
timation to avoid complicated calculation while allowing for the asymptotic
equivalence property at the same time. To the best of our knowledge, there
are no existing results for semivarying coe�cient models, especially when
some of the m

i

’s tend to infinity or when the ⌃
i

s are estimated.
Our final estimator is some kind of feasible generalized least squares

(FGLS) estimator since we replace the within-subject covariance matrices
with their nonparametric estimates. Even if our assumption on the covari-
ance matrices fails to hold, it still possesses the asymptotic normality under
mild conditions and still makes use of some information of the covariance
matrices. For example, if the covariances depend on some time-dependent
covariates, to some extent such e↵ects are still captured by our method.
In this sense, compared with existing methods which use either parametri-
cally estimated or some ad-hoc covariance matrices [7, 18, 21], our approach
is more adaptive to the unknown covariance matrices. A promising cluster
bootstrap inference method was proposed by [2]; it assumes some parametric
within-cluster covariance structure, however. In the case where there is one
observation for each subject/cluster, our assumption on the covariance ma-
trices reduces to that of [20], which also suggested to improve the e�ciency
in a similar manner.

Our simulation study shows that numerically the proposed method out-
performs the working independence approach and the quadratic inference
functions (QIF) method by [18], and it behaves close to the oracle estimator
which uses the true covariance matrices. Note that, while the QIF procedure
is suitable when there is some kind of regularity and stationarity in the er-
ror process, our procedure adapts to both non-stationarity and irregularity.
We also applied our method to the CD4 count dataset and identified some
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interesting new e↵ects not detected by the working independence approach.
After the semiparametric e�cient estimation, we can estimate and make

inference on the nonparametric component in the same way as in dealing
with varying coe�cient models, using the di↵erence between the response
and the estimated parametric part [25]. When p and q are both diverg-
ing and the model is sparse, [6] suggested a simultaneous variable selection
and structure identification procedure and showed its consistency property.
By combining the method with the proposed estimation procedure and by
putting together the corresponding consistency and e�ciency results, we
have an e�cient estimation procedure in this case.

The organization of this paper is as follows. In Section 2 we derive the
semiparametric e�ciency bound for the constant coe�cient vector � and
asymptotic normality of GEE spline estimators. In Section 3, we propose
an e�cient estimator of � when the errors have some general covariance
structure and state its asymptotic equivalence to the oracle estimator which
assumes the covariance matrices are known. Section 4 summarizes and dis-
cusses results of our simulation and empirical studies used to assess numeri-
cal performance of the proposed e�cient estimator. Section 5 contains some
technical assumptions and proof of the asymptotic equivalence. In the sup-
plementary material [5] we give additional simulation results for estimation,
proofs of the other theoretical results, some lemmas, and theoretical results
when the m

i

’s are uniformly bounded.

2. Semiparametric e�ciency bound for �. In this section, V
i

is a
given m

i

⇥ m
i

inverse weight matrix depending only on X
i

, Z
i

, and T
i

,
i = 1, . . . , n. We use a K

n

-dimensional equispaced B-spline basis on [0, 1],
denoted by B(t), to approximate the function g(t). See [19] for the definition
and properties of B-spline bases. We set W

ij

= Z
ij

⌦ B(T
ij

) and W
i

=
(W

i1, . . . ,Wimi)
T , where ⌦ is the Kronecker product, and we denote the

true values of � and g(t) by �0 and g0(t) = (g01(t), . . . , g0q(t))T respectively.
Then we estimate �0 and g0(t) by minimizing with respect to � and �
simultaneously the following objective function:

(2.1)
n

X

i=1

(Y
i

� µ(X
i

� +W
i

�))TV �1
i

(Y
i

� µ(X
i

� +W
i

�)),
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where � 2 RqKn and the j th element of µ(X
i

�+W
i

�) is µ(XT

ij

�+W T

ij

�).
Thus the generalized estimating equations are

n

X

i=1

XT

i

�
i

V �1
i

(Y
i

� µ(X
i

� +W
i

�)) = 0,

and
n

X

i=1

W T

i

�
i

V �1
i

(Y
i

� µ(X
i

� +W
i

�)) = 0,(2.2)

where �
i

is an m
i

⇥ m
i

diagonal matrix defined by �
i

= diag(µ0(XT

i1� +

W T

i1�), . . . , µ
0(XT

imi
� + W T

imi
�)). Denote the solution to (2.2) by b�V and

b�V ⌘
�

b�T1V , . . . , b�
T

qV

�

T

. Then the GEE spline estimator with weight matrices

V �1
i

, i = 1, . . . , n, for �0 is b�V and that for g0(t) is
�

b�T1V B(t), . . . , b�T
qV

B(t)
�

T

.
Hereafter we focus on the identity link function and present the asymp-

totic normality of b�V in Proposition 1 under general error distributions as
specified in Assumption A6 given in Section 5. We allow some of the m

i

’s to
diverge in a way like

P

n

i=1m
5
i

= O(n) and max1in

m
i

= O(n1/8). See
Assumptions A1 and A2 for the specific conditions on the m

i

’s. We refer to
the supplement [5] for the results for general link functions when the m

i

’s
are uniformly bounded and the ✏

i

’s satisfy the sub-Gaussian property.
First, we introduce some function spaces, inner products and projections.

Let L2 denote the space of square integrable functions on [0, 1] and recall
B(t) is the equispaced B-spline basis on [0, 1]. We define two function spaces:

G = {(g1, . . . , gq)T | g
j

2 L2, j = 1, . . . , q},
and G

B

= {(BT�1, . . . ,B
T�

q

)T |� = (�T

1 , . . . ,�
T

q

)T 2 RqKn} .

Note that G
B

⇢ G. Next, let v1 and v2 be two stochastic processes each
taking scalar values at T

ij

, i = 1, . . . , n, j = 1, . . . ,m
i

. Then we define two
inner products of v1 and v2 by hv1, v2iV

n

= 1
n

P

n

i=1 v
T

1iV
�1
i

v2i and hv1, v2iV =
E{hv1, v2iV

n

}, where v1i and v2i are defined in the same way as T
i

, and we
define the associated norms by kvkV

n

= (hv, viV
n

)1/2 and kvkV = (hv, viV )1/2.
The projections, with respect to k · kV , of the kth element of X onto ZTG
and ZTG

B

are given by

(2.3) ⇧V X
k

= argmin
g2G

kX
k

�ZTgkV and ⇧V n

X
k

= argmin
g2GB

kX
k

�ZTgkV ,

where kX
k

� ZTgkV = 1
n

E
n

P

n

i=1(Xik

� (ZTg)
i

)TV �1
i

(X
ik

� (ZTg)
i

)
o

,

with X
ik

= (X
i1k, . . . , Ximik)

T and (ZTg)
i

= (ZT

i1g(Ti1), . . . ,ZT

imi
g(T

imi)).
Hereafter we write '⇤

V k

= ⇧V X
k

2 G and 'V k

= ⇧V n

X
k

2 G
B

.
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Assumption S

(i) The projections '⇤
V k

(t), k = 1, . . . , p, and the varying coe�cient func-
tion g0 are twice continuously di↵erentiable on [0, 1], and they and
their second order derivatives are uniformly bounded in n.

(ii) We take K
n

= bc
K

n1/5c for some positive constant c
K

, where bxc is
the largest integer no greater than x.

Assumption S(i) is a mild and standard assumption for semiparamet-
ric models. We consider the existence and smoothness properties of '⇤

V k

(t)
in Section 5. Recall that all the covariates are assumed to be uniformly
bounded. Since the relevant functions are assumed to be at least twice con-
tinuously di↵erentiable, we recommend quadratic or cubic spline approxima-
tion. Then the order of K

n

specified in Assumption S(ii) is optimal. If the
smoothness of di↵erent functions varies, we refer to [1] for the convergence
rate interfere phenomenon.

The following matrices are necessary in order to present asymptotic nor-
mality of b�V :

H =

✓

P

n

i=1X
T

i

V �1
i

X
i

P

n

i=1X
T

i

V �1
i

W
i

P

n

i=1W
T

i

V �1
i

X
i

P

n

i=1W
T

i

V �1
i

W
i

◆

=

✓

H11 H12

H21 H22

◆

,(2.4)

H11·2 = H11 �H12H
�1
22 H21 , and H11 = (H11·2)

�1 .

Let ⌦V n

be a p⇥ p matrix whose (k, l)th element is

hX
k

�ZT'⇤
V k

, X
l

�ZT'⇤
V l

iV

=
1

n

n

X

i=1

E
n

(X
ik

� (ZT'⇤
V k

)
i

)TV �1
i

(X
il

� (ZT'⇤
V l

)
i

)
o

.

Note that n�1H11·2 is an estimate of ⌦V n

. We assume that there exists a
p⇥ p positive definite matrix ⌦V such that

(2.5) lim
n!1

⌦V n

= ⌦V .

Now we are ready to state the asymptotic normality of b�V under general
error distributions as specified in Assumption A6 given in Section 5. Its
proof is given in the supplement [5]. We denote the normal distribution with

mean ⌘ and covariance ⌦ by N(⌘,⌦), and by “
d!” we mean convergence in

distribution. Let I
l

be the l-dimensional identity matrix.
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Proposition 1. (Asymptotic normality of b�V ) Under Assumption S,
(2.5), and Assumptions A1-6 given in Section 5, we have

b�V = �0 +H11
n

X

i=1

(X
i

�W
i

H�1
22 H21)

TV �1
i

✏
i

+ o
p

⇣ 1p
n

⌘

.

We also have
��1/2
V (b�V � �0)

d! N(0, I
p

),

where �V is given by

(2.6) H11
n

X

i=1

n

(X
i

�W
i

H�1
22 H21)

TV �1
i

⌃
i

V �1
i

(X
i

�W
i

H�1
22 H21)

o

H11.

Under (2.5), b�V is
p
n-consistent for �0. We can estimate its asymptotic

covariance �V given in (2.6) by replacing the⌃
i

’s with some estimates based
on b�V and b�V . For example, we can replace ⌃

i

with e✏
i

e✏T
i

where

e✏
i

= Y
i

�XT

i

b�V �W T

i

b�V .

However, this approach may be too crude and it does not make use of
the common information on the covariance structure contained in di↵er-
ent subjects. Alternatively, we can estimate the ⌃

i

’s by applying smoothing
techniques to some residuals based on some assumption on the covariance
structure. We investigate this problem in Section 3.

Next, Proposition 2 gives the semiparametric e�ciency bound for estima-
tion of �0. It can be proved in almost the same way as in Section 4.4 of [13]
and Lemma 1 of [4] and the proof is omitted. We denote the semiparametric
e�cient score function of � by

l⇤� = (l⇤�1, . . . , l
⇤
�p)

T .

Its expression is given in Proposition 2. Then we denote '⇤
⌃k

(t) by '⇤
eff,k

(t)
when V

i

= ⌃
i

in (2.1).

Proposition 2. (Semiparametric e�ciency bound) Under the same as-
sumptions as in Proposition 1, we have

l⇤�k =
n

X

i=1

(X
ik

� (ZT'⇤
eff,k

)
i

)T⌃�1
i

{Y
i

�XT

i

�0 � (ZTg0)
i

},

and the semiparametric e�cient information matrix for � is given by

lim
n!1

1

n
E{l⇤�(l⇤�)T } = ⌦⌃ with V

i

= ⌃
i

in (2.5).
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Proposition 3 gives the asymptotic normality of b�⌃, the so called oracle
estimator, which uses the true covariance structure in the GEE spline regres-
sion. It also asserts that b�⌃ achieves the semiparametric e�ciency bound
derived from Proposition 2. The proof is given in the supplement [5].

Proposition 3. (Oracle e�cient estimator) If we take V
i

= ⌃
i

in (2.2)
then, under the same assumptions as in Proposition 1, we have

p
n⌦1/2

⌃ (b�⌃ � �0)
d! N(0, I

p

).

In practice, usually the ⌃
i

’s are unknown and we have no direct access
to the semiparametric e�cient score function or the oracle estimator. In the
next section we study nonparametric estimation of the covariances so as to
improve the e�ciency.

3. E�cient estimation. The semiparametric e�ciency bound of �
given in Proposition 2 indicates that knowledge, or at least estimation, of
the ⌃

i

’s is necessary in order to construct a semiparametric e�cient estima-
tor. On the other hand, as discussed in the Introduction, when the ⌃

i

’s are
unknown it is almost impossible to estimate them in a fully nonparametric
way. Fortunately, for longitudinal or clustered data sets, it is reasonable to
make some assumptions such as

(3.1) ⌃
i

= ⌃(T
i

), i = 1, . . . , n,

where the (j, j)th element of⌃
i

is given by �2(T
ij

) and the (j, j0)th element is
given by �(T

ij

, T
ij

0) when j 6= j0, for some smooth functions �2(t) and �(s, t).
Based on (3.1), in Section 3.1 we construct nonparametric estimates of the
covariances and then use them to derive an FGLS procedure to improve the
e�ciency, and we show in Section 3.2 its asymptotic equivalence to the oracle
estimator b�⌃. We also discuss estimation of the nonparametric component.

3.1. Methodology. A preliminary estimation of �0 and g0 is necessary
before we can estimate the covariances. For simplicity and robustness, we
utilize working independence in the GEE spline estimation. As noted fol-
lowing Proposition 1 we could then use the resultant residuals to estimate
the covariance matrices directly. However it is intuitively better to further
make use of the covariance structure (3.1) by applying some nonparametric
smoothing techniques to the residuals. In addition, alternative to the spline
estimator, we could apply smoothing techniques to the pseudo responses
Y

i

�XT

i

b�V to obtain another estimator of g0. We take this latter approach
for technical and numerical reasons given in Remark 1. After the preliminary
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estimation, for each i = 1, . . . , n, we estimate ⌃
i

by applying local linear
regression and denote the resultant estimate by b⌃

i

. Our final estimator of �0

is then obtained by taking V
i

= b⌃
i

, i = 1, . . . , n, in the GEE spline estima-
tion. Note that in the trivial case where m

i

is fixed for all i and the T
ij

’s are
equi-spaced, we can estimate ⌃

i

without using any smoothing techniques.
Let K be a given kernel function. Our estimation procedure is formally

specified as follows:

Step 1. Estimate �0 by the GEE spline method given in Section 2 with
V
i

= I
mi , i = 1, . . . , n, and denote the resultant working independence

estimate by b�
I

.
Step 2. Estimate g0(t) by applying local linear regression to

�

Y
ij

�XT

ij

b�
I

, i =

1, . . . , n, j = 1, . . . ,m
i

 

, using bandwidth h1. We denote the resultant
estimate by bg(t), which is written as
(3.2)

bg(t) = D
q

(A1n(t))
�1 1

N1h1

n

X

i=1

mi
X

j=1

Z
ij

⌦
 

1
Tij�t

h1

!

K
⇣T

ij

� t

h1

⌘

(Y
ij

�XT

ij

b�
I

),

where N1 =
P

n

i=1mi

, D
q

= I
q

⌦ (1 0), and

A1n(t) =
1

N1h1

n

X

i=1

mi
X

j=1

(Z
ij

ZT

ij

)⌦
 

1 Tij�t

h1
Tij�t

h1
(Tij�t

h1
)2

!

K
⇣T

ij

� t

h1

⌘

.

Step 3. Calculate the residuals, denoted as b✏
ij

, given by

b✏
ij

= Y
ij

�XT

ij

b�
I

�ZT

ij

bg(T
ij

), i = 1, . . . , n, j = 1, . . . ,m
i

.

Step 4. Estimate the variance function �2(t) by applying to the squared
residuals local linear regression with bandwidth h2. Denote the resul-

tant estimate by c�2(t); it can be expressed as

(3.3) c�2(t) = (1 0)(A2n(t))
�1 1

N1h2

n

X

i=1

mi
X

j=1

 

1
Tij�t

h2

!

K
�T

ij

� t

h2

�

(b✏
ij

)2,

where A2n(t) =
1

N1h2

P

n

i=1

P

mi
j=1

 

1 Tij�t

h2
Tij�t

h2
(Tij�t

h2
)2

!

K
�

Tij�t

h2

�

.

Step 5. Estimate the covariance function �(s, t) by applying to
�

b✏
ij

b✏
ij

0 , j 6=
j0, i = 1, . . . , n

 

local linear regression with bandwidth h3. We denote



EFFICIENT ESTIMATION 11

the resultant estimate by b�(s, t); it has the following expression:

b�(s, t) = (1 0 0)(A3n(s, t))
�1(3.4)

⇥ 1

N2h23

n

X

i=1

X

j 6=j

0

0

B

@

1
Tij�s

h3
Tij0�t

h3

1

C

A

K
�T

ij

� s

h3

�

K
�T

ij

0 � t

h3

�

b✏
ij

b✏
ij

0 ,

where N2 =
P

n

i=1mi

(m
i

� 1) and

A3n(s, t)

=
1

N2h23

n

X

i

X

j 6=j

0

0

B

@

1
Tij�s

h3
Tij0�t

h3

1

C

A

⇣

1 Tij�s

h3

Tij0�t

h3

⌘

K
�T

ij

� s

h3

�

K
�T

ij

0 � t

h3

�

.

Step 6. Calculate b⌃
i

by combining the results from steps 4 and 5 by letting

b⌃
i

(j, j0) = b�(T
ij

, T
ij

0)I(j 6= j0) +c�2(T
ij

)I(j = j0),

and then estimate �0 with V
i

= b⌃
i

in the GEE (2.2). Denote the
resultant estimate of �0 by b�b⌃.

Step 7. Update the nonparametric estimator of g0(t) given in Step 2 by
replacing Y

ij

� XT

ij

b�
I

with Y
ij

� XT

ij

b�b⌃, i = 1, . . . , n, j = 1, . . . ,m
i

.
Denote the resultant estimator by bg

U

(t). Alternatively, we can estimate
g0(t) with splines, by replacing � with b�b⌃ and taking V

i

= b⌃
i

in the
GEE (2.2). Denote the resultant estimator by bg

S

(t).

In general the covariance function estimate b�(s, t) given by step 5 may not
be positive semidefinite. We can modify it by truncating the eigenfunctions
in its spectral decomposition that have eigenvalues not exceeding some non-
negative constant �

L

. Then we have positive definite covariance estimates if
we replace b�(s, t) with this modified version in step 6.

Remark 1. When we calculate b�
I

in step 1, we also have b�
I

and get
the set of residuals {e✏

ij

= Y
ij

�XT

ij

b�
I

�W T

ij

b�
I

}. Then we could omit steps
2 and 3 of our procedure by exploiting this set of residuals when we estimate
⌃

i

in steps 4-6. However, our simulation results summarized in Section 4
indicate that this simplified approach is inferior to the proposed one. Intu-
itively speaking, to achieve the semiparametric e�ciency in the GEE spline
estimation of �0, to some extent the accompanying estimation of g0(t) re-
quires undersmoothing and thus it often exhibits spurious wiggling patterns.
Besides, it is di�cult to justify theoretically this simplified approach as the
local property of spline estimators seems to be intractable.
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3.2. Asymptotic results. First we establish the asymptotic equivalence
between the data-driven estimator b�b⌃ and the oracle estimator b�⌃ by ex-

ploiting some desirable properties of b⌃
i

. First, we specify our assumptions
on the smoothness of g0(t), �2(t) and �(s, t). We need Assumption B given
below, which is more restrictive than usual, in order to evaluate the di↵er-
ence between b⌃�1

i

and ⌃�1
i

.

Assumption B.

(i) Assumption (3.1) holds.
(ii) The true varying coe�cient function g0(t) is three times continuously

di↵erentiable on [0, 1].
(iii) The variance function �2(t) is three times continuously di↵erentiable

on [0, 1].
(iv) The covariance function �(s, t) is three times continuously di↵eren-

tiable on [0, 1]2.

In the following we collect our assumptions on the kernel function K and
the three bandwidths used in the construction of the proposed estimator.
Assumption H(i) on K is a standard one. When Assumption B holds, our as-
sumptions on the bandwidths h1, h2 and h3 are not restrictive. For example,
the optimal order of h1 and h2 is n�1/5 which falls into the specified range. A
larger order is recommended only for h3 due to the two-dimensional smooth-
ing in step 5. However, since the e↵ective number of observations used in
step 5 of the procedure is N2 we anticipate that bandwidth choice will not
seriously a↵ect the performance of our final estimator.

Assumption H.

(i) The kernel function K is some continuously di↵erentiable symmetric
density function with a compact support.

(ii) The bandwidths h1, h2 and h3 satisfy h1 = c1n
�ah for some 1/6 <

a
h

 1/4, h2 = c2n
�bh for some 1/6 < b

h

 1/4 and h3 = c3n
�ch for

some 1/6 < c
h

< 1/4, where c1, c2 and c3 are some positive constants.

The asymptotic expression of b⌃
i

is given in Proposition 4, which is verified
in the supplementary material [5]. Note that we need more elaborate repre-
sentations than those used by [14] since we deal with a (p+qK

n

)-dimensional
linear regression model. Note also that the functions B

j

, j = 1, . . . , 4, that
appear in Proposition 4 are implicitly defined in the proof of the proposition
and only their boundedness property is needed in the proof of Theorem 1.

Proposition 4. (Representations of the covariance estimators) Under
the assumptions in Proposition 1 with V

i

= I
mi, and Assumptions B and H,
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we have the following representations of c�2(t) and b�(s, t). Uniformly in t,

c�2(t)� �2(t) = B1(t)h
2
2 +B2(t)E1(t) +O

p

(h31 + h32) +O
p

⇣ log n

nh1
+

log n

nh2

⌘

where uniformly in t

E1(t) =
1

N1h2

n

X

i=1

mi
X

j=1

 

1
Tij�t

h2

!

K
⇣T

ij

� t

h2

⌘

(✏2
ij

� �2(T
ij

)) = O
p

⇣

r

log n

nh2

⌘

,

and B1(t) and B2(t) are bounded functions. Uniformly in s and t (s 6= t),

b�(s, t)� �(s, t) = B3(s, t)h
2
2 +B4(s, t)E2(s, t) +O

p

(h31 + h33) +O
p

⇣ log n

nh1
+

log n

nh23

⌘

,

where

E2(s, t) =
1

N2h23

n

X

i=1

X

j 6=j

0

0

B

@

1
Tij�s

h3
Tij0�t

h3

1

C

A

K
⇣T

ij

� s

h3

⌘

K
⇣T

ij

0 � t

h3

⌘

(✏
ij

✏
ij

0 � �(T
ij

, T
ij

0))

= O
p

⇣

s

log n

nh23

⌘

uniformly in s and t,

and B3(s, t) and B4(s, t) are bounded functions.

We state in Theorem 1 the desirable equivalence property of b�b⌃ to the
oracle estimator. The proof uses Proposition 4; it is tedious and technical
and thus is postponed to Section 5.4. We have not yet obtained a similar
result for general link functions even when the m

i

’s are uniformly bounded,
and that is a future research topic.

Theorem 1. Under the assumptions in Proposition 4, we have

b�b⌃ = b�⌃ + o
p

(n�1/2).

Suppose (3.1) fails to hold, but Var(✏
i

|T
i

) still can be represented by some
functions �2(t) and �(s, t). Then Proposition 1 and Theorem 1 continue
to hold ⌃i = Var(✏

i

|X
i

,Z
i

, T
i

) is replaced by Var(✏
i

|T
i

). We are still
exploiting the information on Var(✏

i

|T
i

).
Besides, we can replace the three times continuously di↵erentiability with

the twice continuously di↵erentiability and the Hölder continuity of the sec-
ond derivatives of order ↵1, ↵2, and ↵3 in assumptions B(ii), B(iii), and



14 CHENG ET AL.

B(iv), respectively. In this case, the bandwidths in steps 2, 4, and 5 of our
method have to satisfy the condition

p
n(h2+↵1

1 +h2+↵2
2 +h2+↵3

3 ) ! 0. Note
that ↵3 must be positive because step 5 of our procedure requires two-
dimensional smoothing. Then we can prove similar results when 0  ↵1 < 1,
0  ↵2 < 1, and 0 < ↵3 < 1. Specifically, the O

p

(h3
j

) terms in Proposition 4

will be replaced by O
p

(h
2+↵j

j

), j = 1, 2, 3.

Remark 2. In Proposition 2, no assumptions on the structure of the
⌃

i

’s or the conditional normality of the ✏
i

’s is imposed. However, as men-
tioned before it is di�cult to estimate the ⌃

i

’s in a fully nonparametric
way and thus we impose assumption (3.1). On the other hand, when (3.1)
holds, we should use this information in calculating the semiparametric ef-
ficient score function. Unfortunately, under general errors this task seems
intractable and we have no results in this regard. Nevertheless, when (3.1)
and some regularity conditions hold, we come up with some remedies to im-
prove the e�ciency, as compared to using some working covariance struc-
ture. Indeed, b�b⌃ has the smallest asymptotic variance among all b�V in this
case, based on Propositions 1-3, Theorem 1, and the fact that it is an FGLS
estimator. Furthermore, it is semiparametric e�cient when ✏

i

is normally
distributed conditionally on X

i

, Z
i

and T
i

, as discussed in A.1 of [23].

Suppose we use cubic splines in the final spline estimator given in Step
7. Then, under the assumptions in Proposition 4 and assume the minimum
eigenvalue of H22.1 = H22 �H21H

�1
11 H21 is bounded below by Cn/K

n

for
some positive constant C, we can show the following asymptotic normality:

p

n/K
n

 (t)�1/2
�

bg
S

(t)� g0(t)
�

d! N
�

0, I
q

�

,

where  (t) = lim
n!1 nK�1

n

(I
q

⌦ B(t)T )H�1
22.1(Iq ⌦ B(t)). As for the up-

dated local linear estimator given in Step 7, let µ2 =
R

u2K(u)du and
⌫0 =

R

K(u)2du, and suppose the assumptions in Proposition 4 hold and
h1 = Cn�1/5, then we have the following asymptotic normality:

p

N1h1
�

bg
U

(t)� g0(t)�
h21
2
µ2g

00
0(t)

�

d! N
�

0, ⌫0 U

(t)
�

where  
U

(t) = ⇤�1
1 ⇤2⇤

�1
1 , ⇤1 = lim

n!1

1

N1

n

X

i=1

mi
X

j=1

E(Z
ij

ZT

ij

|T
ij

= t)f
ij

(t),

⇤2 = lim
n!1

1

N1

n

X

i=1

mi
X

j=1

E(Z
ij

ZT

ij

|T
ij

= t)f
ij

(t)E(✏2
ij

|T
ij

= t), and f
ij

(t) de-

notes the density of T
ij

.
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4. Numerical studies.

4.1. Simulation study. In our simulation study summarized in this sec-
tion, the data were generated from the following model:

Y
ij

= XT

ij

�0 +ZT

ij

g0(Tij

) + ✏
i

(T
ij

), j = 1, . . . ,m
i

, i = 1, . . . , n,

with the first component of Z
ij

being taken as 1. The number of observation
time points in the ith subject was set as m

i

= m0 + binomial(m
r

, 0.65).
Then the observation time points T

ij

were uniformly distributed over the
interval [(j�1)/(m0+m

r

), j/(m0+m
r

)], j = 1, · · · ,m
i

. We note that when
m

i

= m0 + m
r

, the subject is observed at all follow-up time points; when
m

i

< m0 +m
r

, the subject may be lost to follow up. This setup is intended
to model real and more complicated scenarios that often happen in practice.
We set m0 = 6 and m

r

= 6. We generated the other (p+q�1)�dimensional
covariates from a multivariate Gaussian distribution, and we considered the
following coe�cients settings:

p = 4, q = 4, �0 = (5, 5,�5,�5)T and
g0(t) =

�

3.5 sin(2⇡t), 5(1�t)2, 3.5(exp(�(3t�1)2)+exp(�(4t�3)2))�
1.5, 3.5t1/2

�

T

.

The random error process ✏
i

(t) was simulated from an ARMA(1, 1) Gaussian
process with mean zero and covariance function cov(✏

i

(s), ✏
i

(t)) = !⇢|s�t|.
We set ! = 4.95 and considered ⇢ = 0.4 or 0.8.

We considered two types of working covariance structure: working inde-
pendence covariances and the proposed covariance estimates. For the sake
of comparison, we also considered using the true covariances and using the
covariance estimator with the crude raw residuals obtained from Step 1.

Throughout the numerical studies, following [9], we used cubic splines
and took the spline dimension K

n

as K
n

= b2n1/5c. For the e�cient estima-
tor, h1 and h2 were selected via the commonly used leave-one-subject-out
cross-validation, and the bandwidth h3 was set as h3 = 2h1. We report in
Table 1 the average estimation bias and estimated standard error (SE) ob-
tained from 200 repetitions. The empirical standard errors are very close to
the estimated standard errors and thus are omitted. In general, the e�cient
estimator could yield smaller estimation bias and variance, compared to the
naive estimator assuming working independence. In particular, the standard
error for the e�cient estimator is only 20 ⇠ 50% of that of the working inde-
pendence estimator, indicating a remarkable reduction. In addition, we note
that the e�cient estimator has very similar performance to that of the ora-
cle estimator. Regarding the crude estimator, as it is based on a simplified
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residual construction it produces relatively less accurate covariance estima-
tion. Thus, its estimation bias and standard error are respectively larger
than that for the e�cient estimator.

Table 1
Estimation results of 200 simulations. “Independent” corresponds to Vi = Imi ;

“E�cient” refers to using Vi = b⌃i; “Oracle” refers to using the true ⌃i as Vi; “Crude”
refers to using residuals directly from Step 1 to estimate the covariances.

Independent E�cient Oracle Crude Quadratic
n ⇢ bias SE bias SE bias SE bias SE bias SE

100 0.4 �1 .0214 .0726 .0128 .0366 .0133 .0245 .0165 .0425 .0154 .0421
�2 -.0218 .0727 -.0186 .0362 -.0146 .0251 -.0165 .0442 .0102 .0425
�3 -.0309 .0718 -.0126 .0364 -.0147 .0245 -.0127 .0435 .0095 .0455
�4 .0199 .0736 .0145 .0369 .0132 .0246 .0210 .0438 -.0113 .0398

200 0.4 �1 -.0072 .0525 -.0082 .0247 -.0028 .0176 -.0122 .0337 .0049 .0302
�2 .0088 .0528 .0136 .0226 .0034 .0174 .0115 .0356 .0089 .0345
�3 -.0071 .0526 .0075 .0256 .0112 .0174 -.0146 .0354 -.0076 .0312
�4 .0094 .0525 .0124 .0272 .0132 .0178 -.0204 .0355 -.0075 .0305

100 0.8 �1 .0257 .0723 .0245 .0334 -.0070 .0109 .0347 .033 .0112 .0378
�2 -.0179 .0731 -.0122 .0328 -.0112 .0106 .0436 .0332 -.0109 .0344
�3 .0388 .0729 -.0257 .0335 .0214 .0107 .0279 .0332 -.0179 .0394
�4 -.0193 .0735 .0447 .0334 -.0122 .0108 -.0345 .0326 .0184 .0404

200 0.8 �1 .0173 .0497 .0149 .0194 .0057 .0089 .0144 .0248 .0089 .0250
�2 .0169 .0512 -.0146 .0196 -.0010 .0092 -.0167 .0242 -.0064 .0248
�3 -.0364 .0499 .0145 .0190 .0058 .0090 .0135 .0232 -.0053 .0212
�4 .0289 .0496 -.0139 .0182 -.0035 .0089 -.0222 .0238 .0083 .0196

There are also other existing methods based on estimating equations. We
specifically considered the one based on quadratic inference function (QIF)
[18] in which, to incorporate the longitudinal dependence, the correlation
matrix is approximated using a matrix expansion. We used the same basis
matrices as recommended by [18], i.e., the first order basis matrix with 0 on
the diagonal and 1 o↵-diagonal, which is suitable for unequal cluster sizes
and irregular time points. Any negative eigenvalue was set to zero whenever
it occurred. From Table 1, we notice that this approach is more e�cient
than the estimator assuming working independence but is less e�cient than
our proposed method. The QIF approach indirectly models the correlations
using some matrix approximation while our method directly models the co-
variances. The actual covariance dependence may di↵er from the pattern
suggested by the basis matrices in the quadratic inference function. When
that happens the estimation results using QIF method may be less satisfac-
tory than our nonparametric approach. Therefore our method may incorpo-
rate a more accurate covariance structure in the estimation and thus achieve
better e�ciency. Besides, the covariance of the estimating function depends
on the unknown parameters, and is estimated and integrated in the QIF.
This may decrease the stability in solving the optimization problem.

We next considered the situation where m
i

might diverge for some sub-
jects i. We randomly selected n0 = Cn3/8 subjects such that their observa-
tion points are Bn1/8m

i

equally spaced on [0, 1] and we let the ramaining
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n � n0 subjects to have m
i

observations, where m
i

was generated in the
same way as described above. All the other model settings are identical to
that in the previous simulation studies. For di↵erent values of B and C, we
obtained the results given in Table 2. We notice that all the considered es-
timators improve with relatively smaller biases and smaller standard errors
as compared with the respective bounded m

i

case. The e�cient estimator
still performs much better than the independent estimator in all cases. We
do not report results for the QIF method by [18] here, as it is not tailored
for the case of diverging m

i

and becomes relatively unstable in this case.

Table 2
Estimation results of 200 simulations. “Independent” corresponds to Vi = Imi ;

“E�cient” refers to using Vi = b⌃i; “Oracle” refers to using the true ⌃i as Vi. B adjusts
the diverging mi and C controls the proportion of cases with diverging mi.

B = 1.5,C = 4 Independent E�cient Oracle
n ⇢ bias SE bias SE bias SE

100 0.4 �1 .0182 .0707 .0087 .0361 -.0017 .0204
�2 -.0186 .0717 -.0172 .0329 -.0055 .0205
�3 -.0236 .0702 .0041 .0336 -.0056 .0205
�4 .0100 .0702 -.0034 .0346 .0008 .0205

200 0.4 �1 -.0130 .0517 -.0157 .0228 -.0037 .0153
�2 .0146 .0516 .0177 .0227 .0028 .0151
�3 -.0151 .0512 .0041 .0224 .0011 .0152
�4 -.0076 .0517 .0065 .0229 .0038 .0153

100 0.8 �1 .0181 .0683 -.0175 .0213 .0028 .0102
�2 -.0111 .0682 -.0147 .0203 .0028 .0102
�3 -.0030 .0674 -.0105 .0199 -.0015 .0100
�4 .0260 .0675 .0125 .0208 .0028 .0101

200 0.8 �1 -.0017 .0499 -.0024 .0132 .0014 .0076
�2 -.0005 .0496 .0006 .0129 -.0001 .0076
�3 .0045 .0499 .0041 .0133 .0004 .0076
�4 -.0052 .0496 -.0059 .0130 -.0009 .0075

B = 1.5,C = 4 Independent E�cient Oracle
n ⇢ bias SE bias SE bias SE

100 0.4 �1 .0105 .0710 .0039 .0315 -.0026 .0174
�2 -.0180 .0715 -.0095 .0313 -.0046 .0174
�3 -.0122 .0730 -.0104 .0323 .0010 .0176
�4 .0141 .0707 .0105 .0317 .0034 .0174

200 0.4 �1 -.0085 .0510 -.0060 .0223 -.0036 .0134
�2 -.0066 .0513 -.0062 .0225 -.0018 .0135
�3 .0094 .0510 -.0015 .0225 -.0016 .0136
�4 .0062 .0514 .0001 .0224 .0006 .0137

100 0.8 �1 -.0154 .0703 .0042 .0212 -.0040 .0087
�2 -.0152 .0690 .0028 .0215 .0001 .0087
�3 .0129 .0677 .0044 .0208 -.0002 .0092
�4 -.0076 .0699 -.0032 .0215 .0008 .0088

200 0.8 �1 -.0141 .0489 .0111 .0157 -.0001 .0067
�2 -.0136 .0490 -.0145 .0147 -.0003 .0069
�3 .0058 .0491 .0016 .0142 -.0001 .0069
�4 .0071 .0483 .0041 .0150 -.0001 .0072
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We also conducted additional simulations to examine performance of es-
timation of the nonparametric coe�cients and estimation accuracy of para-
metric coe�cients using modified approaches. For space consideration, we
report the results in the supplement [5].

4.2. Real data example. We now present an application of our method to
the CD4 count data from the AIDS Clinical Trial Group 193A Study [11].
The data came from a randomized, double-blind study of AIDS patients
with CD4 counts of  50 cells/mm3. The patients were randomized to one
of four treatments with roughly equal group sizes; each consisted of a daily
regimen of 600 mg of zidovudine. Treatment 1 is zidovudine alternating
monthly with 400 mg didanosine; Treatment 2 is zidovudine plus 225 mg of
zalcitabine; Treatment 3 is zidovudine plus 400 mg of didanosine; Treatment
4 is a triple therapy consisting of zidovudine plus 400 mg of didanosine plus
400 mg of nevirapine. Measurements of CD4 counts were scheduled to be
collected at baseline and at eight week intervals during the 40 weeks of follow-
up. However, the real observation times were unbalanced due to mistimed
measurements, skipped visits and dropouts. The number of measurements
of CD4 counts during the 40 weeks of follow-up varied from 1 to 9, with a
median of 4. The response variable was taken as the log-transformed CD4
counts, Y =log(CD4 counts + 1). There was also gender and baseline age
information about each patient. A total of 1309 patients were enrolled in the
study. We eliminated the 122 patients who dropped out immediately after
the baseline measurement.

We considered the following available covariates: treatments 2, 3 and 4
(coded by three indicator variables for treatment groups 2, 3 and 4, respec-
tively), age (years), sex (coded as 1 for male and 0 for female), and inter-
action e↵ects between these covariates. Using the group SCAD structure
identification procedure of Cheng et al. (2014), we found that the coe�-
cients for treatment 3, treatment 4 and the interaction between treatment
2 and sex are varying, and the coe�cients given in Table 3 are constants.
The group SCAD procedure also suggested that we remove all the other in-
teraction e↵ects. The estimated varying intercept (i.e. e↵ect of treatment 1)
and the varying coe�cients are displayed in Figure 1 along with 95% confi-
dence intervals. The curves in the figures are updated local linear estimates
without using the covariance function estimates. We used cross validation
to select the bandwidth. The constant coe�cient estimates and their esti-
mated standard errors are provided in Table 3. To facilitate a comparison,
we reported the results using the estimators assuming working independence
and the e�cient estimator proposed in this paper. Let ✓ = (�T ,�T )T and
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U
i

= (X
i

,W
i

). In practice, the variances for the e�cient parameter es-
timates were obtained from the first p diagonal elements of the following

matrix:
⇣

P

n

i=1U
T

i

b⌃�1
i

U
i

⌘�1
, and for the working independence parame-

ter estimates the variances were obtained from the first p diagonal elements

of the following matrix:
⇣

P

n

i=1U
T

i

U
i

⌘�1
P

n

i=1U
T

i

b⌃
i

U
i

⇣

P

n

i=1U
T

i

U
i

⌘�1
.

Table 3
Estimation results for CD4 count data. “Independent” corresponds to using Vi = Imi ;

“E�cient” refers to using Vi = b⌃i; “Quadratic” refers to the QIF based method.

Independent E�cient Quadratic
Covariates Coe�cients SE Coe�cients SE Coe�cients SE

treatment 2 .3614 .2257 .4038 .2027 .3532 .1318
age .0946 .0274 .0818 .0245 .0882 .0171
sex .1704 .1768 .2246 .1587 .1187 .1034

treatment 3:sex -.2922 .2472 -.2908 .2209 -.2625 .2485
treatment 4:sex -.5321 .2416 -.5653 .2146 -.5580 .1574
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Fig 1. Estimated varying-coe�cients along with 95% confidence intervals for the intercept
(upper left), treatment 3 (upper right), treatment 4 (lower left), and interaction between
treatment 2 and sex (lower right). The red curves are e�cient estimators while the green
curves are estimators obtained under working independence.

From Table 3, we note that the estimated constant coe�cients for treat-
ment 2, age, and the interaction between treatment 4 and sex are all quite
significant. The constant coe�cient estimates for sex are not significant but
are still kept in the model since we include the interactions between treat-
ments and sex. The e�cient estimates for all the constant and varying coef-
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Fig 2. Estimated treatment e↵ects for the four treatment groups. The panels in the top,
middle and bottom rows are respectively the proposed e�cient estimates, the estimates
assuming independence and the estimates based on the QIF method. The panels in the
left and right columns are respectively for the females and the males. Red, green, blue and
yellow curves are for treatment groups 1, 2, 3 and 4, respectively.

ficients have smaller standard errors than the respective estimates assuming
working independence. In fact, the Wald test statistic for the coe�cient of
treatment 2 is .3614/.2257 = 1.60 < 1.96 under the working independence,
failing to declare a significant di↵erence. On the other hand, the Wald test
statistic for the same coe�cient is .4038/.2027 = 1.99 > 1.96 from the ef-
ficient estimation, leading to a significant treatment di↵erence. Other than
these, because the sample size in this study was rather large, the two types
of estimates for all the constant and varying coe�cients appear to be very
similar. For the sake of comparison, we also present the estimation results
for these regression coe�cients from the estimating equation methods based
on the QIF method [18]. The conclusions on the estimation significance and
e↵ect direction remain the same as for the e�cient estimation while the
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magnitude of the estimated coe�cients slightly di↵ers. For this particular
dataset, sometimes the QIF estimator seems to have smaller standard error
than the e�cient estimator. An explanation is that it choses a covariance
structure like compound symmetry in the matrix basis, thus it will be more
e�cient than our estimator when this structure is plausible (which is possi-
bly the case here). Otherwise, it is generally not as good when the covariance
structure is mis-specified.

In general, the CD4 count tends to increase with age in the fitted model.
Our estimation results suggest that there exist interaction e↵ects between
treatment and sex. Specifically, for the females (sex=0), subjects receiving
treatments 2, 3 and 4 tend to have increasingly higher CD4 counts than those
under treatment 1. The e↵ect for treatment 2 (as compared with treatment
1) is estimated as a constant and is significant, while those for the other two
treatment groups are varying (the upper right and the lower left panels in
Figure 1) with even greater positive di↵erences from treatment 1. For the
males (sex=1), subjects receiving treatments 2, 3 and 4 also tend to have
higher mean CD4 counts than those receiving treatment 1. The interaction
between treatment 2 and sex is varying over time (the lower right panel
in Figure 1) while those for treatments 3 and 4 are constant. The e↵ects
of treatments 3 and 4 are significantly di↵erent from that of treatment 1,
judging from Table 3. Also, we notice that the di↵erences between treatments
seem to be greater between the females than between the males.

The estimated e↵ects of the four treatment groups are plotted in Figure
2 for the e�cient estimator, the working independence estimator and the
QIF estimator. Note that treatment e↵ects given by the e�cient estimator
rarely cross each other, giving nice interpretation and ordering of the dif-
ferent treatments, whereas this is not the case for those given by the QIF
or the working independence estimator. Previous authors identified a simi-
lar pattern on the order of magnitude of the time-varying treatment e↵ects
[14]. However, they ignored the interactions between the treatments and sex.
Our findings suggest the treatment e↵ect curves might be rather di↵erent
between the males and the females.

5. Proofs of the main results.

5.1. Additional assumptions and definitions. We denote the Euclidean
norm of a vector a by |a|. Let �min(A) and �max(A) stand for the minimum
and maximum eigenvalues of a symmetric matrix A, respectively. Besides,
C, C1, C2, . . . are generic positive constants whose values may vary from
line to line. Recall that the density function of T

ij

is denoted by by f
ij

(t),
i = 1, . . . , n and j = 1, · · · ,m

i

. Also, we denote the joint density func-
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tion of T
ij

and T
ij

0 (j 6= j0) by f
ijj

0(s, t). In Assumptions A1 and A2, we
consider sparse and irregular observation times. Note that we carry out
two-dimensional smoothing in step 5 and there are three bandwidths in-
volved in our method. Therefore we impose these restrictive assumptions
to avoid complicated assumptions involving m

i

, mmax, and the bandwidths
simultaneously. Roughly speaking, these assumptions imply we should have
P

n

i=1m
5
i

= O(n).

Assumption A1. For some positive constant C
A1, we have

mmax ⌘ max1in

m
i

= O(n1/8) and
P

n

i=1mi

< C
A1n.

Assumption A2. The joint density functions f
ij

(t) and f
ijj

0(s, t) are uni-
formly bounded and we have for some positive constant C

A2,

1

C
A2

<
1

n

n

X

i=1

1

m
i

mi
X

j=1

f
ij

(t)  1

n

n

X

i=1

m4
i

mi
X

j=1

f
ij

(t) < C
A2 on [0, 1], and

1

C
A2

<
1

n

n

X

i=1

X

j 6=j

0

f
ijj

0(s, t)  1

n

n

X

i=1

m3
i

X

j 6=j

0

f
ijj

0(s, t) < C
A2 on [0, 1]2.

Assumption A3. For some positive constants C
A3 and C

A4, we have

C
A3Ip+q

 E

⇢✓

X
ij

XT

ij

X
ij

ZT

ij

Z
ij

XT

ij

Z
ij

ZT

ij

◆

�

�

�

�

T
ij

�

 C
A4Ip+q

, uniformly in i and j.

Assumption A4. For some positive constants C
A5 and C

A6, we have
C
A5  �min(⌃i

)  �max(⌃i

)  C
A6mi

, uniformly in i.
Assumption A5. For some positive constants C

A7 and C
A8, we have

C
A7  �min(Vi

)  �max(Vi

)  C
A8mi

, uniformly in i.
Assumption A6. For some positive constants C

A9 and C
A10, we have

E{exp(C
A9|✏ij |) |X

i

,Z
i

, T
i

} < C
A10 , uniformly in i and j.

Assumption A3 is a standard one and is necessary for identification of the
constant coe�cients and the varying coe�cient functions. When ✏

i

consists
of some stochastic process and i.i.d. errors, we have ⌃i = ⌅(T

i

) + ⌘2I
mi ,

where ⌅(T
i

) is positive definite. Hence we impose Assumptions A4 and A5
on V

i

and ⌃
i

, respectively. In [4], it is assumed that ✏
i

has the sub-Gaussian
property in order to deal with general link functions. The sub-Gaussian
assumption prevents m

i

from tending to infinity. Assumption A6, which is
less restrictive, is enough for the identity link function since we do not need
to employ any results from the empirical process theory in this case.

For g = (g1, . . . , gq)T 2 G, we define the sup and L2 norms by kgk
G,1 =

P

q

j=1 supt2[0,1] |gj(t)| and kgk2
G,2 =

P

q

j=1

R 1
0 g2

j

(t)dt. Assumptions A2 and
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A3 imply there are positive constants C1 and C2 such that

(5.1) C1kgkG,2  kZTgkV  C2kgkG,2

for any g 2 G. The details are given in Lemma 1. In (2.3), we define two
kinds of projections of X

k

. We define another one here:

(5.2) b'V k

= b⇧V n

X
k

= argmin
g2GB

kX
k

�ZTgkV
n

.

5.2. Spline approximation and projections. Recall we assume all the rel-
evant functions are at least twice continuously di↵erentiable and they and
their second order derivatives are uniformly bounded. Hence the sup norm of
approximation errors by spline functions is bounded from above by C

approx

K�2
n

,
where C

approx

depends on the relevant functions. See Corollary 6.26 of [19].
Note that h·, ·iV and k · kV are defined on {v |

P

i,j

E(v2
ij

) < 1} and that

{ZTg} is a closed linear subspace due to (5.1). Therefore the projections
'⇤

V k

= ('⇤
V k1, . . . ,'

⇤
V kq

)T , k = 1, . . . , p, exist uniquely. Next, we set V �1
i

=

(vj1j2
i

). Note that '⇤
V k

= ⇧V X
k

defined in (2.3) satisfies

hX
k

�ZT⇧V X
k

,ZTgiV = 0 8g 2 G .

By representing the above equality explicitly, we can derive the following
integral equations for '⇤

V k

(t). For d1 = 1, . . . , q,

(5.3)
q

X

d2=1

a
(d1)
d2

(t)'⇤
V kd2

(t) = b(d1)(t) +

Z 1

0

q

X

d2=1

c
(d1)
d2

(s, t)'⇤
V kd2

(s)ds,

where

a
(d1)
d2

(t) =
1

n

n

X

i=1

mi
X

j=1

E{Z
ijd2v

jj

i

Z
ijd1 |Tij

= t}f
ij

(t),

b(d1)(t) =
1

n

n

X

i=1

X

1j1,j2mi

E{X
ij1kv

j1j2
i

Z
ij2d1 |Tij2 = t}f

ij2(t),

c
(d1)
d2

(s, t) = � 1

n

n

X

i=1

X

j1 6=j2

E{Z
ij1d2v

j1j2
i

Z
ij2d1 |Tij1 = s, T

ij2 = t}f
ij1j2(s, t).

Let A(t) be the q ⇥ q matrix whose (d1, d2)th element is a
(d1)
d2

(t). Assump-
tions A2 and A3 imply that |A(t)| 6= 0 on [0, 1] and we set  ⇤

V kd1
(t) =

P

q

d2=1 a
(d1)
d2

(t)'⇤
V kd2

(t). Then (5.3) reduces to (S.2) of [3] and the same ar-
gument there applies. Therefore '⇤

V k

(t) has the required smoothness prop-
erties under similar regularity conditions.
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5.3. Remarks on the proofs of Propositions 1–3. We can proceed as in
[13] (and [3]) by replacing Z

ij

, Z
i

, and '⇤
k

(t) in [13] (and Z
ij

, Z
i

, and '⇤
k

(t) in
[3]) with W

ij

, W
i

, and ZT'⇤
V k

(t), respectively. They used several lemmas
in their proofs. We reorganize the corresponding lemmas in our setup into
Lemma 1 given in the following. Its proof and outlines of the proofs of
Propositions 1-3 are given in the supplement [5].

Lemma 1. Assume that Assumptions A1-5 hold.

(i) There are positive constants C1 and C2 such that for any g 2 G,
C1kgkG,2  kZTgkV  C2kgkG,2 .

(ii) There are positive constants C3 and C4 such that for any g 2 G
B

,
kgk2

G,1  C3Kn

kgk2
G,2  C4Kn

(kZTgkV )2 .
(iii) There is a positive constant C5 such that for any � 2 Rp and g 2 G

B

,

kXT�+ZTgk1  C5K
1/2
n

kXT�+ZTgkV , where kvk1 = max
i,j

|v
ij

|.
Besides, for some positive constant C6, kvkV  C6kvk1.

(iv)

sup
g1,g22GB

�

�

�

hZTg1,Z
Tg2iV

n

� hZTg1,Z
Tg2iV

kZTg1kV kZTg2kV
�

�

�

= O
p

(K
n

p

log n/n).

(v) For any positive constant M , we have hX
j

� ZTg
j

, X
k

� ZTg
k

iV
n

�
hX

j

�ZTg
j

, X
k

�ZTg
k

iV = o
p

(1) uniformly in g
j

2 G
B

and g
k

2 G
B

satisfying kg
j

k
G,2  M and kg

k

k
G,2  M .

(vi) For any process �
n

taking scalar values at T
ij

such that k�
n

k1 is uni-
formly bounded in n and {�

n,ij

}mi
j=1 are mutually independent in i,

sup
g2GB

�

�

�

h�
n

,ZTgiV
n

� h�
n

,ZTgiV

kZTgkV
�

�

�

= O
p

(
p

K
n

/n)k�
n

k1.

(vii) We also suppose Assumption S holds. Then for k = 1, . . . , p, k b'V k

k1 =
O

p

(1), kZT ('⇤
V k

� b'V k

)kV
n

= o
p

(1), and kZT ('⇤
V k

� b'V k

)kV = o
p

(1).

5.4. Proof of Theorem 1. Since we consider the identity link function,
we have explicit expressions of b�⌃ � �0 and b�b⌃ � �0:

b�⌃ � �0 =H11
n

X

i=1

(X
i

�W
i

H�1
22 H21)

T⌃�1
i

✏
i

(5.4)

�H11
n

X

i=1

(X
i

�W
i

H�1
22 H21)

T⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)

=I1 � I2 (say),
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b�b⌃ � �0 =cH
11

n

X

i=1

(X
i

�W
i

cH�1
22
cH21)

T

b⌃�1
i

✏
i

(5.5)

� cH11
n

X

i=1

(X
i

�W
i

cH�1
22
cH21)

T

b⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)

=bI1 � bI2 (say),

where cH11, cH22 and cH21 are defined as in (2.4) with V
i

= b⌃
i

, i = 1, . . . , n,
and �⇤ = (�⇤T

1 , . . . ,�⇤T
q

)T satisfies |BT (t)�⇤
j

�g0j(t)|  C
g

K�2
n

, j = 1, . . . , q,
for some positive constant C

g

depending on g0(t). Proposition 4 and As-

sumption A4 imply that with probability tending to 1, C1Imi  b⌃
i


C2mi

I
mi uniformly in i for some positive constants C1 and C2. As for b⌃�1

i

,

b⌃�1
i

�⌃�1
i

= b⌃�1
i

(⌃
i

� b⌃
i

)⌃�1
i

= ⌃�1
i

(⌃
i

� b⌃
i

)⌃�1
i

+ b⌃�1
i

(⌃
i

� b⌃
i

)⌃�1
i

(⌃
i

� b⌃
i

)⌃�1
i

.

It follows from Proposition 4, Assumption A4, and the above identity that

(5.6) b⌃�1
i

�⌃�1
i

= ⌃�1
i

(⌃
i

� b⌃
i

)⌃�1
i

+m2
i

O
p

⇣

h42 + h43 +
log n

nh2
+

log n

nh23

⌘

.

The last term in the right-hand side of (5.6) is in the sense of eigenvalue
evaluation. By using Assumption A4 and Proposition 4, we get an expres-
sion of each element of ⌃�1

i

(⌃
i

� b⌃
i

)⌃�1
i

. This expression, along with the
assumptions for Theorem 1 and the local property of the B-spline basis, will
be employed in the proofs of the following lemmas. These lemmas are needed
in order to evaluate bI1� I1 and their proofs are given in the supplement [5].

Lemma 2. Assume the same conditions as in Theorem 1. Let h12,kl and
bh12,kl be the (k, l) element of H12 and cH12, respectively. Then we have uni-
formly in k and l,

1

n
h12,kl = O

p

(K�1
n

),
1

n
(h12,kl � bh12,kl) = K�1

n

O
p

⇣

h22 + h23 +

r

log n

nh2
+

s

log n

nh23

⌘

,

n

qKn
X

l=1

(n�1h12,kl)
2
o1/2

= O
p

(K�1/2
n

),

h

qKn
X

l=1

{n�1(h12,kl � bh12,kl)}2
i1/2

= K�1/2
n

O
p

⇣

h22 + h23 +

r

log n

nh2
+

s

log n

nh23

⌘

.
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Lemma 3. Assume the same conditions as in Theorem 1. Then, with
probability tending to 1, C1K

�1
n

 �min(n�1H22)  �max(n�1H22)  C2K
�1
n

for some positive constants C1 and C2. We also have

max
�

|�min(n
�1(cH22 �H22))|, |�max(n

�1(cH22 �H22))|
 

= K�1
n

O
p

⇣

h22 + h23 +
p

log n/(nh2) +
q

log n/(nh23)
⌘

.

Hence we have max
�

|�min(n�1
cH22)|, |�max(n�1

cH22)|
 

= O
p

(K�1
n

) and

max
�

|�min((n�1
cH22)�1�(n�1H22)�1)|, |�max((n�1

cH22)�1�(n�1H22)�1)|
 

is also bounded from above by K
n

O
p

⇣

h22+h23+
p

log n/(nh2)+
p

log n/(nh23)
⌘

.

Lemma 4. Under the same conditions as in Theorem 1, we have 1
n

cH11 =
1
n

H11 + o
p

(1) and 1
n

cH12

�

1
n

cH22

��1 1
n

cH21 = 1
n

H12

�

1
n

H22

��1 1
n

H21 + o
p

(1),
where o

p

(1) means both componentwise and in the meaning of eigenvalue

evaluation. Hence we have ncH11 = nH11 + o
p

(1).

Lemma 5. Assume the same conditions as in Theorem 1. Then we have
for some positive constants C1 and C2,

C1
Kn

I
qKn  cov

⇣

1p
n

P

n

i=1W
T

i

⌃�1
i

✏
i

⌘


C2
Kn

I
qKn . In addition we have

�

�

�

1p
n

n

X

i=1

W T

i

(b⌃�1
i

�⌃�1
i

)✏
i

�

�

�

=

r

n

K
n

O
p

⇣ log n

nh1
+

log n

nh2
+

log n

nh23

⌘

+

r

n

K
n

O
p

(h31 + h32 + h33)

+O
p

(h22 + h23) +O
p

⇣ 1p
nh2

+
1

p

nh23
+

1p
nK

n

h2
+

1p
nK

n

h23

⌘

.

Lemma 6. Assume the same conditions as in Theorem 1. Then we have
for some positive constants C1 and C2, C1Ip  cov

⇣

1p
n

P

n

i=1X
T

i

⌃�1
i

✏
i

⌘


C2Ip. In addition we have

�

�

�

1p
n

n

X

i=1

XT

i

(b⌃�1
i

�⌃�1
i

)✏
i

�

�

�

=
p
nO

p

⇣ log n

nh1
+

log n

nh2
+

log n

nh23

⌘

+
p
nO

p

(h31 + h32 + h33)

+O
p

(h22 + h23) +O
p

⇣

1/(
p
nh2) + 1/(

p
nh23)

⌘

.
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Now we prove that bI1 � I1 = o
p

(n�1/2). Write

I1 = H11
n

X

i=1

XT

i

⌃�1
i

✏
i

�H11H12H
�1
22

n

X

i=1

W T

i

⌃�1
i

✏
i

= H11(I11�I12) (say).

We define bI11 and bI12 similarly. From Proposition 1 and Lemma 4, we have
only to prove

(5.7)
1p
n
(bI11 � I11) = o

p

(1) and
1p
n
(bI12 � I12) = o

p

(1).

The former result in (5.7) can be handled in the same way as the latter and
we consider only the latter. Write

1p
n
(bI12 � I12) =

1

n
cH12

� 1

n
cH22

��1 1p
n

n

X

i=1

W T

i

(b⌃�1
i

�⌃�1
i

)✏
i

+
1

n
cH12

�� 1

n
cH22

��1 �
� 1

n
H22

��1 1p
n

n

X

i=1

W T

i

⌃�1
i

✏
i

+
� 1

n
cH12 �

1

n
H12

�� 1

n
H22

��1 1p
n

n

X

i=1

W T

i

⌃�1
i

✏
i

= DI
(1)
12 +DI

(2)
12 +DI

(3)
12 (say).

Lemmas 2, 3, and 5 imply

DI
(1)
12 =

p
nO

p

⇣ log n

nh1
+

log n

nh2
+

log n

nh23

⌘

+
p
nO

p

(h31 + h32 + h33)

+
p

K
n

O
p

⇣ 1p
nh2

+
1

p

nh23
+

1p
nK

n

h2
+

1p
nK

n

h23

⌘

+
p

K
n

O
p

(h22 + h23) = o
p

(1),

DI
(j)
12 =

p

K
n

O
p

⇣

h22 + h23 +
p

log n/(nh2) +
q

log n/(nh23)
⌘

= o
p

(1), j = 2, 3.

Hence we have established

(5.8) bI1 � I1 = o
p

(n�1/2).

Next we deal with bI2 � I2 and two more lemmas are necessary.
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Lemma 7. Under the same conditions as in Theorem 1,

�

�

�

1p
n

n

X

i=1

W T

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)
�

�

�

= O
p

(
p
nK�5/2

n

), and

�

�

�

1p
n

n

X

i=1

W T

i

(b⌃�1
i

�⌃�1
i

)(W
i

�⇤ � (ZTg0)
i

)
�

�

�

=
p
nK�5/2

n

O
p

⇣

h22 + h23 +
p

log n/(nh2) +
q

log n/(nh23)
⌘

.

Lemma 8. Under the same conditions as in Theorem 1,

�

�

�

1p
n

n

X

i=1

XT

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)
�

�

�

= O
p

(
p
nK�2

n

) and

�

�

�

1p
n

n

X

i=1

XT

i

(b⌃�1
i

�⌃�1
i

)(W
i

�⇤ � (ZTg0)
i

)
�

�

�

=
p
nK�2

n

O
p

⇣

h22 + h23 +
p

log n/(nh2) +
p

log n/(nh23)
⌘

.

Now we can show that bI2 � I2 = o
p

(n�1/2). Write

I2 =H11
n

X

i=1

XT

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)�H11H12H
�1
22

n

X

i=1

W T

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)

=H11(I21 � I22) (say).

We define bI21 and bI22 similarly and write bI2 = cH11(bI21� bI22). From Proposi-
tion 1 and Lemma 4, we have only to prove 1p

n

(bI21�I21) = o
p

(1) and 1p
n

(bI22�
I22) = o

p

(1). The former result in the above can be handled in the same way
as the latter and we consider only the latter. Write

1p
n
(bI22 � I22) =

1

n
cH12

⇣ 1

n
cH22

⌘�1 1p
n

n

X

i=1

W T

i

(b⌃�1
i

�⌃�1
i

)(W
i

�⇤ � (ZTg0)
i

)

+
1

n
cH12

n⇣ 1

n
cH22

⌘�1
�
⇣ 1

n
H22

⌘�1o 1p
n

n

X

i=1

W T

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

)

+
⇣ 1

n
cH12 �

1

n
H12

⌘⇣ 1

n
H22

⌘�1 1p
n

n

X

i=1

W T

i

⌃�1
i

(W
i

�⇤ � (ZTg0)
i

).

= DI
(1)
22 +DI

(2)
22 +DI

(3)
22 (say)
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Lemmas 2, 3, and 7 imply, for j = 1, 2, 3,

DI
(j)
22 =

p
nK�2

n

O
p

⇣

h22 + h23 +
p

log n/(nh2) +
q

log n/(nh23)
⌘

= o
p

(1).

Hence we have established bI2 � I2 = o
p

(n�1/2). The desired result follows
from (5.4), (5.5), (5.8) and the above result.
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