Topology of the Lyubich-Minsky Laminations for Quadratic Maps: Deformation and Rigidity (2nd lecture)

10-12 decembre 2008 Jussieu, Paris

Nagoya Univ. / LATP CMI Tomoki KAWAHIRA

The Riemann Surface Laminations Constructions/Examples II: Lyubich-Minsky C-laminations

Abstruct of Today's Talk

Natural Extension

"Regular" Backward Orbits

Regular Part

Ex: Backward orbits in a repelling cycle: \mathcal{R}_f regular pt. in an attracting or parabolic cycle: $\mathcal{N}_f - \mathcal{R}_f$ irregular pt.

Fact 1: The regular part \mathcal{R}_f is a "rough" Riem. surf. lamin.

 \overbrace{f}

Fact 3: The action $\hat{f} \curvearrowright \mathcal{R}_f$ is a leafwise conformal homeo.

Affine Part: C-lamination

Definition: For future 3D extension (" $\mathbb{C} \to \mathbb{H}^3$ ") we denote the union of leaves $\simeq \mathbb{C}$ by \mathcal{A}_f , and call it the affine part.

Ex: Backward orbits in a repelling cycle are in \mathcal{A}_f .

Proposition(Lyubich-Minsky):

If f is critically non-recurrent, then

$$\mathcal{R}_f = \mathcal{A}_f = \mathcal{N}_f -$$

cyclic backward orbits in attracting/parabolic cycles

Deformation and Rigidity of L-M Affine Parts (C-laminations)

Deformation of Hyperbolic Maps

A rational map f is called *Hyperbolic* if all critical points are attracted to attracting cycles.

Consider a perturbation of Hyperbolic f in the space of rational functions of the same degree >1.

Fact: For small enough perturbation f_{ϵ} of f, the dynamics near the Julia sets are quasiconformally the same. (**NOT** globally conjugate, because of superattracting cycles!)

Stable dynamics implies stable topology:

Theorem(K): For small enough perturbation f_{ϵ} of f, the affine parts \mathcal{A}_f and $\mathcal{A}_{f_{\epsilon}}$ are quasiconformally homeomorphic. (No matter how many superattracting cycles are!)

Quadratic Maps: Cabrera's Theorem

♦ Let $f_c z = z^2 + c$ and $f_{c'} z = z^2 + c'$ be hyperbolic quadratic maps. If *c* and *c'* are in the same hyperbolic component of the Mandelbrot set, then we have $A_c \approx A_{c'}$ (qc homeo) by previous **Theorem (K)**. As we expect, the converse is true:

Topology determines the holomorphic dynamics!

Theorem(Cabrera): If there exists an orientation preserving homeo. between A_c and $A_{c'}$, c and c' must be in the same hyperbolic component. **Cor 1:** These laminations are actually qc homeo.

Cor 2: If they have superattracting cycles, c = c'.

Cf. Mostow's Rigidity: If two complete finite volume hyperbolic 3-manifolds are homeomorphic, then they are isometrically homeo. (hence are quotients of conformally the same Kleinian groups).

Topology and Rigidity of LM's C-lamination for infinitely renormalizable quadratic maps

Quadratic-like maps / Straightening

A Quadratic-like map $g: U \to V$ is a proper holo. branched covering of degree 2, like this:

A technical assumption: The critical orbit never goes out by iteration (This implies the connected filled Julia set.)

Solution By Douady-Hubbard's Straightening Map, we may regard the Q-like map $g: U \to V$ as a deformed image of a quadratic map $z^2 + c$ with uniquely determined c = c(g).

Renormalization | Combinatorics

A Q-like map $g: U \to V$ is *renormalizable* if there exists "sub-Q-like map" $g_1 = g^m | U_1 \to V_1$ like this:

Infinite Renormalization

A quad. map $f_c(z) = z^2 + c$ is *infinitely renormalizable* if there exist "nested-Q-like maps" $\{g_n : U_n \mapsto V_n\}_{n>0}$ like this: $\begin{cases} g_0 = f_c : \mathbb{C} \to \mathbb{C} \\ g_{n+1} = g_n^{m_n} | U_{n+1} \\ \end{cases} \text{ :renormaliazation with } m_n \ge 2 \end{cases}$

The sequence of superattracting parameters $\sigma(c) = (s_0, s_1, \ldots)$ given by $s_n = s(g_n, g_{n+1})$ is called the *combinarotics* of c or $f_c(z) = z^2 + c$.

Question (Combinatorial Rigidity):

$$\sigma(c) = \sigma(c') \implies c = c' ?$$

(Comb. Rigidity \iff MLC \implies Hyperbolic Density)

Rigidity of Combinatorics

An infinitely renormalizable $f_c(z) = z^2 + c$ has *a priori* bounds when each level of the renormalization is separated by a definite size (modulus) of annulus:

Proposition (Kaimanovich-Lyubich):

 f_c has a priori bounds $\implies \mathcal{R}_c = \mathcal{A}_c$ (C-lamination)

Topology of lamin. determines the combinatorics:

Theorem(Cabrera-K): If f_c and $f_{c'}$ have a priori bounds then: $\mathcal{A}_c \approx \mathcal{A}_{c'}$ (homeo.) $\implies \sigma(c) = \sigma(c')$ **Cor:** Plus, MLC at $c \implies c = c'$

Structure Theorem

For the proof, we use the following theorem:

 $\begin{aligned} & \textbf{Structure Theorem(C-K):} \ \ \textit{For infinitely renormalizable } f_c \\ & \textit{with combinatorics } \sigma(c) = (s_0, s_1, \ldots) \text{, its natural extension} \\ & \textit{supports a decomposion by blocks } \{\mathcal{B}_{n,i}\} \text{ and } \{\mathcal{W}_n \text{ }_j\} \text{ as} \\ & \textit{follows:} \ \ \mathcal{B}_{n,i} \approx \mathcal{A}_{s_n} \text{,} \\ & \mathcal{W}_{n,j} \approx \varprojlim(\mathbb{C}, f_{c(g_n)}) \text{,} \quad \partial \mathcal{W}_{n,j} \approx \varprojlim(\mathbb{S}^1, f_0) \\ & \mathcal{N}_c = \left(\bigsqcup_{0 \leq n \leq N} \bigsqcup_{1 \leq i \leq p_n} \overline{\mathcal{B}_{n,i}}\right) \sqcup \left(\bigsqcup_{1 \leq j \leq p_{N+1}} \mathcal{W}_{N+1,j}\right) \text{ for any } N \geq 0 \end{aligned}$

