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Abstract

In this note I explain an algorithm to draw the external rays of the Mandelbrot set
with an error estimate. Newton’s method is the main tool. 1

1 Preliminary

We first recall the following definitions and facts: (See [CG] for example.)

(1) For c ∈ C, set qc(z) = z2 + c. For given z ∈ C, its orbit {qn
c (z)}n≥1 is inductively defined

by qn+1
c (z) := qc(qn

c (z)).

(2) The Mandelbrot set is defined by:

M :=
{

c ∈ C : {qn
c (0)}n≥1 is bounded

}
(3) For c ∈ C−M, qn

c (0) → ∞ as n → ∞. In this case, the behavior of this orbit is described
as follows: There exists a compact topological disk Ec and a conformal homeomorphism
ϕc : C − Ec → ϕc(C − Ec) ⊂ C − D such that

(a) c ∈ C − Ec;

(b) ϕc(qc(z)) = ϕc(z)2 for any z ∈ C − Ec; and

(c) ϕc(z)/z → 1 as z → ∞

(4) For the Mandelbrot set M and each c ∈ C − M, set Φ(c) := ϕc(c). Then Φ is a unique
conformal homeomorphism from C − M onto C − D with Φ(c)/c → 1 as c → ∞.

(5) For θ ∈ R/Z (“angle”), the set

RM(θ) = R(θ) :=
{
Φ−1(w) : arg w = θ

}
is called the external ray of angle θ of the Mandelbrot set M.

The aim of this note is to give an algorithm to draw R(θ) for given angle θ ∈ R/Z. More
precisely, we give finitely many points that enough approximate the set R(θ) within a given
precision.

1I learned its principle by M. Shishikura, but this idea of using Newton’s method is probably well-known
for many other people working on complex dynamics.
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Figure 1: The map Φ sends the radial rays outside the unit disk to the external rays of M.
In this figure the rays of angle m/16 (0 ≤ m < 16) are drawn in.

2 The algorithm: Theoretical settings

We first consider an algorithm to calculate c ∈ RM(θ) with

c = Φ−1(re2πiθ) ⇐⇒ Φ(c) = ϕc(c) = re2πiθ

for given θ ∈ R/Z and r > 1. By (3)-(b), we have

ϕc(qn
c (c)) = (re2πiθ)2

n
= r2n

e2πi·2nθ

for any n ∈ N. Now we assume that n is very large and qn
c (c) is enough close to infinity.

Since we have ϕc(z)/z → 1 as z → ∞ by (3)-(c), we have a “rough” approximation

qn
c (c) ≈ ϕc(qn

c (c)) = r2n
e2πi·2nθ =: t.

Now our task is to solve the equation qn
c (c) = t. (We will later give an error estimate of the

root caused by this approximation.)
A bit more generally, for given n ∈ N and t ∈ C, we want to solve the equation

Pn(c) := qn
c (c) − t = 0

numerically. Now Pn(c) is a polynomial of degree 2n in variable c. When n is large, it is
impossible to find the roots algebraically.

For this kind of problem, a method which is commonly used is Newton’s method. It is
given as follows:

Newton’s method. Let F be a polynomial of degree more than one. We say
the function

N(w) = NF (w) := w − F (w)
F ′(w)

is the Newton map of F .

If F (α) = 0 and w0 is sufficiently close to α, then Nk(w0) → α as k → ∞ at least
exponentially fast. 2

2More precisely, there exist constants C > 0 and 0 < λ < 1 such that |wk −α| ≤ Cλk. When α is a simple
root of F , we have |wk − α| = O(|wk−1 − α|2). In this case the convergence is super-exponentially fast.

2



See [H] for example. Now we apply this method to F = Pn in variable c instead of w. In
this case the Newton map is

N(c) = Nn,t(c) := c − Pn(c)
P ′

n(c)

where P ′
n(c) :=

dPn

dc
(c), a polynomial of degree 2n − 1. If the initial value c0 is sufficiently

close to a zero of Pn(c), the sequence

c0
N7−→ N(c0)

N7−→ N2(c0)
N7−→ N3(c0)

N7−→ · · ·

will converge to a zero of Pn(c).
To proceed the iteration numerically, we need to calculate Pn(c) and P ′

n(c) with given c.
The calculation of Pn(c) = qn

c (c) − t is essentially the same as iteration of qc(z) = z2 + c.
How about P ′

n(c)?

Let ′ denote
d

dc
. Then we have

P ′
n(c) = {qn

c (c)}′

=
{(

qn−1
c (c)

)2 + c
}′

= 2
{
qn−1
c (c)

}′
qn−1
c (c) + 1

= 2P ′
n−1(c)q

n−1
c (c) + 1.

It follows that if we set Ck := qk
c (c) and Dk :=

{
qk
c (c)

}′ for each 1 ≤ k ≤ n, the recursive
formulae {

C1 = c, Ck = C2
k−1 + c

D1 = 1, Dk = 2Dk−1Ck−1 + 1

will give the values of Pn(c) = Cn − t and P ′
n(c) = Dn respectively. Hence the Newton map

can be written as
N : c 7→ c − Cn − t

Dn
.

3 The algorithm: Practical settings

For fixed R > 1 and a fixed integer D, consider the subset

R :=
{

Φ−1(re2πiθ) : R1/2D ≤ r < R
}

of the external ray R(θ). If R is sufficiently large, R reaches enough close to ∞. If D is
sufficiently large, R1/2D

is close to 1 and this implies that R reaches enough close to (the
boundary of) M. Hence we call D the depth of R. Let us try to approximate this set R by
finitely many points. 3

For any r with R1/2D ≤ r ≤ R, one can approximate c = Φ−1(re2πiθ) by means of
Newton’s method under a suitable choice of the initial value. (We call this r the radial
parameter.) Let us fix an integer S > 0 and call it the sharpness. We will pick up SD radial
parameters {rm}SD

m=1 and calculate (approximate) SD points {cm}SD
m=1 on R. Then we will

3We always draw a bounded domain with a finite number of pixels. Hence drawing the subset R is
reasonable.
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join the sequence cm by segments in the computer display. This is what we mean by “drawing
R”.

First we divide the interval [R1/2D
, R) into D sub-intervals

[R1/2D
, R1/2D−1

), [R1/2D−1
, R1/2D−2

), . . . , [R1/22
, R1/2), [R1/2, R),

and we pick up S radial parameters from each sub-intervals as follows: For each k =
1, 2, · · · , D, we define S radial parameters

R1/2k
, R1/2k−1+(S−1)/S

, . . . , R1/2k−1+1/S

contained in the sub-interval [R1/2k
, R1/2k−1

). 4 We enumerate these radial parameters as
follows: {

m := (k − 1)S + j (1 ≤ j ≤ S)
rm := R1/2m/S

= R1/2k−1+j/S

Note that we have r1 > r2 > · · · > rSD. 5 Now we are ready to apply Newton’s method to
calculate

{
cm = Φ−1(rme2πiθ)

}SD

m=1
.

When rm ∈ [R1/2k
, R1/2k−1

), we have r2k

m ∈ [R,R2) thus the value

ϕcm(qk
cm

(cm)) = r2k

m e2πiθ·2k
:= tm

satisfies |tm| ≥ R. Hence if R is sufficiently large, we have

tm = ϕcm(qk
cm

(cm)) ≈ qk
cm

(cm).

Under a suitable choice of the initial value cm,0, its orbit by the Newton map Nk,tm will give
an approximation of cm with qk

cm
(cm) = tm. More precisely, we choose cm,0 as follows:

• Since R is enough large, we have Φ−1(Re2πiθ) ≈ Re2πiθ. (See (4) in the first section.)
We set this value c0 := Re2πiθ. 6

• By using the initial value c0 = c1,0, we iterate the Newton map N1,t1 sufficiently many
times, say L1 times. Set c1 as its result. That is.

c1 := NL1
1,t1

(c0).

• Inductively, for any 1 ≤ m ≤ DS with m = (k − 1)S + j (1 ≤ j ≤ S), we use cm−1 as
the initial value cm,0 and set

cm := NLm
k,tm

(cm−1)

with sufficiently large integer Lm. The value cm−1 is presumably a “neighbor” of cm

on R so it is the best possible initial value for Newton’s method.

We should enlarge Lm when D is large, because better precision would be required
when cm is close to M.

Finally join the set {cm : 1 ≤ m ≤ DS} by segments. This will give an approximation of R.

4The boundary of M is very complicated so it would be reasonable to choose r’s in this way.
5This enumeration by m would be used only when we plot the segments. When we apply Newton’s method

to approximate cm, we use loops by k and j.
6This part can be improved by using the expansion Φ−1(z) = z − 1/2 + 1/(8z) + · · · .

4



4 Error estimate

In this algorithm we solved the equation qn
c (c) = t instead of solving ϕc(qn

c (c)) = t for given
t ∈ C. Let us establish an error estimate by this approximation.

Let Dr denote the set {z ∈ C : |z| < r}. It is well-known that M ⊂ D2. Hence we fix any
r > 2 so that Dr is a neighborhood of M. Now we assume that |c| ≤ r. Then we have:

Theorem 4.1 Let us fix t with sufficiently large modulus |t| = R ≫ 0. Let c be a root of
qn
c (c) = t. Then there exists a solution ĉ of ϕĉ(qn

ĉ (ĉ)) = t such that

|ĉ − c| = O

(
1

2nR2−1/2n(R1/2n − 1)

)
.

When n > log2 log R, we have a uniform estimate

|ĉ − c| = O

(
1

R2 log R

)
.

Here “sufficiently large R” means that r/R is sufficiently small. This theorem implies
that we would have better approximation of the external rays when R is large. However,
note that this estimate does not count the rounding errors coming from Newton’s method.

Proof. The equation ϕc(qn
c (c)) = t is equivalent to qn

c (c) = ψc(t) where ψc = ϕ−1
c . Let us

start with some calculations on ψc.

Lemma 4.2 7 For any c ∈ C − M, the map ϕc has the expansion near ∞ as follows:

t = ϕc(z) = z +
c

2z
− c(c − 2)

z3
+ O

(
1
z5

)
.

Moreover, we have

z = ψc(t) = t − c

2t
+

c(3c − 8)
4t3

+ O

(
1
t5

)
.

Sketch of the proof. Recall the fact that ϕc(z) = limn→∞ {qn
c (z)}1/2n

, where
{
z2n

+ · · ·
}1/2n

=
z + O(1) ([CG]). Then it is not difficult to check ϕn+1(z) − ϕn(z) = O(1/z2n+1−1), and this
implies that

ϕc(z) = ϕn(z) + O(1/z2n+1−1).

Now we have the expansion of ϕc above by an explicit calculation of ϕn(z) = {qn
c (z)}1/2n

.
The expansion of ψc follows by using z = t − c/2z + · · · . ¥

By this lemma we have

|(qn
c (c) − t) − (qn

c (c) − ψc(t))| ≤
∣∣∣∣− c

2t
+ O

(
1
t3

)∣∣∣∣ ≤ M

R
.

for some constant M > 0 independent of |c| ≤ r and R = |t| ≫ 0.
Now suppose that c is a root of qn

c (c) − t = 0. We want to apply Rouchè’s theorem, so
that there exists ĉ near c such that qn

ĉ (ĉ) − ψĉ(t) = 0. It is enough to show that there exists
a circle {ĉ ∈ C : |ĉ − c| = ρ} with ρ > 0 given as in the estimates in the statement such that

|qn
ĉ (ĉ) − t| = |qn

ĉ (ĉ) − qn
c (c)| >

M

R
7This lemma is true for any c ∈ C.
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for all ĉ on the circle. Let us consider the local behavior of the map ĉ 7→ qn
ĉ (ĉ) about c. Since

we have
qn
ĉ (ĉ) − qn

c (c) = (qn
c )′(c)(ĉ − c) + O(|ĉ − c|2),

we need some estimate of (qn
c )′(c). By the equation ϕc(qn

c (c)) = {Φ(c)}2n

= t, we have

(qn
c )′(c) = ψ′

c(t) +
∂ψc

∂t
(t) · 2n · {Φ(c)}2n−1 · Φ′(c)

=
(
− 1

2t
+ O(t−3)

)
+

(
1 + O(t−2)

)
· 2n · t

Φ(c)
· Φ′(c)

By applying the Cauchy integral formula to Φ−1, we have

|Φ′(c)| ≥ |Φ(c)| − 1
r

.

Since |t| = |Φ(c)|2n
= R ≫ 0, it follows that

|(qn
c )′(c)| ≥ C0 · 2nR1−1/2n

(R1/2n − 1)

for some constant C0 > 0. In particular, the map ĉ 7→ qn
ĉ (ĉ) is locally univalent near c. More

precesely, there exists a maximal disk B of radius δ = δ(c) centered at c where this map is
univalent.

By the Koebe distortion theorem (see [CG] for example), there exist uniform constants
C1, C2 > 0 depending only on the value |ĉ − c|/δ such that

C1|(qn
c )′(c)||ĉ − c| ≤ |qn

ĉ (ĉ) − qn
c (c)| ≤ C2|(qn

c )′(c)||ĉ − c|

for ĉ ∈ B, and C1, C2 → 1 as |ĉ − c|/δ → 0. Hence by the inequality on the left we can take
ρ = |ĉ − c| as in the first estimate of the statement in order to have |qn

ĉ (ĉ) − qn
c (c)| > M/R

when R ≫ 0.
For the second estimate, recall that |x|/2 ≤ |ex−1| ≤ 2|x| when |x| ≤ 1. Now the estimate

easily follows by setting x := (log R)/2n. ¥

5 Exercises: Some possible improvements

Exercise 1. For calculation with less errors, we need to solve the equation ϕc(qn
c (c)) = t

more precisely. Now we improve the approximation of ϕc(z) to degree 3, and consider the
equation

ϕc(qn
c (c)) ≈ qn

c (c) +
c

2qn
c (c)

= t.

In this case, how can we estimate the relative error? Show that the Newton map is

N : c 7→ c − 2C3
n − 2tC2

n + cCn

2C2
nDn + Cn − cDn

,

where Cn = qn
c (c), Dn = {qn

c (c)}′.
Exercise 2. Next let us solve the equation qn

c (c) = ϕ−1
c (t) by Newton’s method.

(1) First show that ϕ−1
c (t) can be expanded as

ϕ−1
c (t) = t − c

2t
+

c(3c − 8)
4t3

+ O

(
1
t5

)
when t is large enough.
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(2) Show that the Newton map is

N : c 7→ c − 2tCn − 2t2 + c

2tDn − 1

by using the approximation qn
c (c) = ϕ−1

c (t) ≈ t − c/(2t).

(3) Compared with the iteration above, can which one have less errors?
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