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Abstract

In this note I explain an algorithm to draw the external rays of the Mandelbrot set
with an error estimate. Newton’s method is the main tool. !

Preliminary

We first recall the following definitions and facts: (See [CG] for example.)

(1)

(2)

For ¢ € C, set q.(2)
by g2+ (2) = qe(q2 (2)).

The Mandelbrot set is defined by:

= 2%+ ¢. For given z € C, its orbit {¢"(2)},>; is inductively defined

M := {CG C: {q’(0)},5 is bounded}

For c € C—M, ¢/'(0) — oo as n — oo. In this case, the behavior of this orbit is described

as follows: There exists a compact topological disk E, and a conformal homeomorphism
¢c:C—E.— ¢.(C— E.) C C—D such that

(a) ce C— E
(b) ¢e(qe(2)) = ¢pe(2)? for any 2 € C — E,; and

(¢) ¢e(2)/z —1as z — 0

For the Mandelbrot set M and each ¢ € C — M, set ®(c) := ¢c(c). Then P is a unique
conformal homeomorphism from C — M onto C — D with ®(c)/c — 1 as ¢ — oo.

For § € R/Z (“angle”), the set
Rm(0) =R(0) = {<I>_1(w) cargw =6}
is called the external ray of angle 6 of the Mandelbrot set M.

The aim of this note is to give an algorithm to draw R(0) for given angle § € R/Z. More

precisely, we give finitely many points that enough approximate the set R(6) within a given
precision.

for

T Jearned its principle by M. Shishikura, but this idea of using Newton’s method is probably well-known
many other people working on complex dynamics.



Figure 1: The map ® sends the radial rays outside the unit disk to the external rays of M.
In this figure the rays of angle m/16 (0 < m < 16) are drawn in.

2 The algorithm: Theoretical settings
We first consider an algorithm to calculate ¢ € Ry(6) with
¢ = 0L (re®™) —= B(c) = do(c) = re?™
for given § € R/Z and r > 1. By (3)-(b), we have
Gl = (rePm0y = 42 i

for any n € N. Now we assume that n is very large and ¢/'(c) is enough close to infinity.
Since we have ¢.(z)/z — 1 as z — oo by (3)-(c), we have a “rough” approximation

() = elgr(c) = r¥ ™0 = ¢,

Now our task is to solve the equation ¢'(c) = t. (We will later give an error estimate of the
root caused by this approximation.)
A bit more generally, for given n € N and ¢t € C, we want to solve the equation

Pu(e) == qi(c) —t = 0

numerically. Now P, (c) is a polynomial of degree 2" in variable c¢. When n is large, it is
impossible to find the roots algebraically.

For this kind of problem, a method which is commonly used is Newton’s method. It is
given as follows:

Newton’s method. Let F' be a polynomial of degree more than one. We say
the function

N(w) = Np(w) := w—

is the Newton map of F.

If F(a) = 0 and wy is sufficiently close to «, then N*(wg) — a as k — oo at least
exponentially fast. 2

2More precisely, there exist constants C > 0 and 0 < A < 1 such that |wy, — a| < CA¥. When « is a simple
root of F, we have |wy — a| = O(|wg—1 — |?). In this case the convergence is super-exponentially fast.



See [H] for example. Now we apply this method to F' = P, in variable ¢ instead of w. In
this case the Newton map is

Py (c)
N(c) = Npi(e) == c— P o)

P, . . ) )
where c) == ——(c), a polynomial of degree 2" — 1. e initial value cq is sufficiently
here Pj(c) i= “"(c), a pol 1 of degree 27 — 1. If the initial val fiicient]

c

close to a zero of P,(c), the sequence
co 5 N(co) 5 N2(co) 5 N3(cp) s -+

will converge to a zero of P,(c).

To proceed the iteration numerically, we need to calculate P,(c) and P, (c) with given c.
The calculation of P,(c) = ¢*(c) — t is essentially the same as iteration of ¢.(z) = 22 + c.
How about P/ (c)?

Let ’ denote oo Then we have
c

Pie) = {a()

It follows that if we set Cy, := ¢¥(c) and Dy := {q[f(c)}l for each 1 < k < n, the recursive
formulae

Ci = ¢ Cp = Cl%—l_'_c

Dy =1, Dy = 2Dy 1C1 +1

will give the values of P,(c) = C,, —t and P} (c) = D,, respectively. Hence the Newton map
can be written as

3 The algorithm: Practical settings

For fixed R > 1 and a fixed integer D, consider the subset
R = {<I>_1(r62m9) . RY?” <r< R}

of the external ray R(#). If R is sufficiently large, R reaches enough close to co. If D is
sufficiently large, R/ 2" is close to 1 and this implies that R reaches enough close to (the
boundary of) M. Hence we call D the depth of R. Let us try to approximate this set R by
finitely many points. 3

For any r with R?" <y < R, one can approximate ¢ = ®~1(re?™) by means of
Newton’s method under a suitable choice of the initial value. (We call this r the radial
parameter.) Let us fix an integer S > 0 and call it the sharpness. We will pick up SD radial
parameters {rm}izl and calculate (approximate) SD points {cm};?fil on R. Then we will

3We always draw a bounded domain with a finite number of pixels. Hence drawing the subset R is
reasonable.



join the sequence ¢, by segments in the computer display. This is what we mean by “drawing
R”.
First we divide the interval [RY/2”, R) into D sub-intervals

[1,%1/213’1,%1/2“1)7 [RI/QD_I,RI/QD_Q), o [}%1/22’1,%1/2)7 [RI/Q’R)7

and we pick up S radial parameters from each sub-intervals as follows: For each k£ =
1,2,---, D, we define S radial parameters

ok—1+(5-1)/8 ok—1+1/S
)

RY?2" RY . RY

contained in the sub-interval [RY/ zk, RY 2k_l). 1 We enumerate these radial parameters as

follows:
m:= (E-1)S+j (1<j<585)
P o= RY2MS = RL2MIHS

Note that we have r; > 79 > --- > rgp. °> Now we are ready to apply Newton’s method to
calculate {cm = @flgrme%f)l}izl. )
When 7, € [RY/?", RY/?"7), we have 2, € [R, R?) thus the value

o (qF (en)) = P2t p2mio-2k b
m qu, m

satisfies |t,,| > R. Hence if R is sufficiently large, we have

lm = ¢cm(qgl(cm)) ~ qu(cm)-

Under a suitable choice of the initial value ¢, o, its orbit by the Newton map Ny ;,, will give
an approximation of ¢,;, with qu(cm) = t,,. More precisely, we choose ¢, o as follows:

e Since R is enough large, we have ®~!(Re?>™) ~ Re?™. (See (4) in the first section.)
We set this value ¢ := Re2™0. 6

e By using the initial value ¢y = ¢1,9, we iterate the Newton map N4, sufficiently many
times, say L times. Set c¢; as its result. That is.

ey = Nﬁgl(co).

e Inductively, for any 1 <m < DS withm = (k—1)S+j (1 <j < S5), we use ¢;,—1 as
the initial value ¢, o and set
Cm = N,ﬁ?m(cm,l)

with sufficiently large integer L,,. The value ¢,,_1 is presumably a “neighbor” of ¢,
on R so it is the best possible initial value for Newton’s method.

We should enlarge L,, when D is large, because better precision would be required
when ¢, is close to M.

Finally join the set {¢;, : 1 < m < DS} by segments. This will give an approximation of R.

4The boundary of M is very complicated so it would be reasonable to choose r’s in this way.

5This enumeration by m would be used only when we plot the segments. When we apply Newton’s method
to approximate c,,, we use loops by k and j.

5This part can be improved by using the expansion ® 1(z) =z — 1/24+1/(82) + - - -.



4 Error estimate

In this algorithm we solved the equation ¢!'(c) = t instead of solving ¢.(q”(c)) = t for given
t € C. Let us establish an error estimate by this approximation. o
Let D, denote the set {z € C : |z] < r}. It is well-known that M C Dy. Hence we fix any

r > 2 so that I, is a neighborhood of M. Now we assume that |c¢| < r. Then we have:

Theorem 4.1 Let us fix t with sufficiently large modulus [t| = R > 0. Let ¢ be a root of
qi(c) =t. Then there ezists a solution ¢ of ¢e(q2(¢)) =t such that

|6 —¢c| = O

1

(2nR21/2” (R1/2" —

When n > log, log R, we have a uniform estimate

|6 —¢| = O(

1
R? logR)'

)

Here “sufficiently large R” means that r/R is sufficiently small. This theorem implies
that we would have better approximation of the external rays when R is large. However,
note that this estimate does not count the rounding errors coming from Newton’s method.

Proof. The equation ¢.(q%(c)) = t is equivalent to ¢%(c) = .(t) where 9. = ¢, 1. Let us

start with some calculations on ..

Lemma 4.2 7 For any c € C — M,

t = ¢c(2)

Moreover, we have

z = ()

Sketch of the proof. Recall the fact that ¢e(z) = limy, s {¢7(2)}*/?", where {22 +.-}

the map ¢. has the expansion near oo as follows:

c(c—2)+0<

i C

O

2z

t——+
2t

23

1
25 )

12n

2+ O(1) ([CG]). Then it is not difficult to check ¢ny1(2) — dn(z) = O(1/22"" 1), and this

implies that

$e(2) = du(2) +0(1/22" 7).

Now we have the expansion of ¢. above by an explicit calculation of ¢,(z) = {¢7(2)}

The expansion of v, follows by using z =t —¢/2z 4 - - -.

By this lemma we have

K%@ﬂ@ﬂ@wwﬂg‘c+0

2t

1
3

M
< =
) =%

for some constant M > 0 independent of |¢| < r and R = [t| > 0.

Now suppose that ¢ is a root of ¢'(c) —t = 0. We want to apply Roucheé’s theorem, so
that there exists ¢ near ¢ such that ¢} (¢) — 1s(t) = 0. It is enough to show that there exists
a circle {¢ € C : |¢ — ¢| = p} with p > 0 given as in the estimates in the statement such that

g2 (¢) =t = gz (&) —qr(c)] >

"This lemma is true for any ¢ € C.

R

1/2m
[ |



for all ¢ on the circle. Let us consider the local behavior of the map ¢ — ¢ (¢) about c. Since
we have

0; (&) = qi(c) = (@) (c)(&—c)+0(je ),
27L

we need some estimate of (¢%)'(¢). By the equation ¢.(¢%(c)) = {®(c)}* =t, we have
@Y(e) = v+ ey 20 (@ (@) (0
= (—;t + O(t3)> +(1+0@?) 2" (I)EC) - ®'(c)

By applying the Cauchy integral formula to ®~!, we have

|(I),(C)‘ > |(I)(C)|_1

Since [t| = |®(c)|>" = R>> 0, it follows that
@)@ > G- 2R (R 1)

for some constant Cy > 0. In particular, the map ¢ — ¢¥(¢) is locally univalent near c¢. More
precesely, there exists a maximal disk B of radius 6 = d(c) centered at ¢ where this map is
univalent.

By the Koebe distortion theorem (see [CG] for example), there exist uniform constants
C1,Cy > 0 depending only on the value |¢ — ¢|/d such that

Crl(@) (@lle el < gz (&) = g2 ()] < Cal(a) (e)lle — ]

for ¢ € B, and C1,Cy — 1 as |¢ — ¢|/6 — 0. Hence by the inequality on the left we can take
p = |¢ — c| as in the first estimate of the statement in order to have |¢2(¢) — q7(c)] > M/R
when R > 0.

For the second estimate, recall that |z|/2 < |e* —1| < 2|z| when |z| < 1. Now the estimate
easily follows by setting x := (log R)/2". |

5 Exercises: Some possible improvements

Exercise 1. For calculation with less errors, we need to solve the equation ¢.(q”(c)) =t
more precisely. Now we improve the approximation of ¢.(z) to degree 3, and consider the

equation
c
be(qe(c)) = qi(c)+ s =t
(@) ~ @)+ g

In this case, how can we estimate the relative error? Show that the Newton map is

203 — 2tC2? + cC,

N : —
© ST 2D, + Cy — Dy’

where C,, = ¢*(c), D,, = {¢*(c)}.
Exercise 2. Next let us solve the equation ¢7(c) = ¢ '(t) by Newton’s method.

(1) First show that ¢_!(t) can be expanded as

DR ¢ ¢(3c—8) 1
o7l (t) = t_2t+4t3+0<t5>

when t is large enough.



(2) Show that the Newton map is

2tC,, — 2t + ¢

N :
CT T Tup, -1
by using the approximation ¢%(c) = ¢ 1(t) =t — c/(2t).

(3) Compared with the iteration above, can which one have less errors?
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