Topology of the Lyubich-Minsky
Laminations
for Quadratic Maps:
Deformation and Rigidity
(3rd lecture)
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Abstruct of Today's Talk

0 Rational map: f : C — C, deg f > 2

Kleinian Group
I'~C
holo. group action

Poincare Extension

[ ~ H?

isometric gr. action
properly discontinuous

Quotient by the Action

M =H3/T
hyperbolic 3-manifold
lorbifold

f~C
holo. dynam.

C-Lamination f A
: cyclic group action

Extension in the "universal setting” l

3 . - .
H"-Lamination | f~H;

leafwise isometric gr. action
properly discontinuous

Quotient by the Action
Quotient Lamination |
Mp=Hs/f

hyp. 3-orbifold lamination




Abstruct of Today's Talk

'~ C f(z)=22C
Fuchsian group Symmetric quadratic map
Deformation i Deformation i
"'~ C fo(z)=224cnC
Quasi-Fuchsian group Quadratic map
(on a Bers slice) (on the Mandelbrot set)

> We will compare them in terms of the quotient manfold
M = H?/T" and the quotient lamination M ; = H/ f
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Recall: Natural Extension
Q Rational map: f : C — C, deg f > 2

”~

® A * "
<_ <_ o h. S\ \1
g ! g ! g / g
20 <1 Z_9

z_3  backward orbits

anverse limit: im(C, f) :{ 2= (20,2-1,...)" 20 €, }
N fz—n — Z—n+1
CCxCx--- natural extension
0 Natural lifted action: f NNy = lim(@, f)
right shift f2 = (fzo, f2-1,...) = (fz0, 20, -..)
left shift Fl2:=(2_1,2_9,...) PN
projection 7T_n(2) = Z_n

semiconj. l T—n

fmé




Recall: Regular Part

0 Definition: A backward orbit 2 = (29, 2_1,...) is regular if
there exists a nbd. UO of Zo st

@«—@«—@«—@«—@«—@

Uo

eventually univalent

< Definition: The set of regular backward orbits in Ny = lim(C, f)
is called the regular part 'R ;.

0 (Fact 1: The regular part Rf Is a "rough” Riem. surf. lamin.

Fact 2: The leaves are ~ C, D, or annuli (only Herman rings).
In particular, any leaf ~ C is dense in j\/f .

Fact 3: The action [ ™ Rf IS a leafwise conformal homeo




Recall: Affine Part (C-lamination)

0 Definition: The affine part A¢ is the union of leaves >~ C .

0 Ex: When fz = 22, we have " C-lamination"
Ry = Nf _ {6760} — @(C*,f) = .Af

()

fA leaf
% uniformization
J

Y

T

2 2

S

T_n\ Semiconjugacy

)

* univ. covering = exp.
f N C :meromorphic
Z—n 7 Z_nt1 Sl



Embedding to the Univsersal Setting

Note: This part is a brief summary of what I explained with
a black board.

1. We want to embedd A’} (n of the “natural” extension) to a "universal” space.
2. Fix 2 € A%}. Then 3L = L(2) a leaf containing Z.
3. 3¢ : C — L, a uniformization with ¢(0) = Z.
4. Set p_,, == m_,0¢ : C — C, a family of meromorphic functions with
fotv_p =v%_nt1 = forp_n,(0)=v_p11(0) <= fz_pn =2 _pni1.

5. Let U be the space of non-constant meromorphic functions on C (with topology given by

the uniform convergence on the compact sets).

6. Then our rational map f acts on U by post-composition f : 9 +— f o).

7.%tU =UxXxUxX---. Now 2 € A% determines an element @@ = (Yo,Y_1,---) € U with
¥(0) = (20,2-1,"+) € A}.
8. But such a ¢ is not unique: If 6y (w) = Aw (A # 0), 1) o 8, has the same property.

~

9. An equivalent relation in U : 1@ ~ 4 1 iff there exists A =# 0 and ) = @3’ o dy.

10. Now we have an emmbedding map ¢ : 2 — [)] € U/ ~ 4.
11. Set Ay :=1(A%) C U/ ~ 4. This is the Lyubich-Minsky C-lamination.




3D Extention and Taking Quotient

Note: This part is a brief summary of what I explained with
a black board.
12 A leaf A; containing ¢(2) = [{)] is L(2) := {[zﬁ oTy] : To(w) =w+a,a € @}.
13 To have 3-dimensional extension of this leaf, we consider the following equivalent relation:
W~y ) <= Je with |e| =1 and ¢ =9’ 0 6.
14 The meaning of this equivalent relation is the following: For given @Z € U, we consider a family of pre-
composition by an affine map w — a + \w. i.e., {@Z oTyo0dy : (a,\) € Cx (C*}. The equivalent relation

~ 4 kills the effect of A € C*, and the remaining freedom a € C gives the C-leaves in Z;l/ ~ 4. Similarly,
~ kills the effect of € € S!, and the remaining freedom (a, |\|) € C x R, gives the H3-leaves in U/ ~s.

15 Now we have a natural projection pr : U/ ~y— U/ ~ 4 like a projection from H? over C. The Lyubich-
Minsky H?-lamination is H := pr—!(Ay).

16 U admitts a homeomorphic action f ~ U by f : (Y_n)n>0 — (f—_n)n>0. Hy has an induced action
fm H and this is properly discontinuous. We set M, := Hf/f. This is the quotient lamination.

17 The C-lamination A ¢ supports the Fatou-Julia decompotion Ay = F¢UJy that comes from the Fatou-Julia
decompotion C = Fy U Js. Now f F is also properly discontinuously so the quotient OM ¢ := ]:f/f

forms a Riemann surfac lamination. This lamination is called the conformal boundary of M.

18 We call the union /\/Tf = My UOMy the Kleinian lamination, after " Kleinian manifolds” for hyperbolic
3-manifolds.
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Example of Kleinian Lamination
Q /=22 B=r1(C-D) D=7'D), T=7""(s"

3 fB ,S:B/f

Sullivan’s Solenoid

quotient
J Julia set —$ M
fAD , S=DJf

mirror image

H :flamination inside Hyp. 3- lamin. with product str.

@ Analogy to Fuchsian group:

Ay I'vH uotient 3 S =H/I
q—) . )

hyperbolic surface

Y

St Limit set )M =1’/ F(
T ST

5 mirror image -
H inside Hyp. 3-mfd. with product str. 10




Quasi-Fuchsian deformation
‘ Let us look the action of 1" though a special gc-lens:

conformal on the upper half

T'e o W
5
o n-

— ' gc-LENS p_

()F’:¢ofoq5_1

, Bers' Theorem: B B
Set S = H/T. Then V[S'] € Teigh(S), 3¢ : C — C qc

o Qb fixes O, 1, O “"Bers ?Iice"

: N Y
e ¢|H is conformal Teigh(S) | (gyi—|— T’
o ["=0¢ol o¢p~!is Kleinian )

e S =¢(H)/T" and §'= ¢(H")/T" T

11




The Mandelbrot Set

‘ The deformation of foz = 2% in the Mandelbrot set M is similar:

‘ Fact: Forany f.z = 2%+ c with c € M, the dynamics on the

basin at infitnity is conformally conjugate to that of foz = 22,

.2
foz = 72 conformal on the upper half Jez=2"+c

.L

S B/f \

Sullivan’s Solenoid )

g _D A Deformation! LY —
) mirror iméfe " ’



The Rabbits

f3
superattracting
f2
attracting
<

f1 g
attracting parabolic

superattracting




Suparattracting -- Attracting

‘ Dynamics near the Julia sets are stable.

fo f1 f3 f2
—_— —

superattracting attracting superattracting attracting

‘ Stable dynamics implies stable topology:

Theorem(K+LM): For small enough perturbation fe of
the affine parts Arand A g are quasiconformally
homeomorphic.

The gc homeo is lifted to the hyperbolic 3-laminations and
the Kleinian laminations.

Ji4)



Attracting--Parabolic--Attracting

Toaow

attracting parabolic attracting

\NO/
“ (4\)\ (/ \)\ ‘/ UN\

@ attracting @ parabolic QO repelling

‘ Topology of the C-lamination changes!
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Pinching Semiconj. (downstairs)

.

parabolic
‘ We can construct pinching semiconjugacies by using "tessellation”.

attracting attracting
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Pinching Semiconj. (upstairs)

‘&\- g
- y ‘K
parabolic f2
g

attracting attractin
@ it to C-lamin @ lift to hyp 3-lamin
¢ e SN NN h
~ Ay .
}5 } Hy Hg
|7 K

We can show that their the C and hyp. 3-laminations have
different topologies.



Quotient | Kleinian Laminations

L p—

attracting parabolic attracting

‘ “"Fact” (K): For this continuous motion, the leafwise
topology of the quotient lamination is preserved.

However, the Kleinian laminations have different
topologies each other. The difference can be described by
the combinatorial Dehn-twist of the lower ends.

A caricature of the lower ends:

pinching plumping

twisting

glued glued glued




Future Program

- Quotient laminations
for infinitely renormalizable maps
- Refining rigidity theorems
- Applying the strategy to other dynamics
- In particular for cpx 2-dim. maps

- etc.
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