An algorithm to draw external rays of the Mandelbrot set

Tomoki Kawahira
Graduate School of Mathematics
Nagoya University
Email: kawahiraAmath.nagoya-u.ac.jp ($\mathrm{A}=@$)

April 23, 2009

Abstract

In this note I explain an algorithm to draw the external rays of the Mandelbrot set with an error estimate. Newton's method is the main tool. ${ }^{1}$

1 Preliminary

We first recall the following definitions and facts: (See [CG] for example.)
(1) For $c \in \mathbb{C}$, set $q_{c}(z)=z^{2}+c$. For given $z \in \mathbb{C}$, its orbit $\left\{q_{c}^{n}(z)\right\}_{n \geq 1}$ is inductively defined by $q_{c}^{n+1}(z):=q_{c}\left(q_{c}^{n}(z)\right)$.
(2) The Mandelbrot set is defined by:

$$
\mathbb{M}:=\left\{c \in \mathbb{C}:\left\{q_{c}^{n}(0)\right\}_{n \geq 1} \text { is bounded }\right\}
$$

(3) For $c \in \mathbb{C}-\mathbb{M}, q_{c}^{n}(0) \rightarrow \infty$ as $n \rightarrow \infty$. In this case, the behavior of this orbit is described as follows: There exists a compact topological disk E_{c} and a conformal homeomorphism $\phi_{c}: \mathbb{C}-E_{c} \rightarrow \phi_{c}\left(\mathbb{C}-E_{c}\right) \subset \mathbb{C}-\overline{\mathbb{D}}$ such that
(a) $c \in \mathbb{C}-E_{c}$;
(b) $\phi_{c}\left(q_{c}(z)\right)=\phi_{c}(z)^{2}$ for any $z \in \mathbb{C}-E_{c}$; and
(c) $\phi_{c}(z) / z \rightarrow 1$ as $z \rightarrow \infty$
(4) For the Mandelbrot set \mathbb{M} and each $c \in \mathbb{C}-\mathbb{M}$, set $\Phi(c):=\phi_{c}(c)$. Then Φ is a unique conformal homeomorphism from $\mathbb{C}-\mathbb{M}$ onto $\mathbb{C}-\overline{\mathbb{D}}$ with $\Phi(c) / c \rightarrow 1$ as $c \rightarrow \infty$.
(5) For $\theta \in \mathbb{R} / \mathbb{Z}$ ("angle"), the set

$$
\mathcal{R}_{\mathbb{M}}(\theta)=\mathcal{R}(\theta):=\left\{\Phi^{-1}(w): \arg w=\theta\right\}
$$

is called the external ray of angle θ of the Mandelbrot set \mathbb{M}.
The aim of this note is to give an algorithm to draw $\mathcal{R}(\theta)$ for given angle $\theta \in \mathbb{R} / \mathbb{Z}$. More precisely, we give finitely many points that enough approximate the set $\mathcal{R}(\theta)$ within a given precision.

[^0]

Figure 1: The map Φ sends the radial rays outside the unit disk to the external rays of \mathbb{M}. In this figure the rays of angle $m / 16(0 \leq m<16)$ are drawn in.

2 The algorithm: Theoretical settings

We first consider an algorithm to calculate $c \in \mathcal{R}_{\mathbb{M}}(\theta)$ with

$$
c=\Phi^{-1}\left(r e^{2 \pi i \theta}\right) \Longleftrightarrow \Phi(c)=\phi_{c}(c)=r e^{2 \pi i \theta}
$$

for given $\theta \in \mathbb{R} / \mathbb{Z}$ and $r>1$. By (3)-(b), we have

$$
\phi_{c}\left(q_{c}^{n}(c)\right)=\left(r e^{2 \pi i \theta}\right)^{2^{n}}=r^{2^{n}} e^{2 \pi i \cdot 2^{n} \theta}
$$

for any $n \in \mathbb{N}$. Now we assume that n is very large and $q_{c}^{n}(c)$ is enough close to infinity. Since we have $\phi_{c}(z) / z \rightarrow 1$ as $z \rightarrow \infty$ by (3)-(c), we have a "rough" approximation

$$
q_{c}^{n}(c) \approx \phi_{c}\left(q_{c}^{n}(c)\right)=r^{2^{n}} e^{2 \pi i \cdot 2^{n} \theta}=: t
$$

Now our task is to solve the equation $q_{c}^{n}(c)=t$. (We will later give an error estimate of the root caused by this approximation.)

A bit more generally, for given $n \in \mathbb{N}$ and $t \in \mathbb{C}$, we want to solve the equation

$$
P_{n}(c):=q_{c}^{n}(c)-t=0
$$

numerically. Now $P_{n}(c)$ is a polynomial of degree 2^{n} in variable c. When n is large, it is impossible to find the roots algebraically.

For this kind of problem, a method which is commonly used is Newton's method. It is given as follows:

Newton's method. Let F be a polynomial of degree more than one. We say the function

$$
N(w)=N_{F}(w):=w-\frac{F(w)}{F^{\prime}(w)}
$$

is the Newton map of F.
If $F(\alpha)=0$ and w_{0} is sufficiently close to α, then $N^{k}\left(w_{0}\right) \rightarrow \alpha$ as $k \rightarrow \infty$ at least exponentially fast. ${ }^{2}$

[^1]See $[\mathrm{H}]$ for example. Now we apply this method to $F=P_{n}$ in variable c instead of w. In this case the Newton map is

$$
N(c)=N_{n, t}(c):=c-\frac{P_{n}(c)}{P_{n}^{\prime}(c)}
$$

where $P_{n}^{\prime}(c):=\frac{d P_{n}}{d c}(c)$, a polynomial of degree $2^{n}-1$. If the initial value c_{0} is sufficiently close to a zero of $P_{n}(c)$, the sequence

$$
c_{0} \stackrel{N}{\longmapsto} N\left(c_{0}\right) \stackrel{N}{\longmapsto} N^{2}\left(c_{0}\right) \stackrel{N}{\longmapsto} N^{3}\left(c_{0}\right) \stackrel{N}{\longmapsto} \cdots
$$

will converge to a zero of $P_{n}(c)$.
To proceed the iteration numerically, we need to calculate $P_{n}(c)$ and $P_{n}^{\prime}(c)$ with given c. The calculation of $P_{n}(c)=q_{c}^{n}(c)-t$ is essentially the same as iteration of $q_{c}(z)=z^{2}+c$. How about $P_{n}^{\prime}(c)$?

Let ' denote $\frac{d}{d c}$. Then we have

$$
\begin{aligned}
P_{n}^{\prime}(c) & =\left\{q_{c}^{n}(c)\right\}^{\prime} \\
& =\left\{\left(q_{c}^{n-1}(c)\right)^{2}+c\right\}^{\prime} \\
& =2\left\{q_{c}^{n-1}(c)\right\}^{\prime} q_{c}^{n-1}(c)+1 \\
& =2 P_{n-1}^{\prime}(c) q_{c}^{n-1}(c)+1
\end{aligned}
$$

It follows that if we set $C_{k}:=q_{c}^{k}(c)$ and $D_{k}:=\left\{q_{c}^{k}(c)\right\}^{\prime}$ for each $1 \leq k \leq n$, the recursive formulae

$$
\left\{\begin{array}{l}
C_{1}=c, \quad C_{k}=C_{k-1}^{2}+c \\
D_{1}=1, \quad D_{k}=2 D_{k-1} C_{k-1}+1
\end{array}\right.
$$

will give the values of $P_{n}(c)=C_{n}-t$ and $P_{n}^{\prime}(c)=D_{n}$ respectively. Hence the Newton map can be written as

$$
N: c \mapsto c-\frac{C_{n}-t}{D_{n}}
$$

3 The algorithm: Practical settings

For fixed $R>1$ and a fixed integer D, consider the subset

$$
\mathcal{R}:=\left\{\Phi^{-1}\left(r e^{2 \pi i \theta}\right): R^{1 / 2^{D}} \leq r<R\right\}
$$

of the external ray $\mathcal{R}(\theta)$. If R is sufficiently large, \mathcal{R} reaches enough close to ∞. If D is sufficiently large, $R^{1 / 2^{D}}$ is close to 1 and this implies that \mathcal{R} reaches enough close to (the boundary of) \mathbb{M}. Hence we call D the depth of \mathcal{R}. Let us try to approximate this set \mathcal{R} by finitely many points. ${ }^{3}$

For any r with $R^{1 / 2^{D}} \leq r \leq R$, one can approximate $c=\Phi^{-1}\left(r e^{2 \pi i \theta}\right)$ by means of Newton's method under a suitable choice of the initial value. (We call this r the radial parameter.) Let us fix an integer $S>0$ and call it the sharpness. We will pick up $S D$ radial parameters $\left\{r_{m}\right\}_{m=1}^{S D}$ and calculate (approximate) $S D$ points $\left\{c_{m}\right\}_{m=1}^{S D}$ on \mathcal{R}. Then we will

[^2]join the sequence c_{m} by segments in the computer display. This is what we mean by "drawing $\mathcal{R}^{\prime \prime}$.

First we divide the interval $\left[R^{1 / 2^{D}}, R\right)$ into D sub-intervals

$$
\left[R^{1 / 2^{D}}, R^{1 / 2^{D-1}}\right),\left[R^{1 / 2^{D-1}}, R^{1 / 2^{D-2}}\right), \ldots,\left[R^{1 / 2^{2}}, R^{1 / 2}\right),\left[R^{1 / 2}, R\right)
$$

and we pick up S radial parameters from each sub-intervals as follows: For each $k=$ $1,2, \cdots, D$, we define S radial parameters

$$
R^{1 / 2^{k}}, R^{1 / 2^{k-1+(S-1) / S}}, \ldots, R^{1 / 2^{k-1+1 / S}}
$$

contained in the sub-interval $\left[R^{1 / 2^{k}}, R^{1 / 2^{k-1}}\right) .{ }^{4}$ We enumerate these radial parameters as follows:

$$
\left\{\begin{array}{l}
m:=(k-1) S+j \quad(1 \leq j \leq S) \\
r_{m}:=R^{1 / 2^{m / S}}=R^{1 / 2^{k-1+j / S}}
\end{array}\right.
$$

Note that we have $r_{1}>r_{2}>\cdots>r_{S D}$. ${ }^{5}$ Now we are ready to apply Newton's method to calculate $\left\{c_{m}=\Phi^{-1}\left(r_{m} e^{2 \pi i \theta}\right)\right\}_{m=1}^{S D}$.

When $r_{m} \in\left[R^{1 / 2^{k}}, R^{1 / 2^{k-1}}\right)$, we have $r_{m}^{2^{k}} \in\left[R, R^{2}\right)$ thus the value

$$
\phi_{c_{m}}\left(q_{c_{m}}^{k}\left(c_{m}\right)\right)=r_{m}^{2^{k}} e^{2 \pi i \theta \cdot 2^{k}}:=t_{m}
$$

satisfies $\left|t_{m}\right| \geq R$. Hence if R is sufficiently large, we have

$$
t_{m}=\phi_{c_{m}}\left(q_{c_{m}}^{k}\left(c_{m}\right)\right) \approx q_{c_{m}}^{k}\left(c_{m}\right) .
$$

Under a suitable choice of the initial value $c_{m, 0}$, its orbit by the Newton map $N_{k, t_{m}}$ will give an approximation of c_{m} with $q_{c_{m}}^{k}\left(c_{m}\right)=t_{m}$. More precisely, we choose $c_{m, 0}$ as follows:

- Since R is enough large, we have $\Phi^{-1}\left(R e^{2 \pi i \theta}\right) \approx R e^{2 \pi i \theta}$. (See (4) in the first section.) We set this value $c_{0}:=R e^{2 \pi i \theta} .{ }^{6}$
- By using the initial value $c_{0}=c_{1,0}$, we iterate the Newton map $N_{1, t_{1}}$ sufficiently many times, say L_{1} times. Set c_{1} as its result. That is.

$$
c_{1}:=N_{1, t_{1}}^{L_{1}}\left(c_{0}\right) .
$$

- Inductively, for any $1 \leq m \leq D S$ with $m=(k-1) S+j(1 \leq j \leq S)$, we use c_{m-1} as the initial value $c_{m, 0}$ and set

$$
c_{m}:=N_{k, t_{m}}^{L_{m}}\left(c_{m-1}\right)
$$

with sufficiently large integer L_{m}. The value c_{m-1} is presumably a "neighbor" of c_{m} on \mathcal{R} so it is the best possible initial value for Newton's method.
We should enlarge L_{m} when D is large, because better precision would be required when c_{m} is close to \mathbb{M}.

Finally join the set $\left\{c_{m}: 1 \leq m \leq D S\right\}$ by segments. This will give an approximation of \mathcal{R}.

[^3]
4 Error estimate

In this algorithm we solved the equation $q_{c}^{n}(c)=t$ instead of solving $\phi_{c}\left(q_{c}^{n}(c)\right)=t$ for given $t \in \mathbb{C}$. Let us establish an error estimate by this approximation.

Let \mathbb{D}_{r} denote the set $\{z \in \mathbb{C}:|z|<r\}$. It is well-known that $\mathbb{M} \subset \overline{\mathbb{D}_{2}}$. Hence we fix any $r>2$ so that \mathbb{D}_{r} is a neighborhood of \mathbb{M}. Now we assume that $|c| \leq r$. Then we have:

Theorem 4.1 Let us fix t with sufficiently large modulus $|t|=R \gg 0$. Let c be a root of $q_{c}^{n}(c)=t$. Then there exists a solution \hat{c} of $\phi_{\hat{c}}\left(q_{\hat{c}}^{n}(\hat{c})\right)=t$ such that

$$
|\hat{c}-c|=O\left(\frac{1}{2^{n} R^{2-1 / 2^{n}}\left(R^{1 / 2^{n}}-1\right)}\right)
$$

When $n>\log _{2} \log R$, we have a uniform estimate

$$
|\hat{c}-c|=O\left(\frac{1}{R^{2} \log R}\right)
$$

Here "sufficiently large R " means that r / R is sufficiently small. This theorem implies that we would have better approximation of the external rays when R is large. However, note that this estimate does not count the rounding errors coming from Newton's method.
Proof. The equation $\phi_{c}\left(q_{c}^{n}(c)\right)=t$ is equivalent to $q_{c}^{n}(c)=\psi_{c}(t)$ where $\psi_{c}=\phi_{c}^{-1}$. Let us start with some calculations on ψ_{c}.

Lemma 4.2 ${ }^{7}$ For any $c \in \mathbb{C}-\mathbb{M}$, the map ϕ_{c} has the expansion near ∞ as follows:

$$
t=\phi_{c}(z)=z+\frac{c}{2 z}-\frac{c(c-2)}{z^{3}}+O\left(\frac{1}{z^{5}}\right)
$$

Moreover, we have

$$
z=\psi_{c}(t)=t-\frac{c}{2 t}+\frac{c(3 c-8)}{4 t^{3}}+O\left(\frac{1}{t^{5}}\right) .
$$

Sketch of the proof. Recall the fact that $\phi_{c}(z)=\lim _{n \rightarrow \infty}\left\{q_{c}^{n}(z)\right\}^{1 / 2^{n}}$, where $\left\{z^{2^{n}}+\cdots\right\}^{1 / 2^{n}}=$ $z+O(1)([\mathrm{CG}])$. Then it is not difficult to check $\phi_{n+1}(z)-\phi_{n}(z)=O\left(1 / z^{2^{n+1}-1}\right)$, and this implies that

$$
\phi_{c}(z)=\phi_{n}(z)+O\left(1 / z^{2^{n+1}-1}\right) .
$$

Now we have the expansion of ϕ_{c} above by an explicit calculation of $\phi_{n}(z)=\left\{q_{c}^{n}(z)\right\}^{1 / 2^{n}}$. The expansion of ψ_{c} follows by using $z=t-c / 2 z+\cdots$.

By this lemma we have

$$
\left|\left(q_{c}^{n}(c)-t\right)-\left(q_{c}^{n}(c)-\psi_{c}(t)\right)\right| \leq\left|-\frac{c}{2 t}+O\left(\frac{1}{t^{3}}\right)\right| \leq \frac{M}{R}
$$

for some constant $M>0$ independent of $|c| \leq r$ and $R=|t| \gg 0$.
Now suppose that c is a root of $q_{c}^{n}(c)-t=0$. We want to apply Rouchè's theorem, so that there exists \hat{c} near c such that $q_{\hat{c}}^{n}(\hat{c})-\psi_{\hat{c}}(t)=0$. It is enough to show that there exists a circle $\{\hat{c} \in \mathbb{C}:|\hat{c}-c|=\rho\}$ with $\rho>0$ given as in the estimates in the statement such that

$$
\left|q_{\hat{c}}^{n}(\hat{c})-t\right|=\left|q_{\hat{c}}^{n}(\hat{c})-q_{c}^{n}(c)\right|>\frac{M}{R}
$$

[^4]for all \hat{c} on the circle. Let us consider the local behavior of the map $\hat{c} \mapsto q_{\hat{c}}^{n}(\hat{c})$ about c. Since we have
$$
q_{\hat{c}}^{n}(\hat{c})-q_{c}^{n}(c)=\left(q_{c}^{n}\right)^{\prime}(c)(\hat{c}-c)+O\left(|\hat{c}-c|^{2}\right)
$$
we need some estimate of $\left(q_{c}^{n}\right)^{\prime}(c)$. By the equation $\phi_{c}\left(q_{c}^{n}(c)\right)=\{\Phi(c)\}^{2^{n}}=t$, we have
\[

$$
\begin{aligned}
\left(q_{c}^{n}\right)^{\prime}(c) & =\psi_{c}^{\prime}(t)+\frac{\partial \psi_{c}}{\partial t}(t) \cdot 2^{n} \cdot\{\Phi(c)\}^{2^{n}-1} \cdot \Phi^{\prime}(c) \\
& =\left(-\frac{1}{2 t}+O\left(t^{-3}\right)\right)+\left(1+O\left(t^{-2}\right)\right) \cdot 2^{n} \cdot \frac{t}{\Phi(c)} \cdot \Phi^{\prime}(c)
\end{aligned}
$$
\]

By applying the Cauchy integral formula to Φ^{-1}, we have

$$
\left|\Phi^{\prime}(c)\right| \geq \frac{|\Phi(c)|-1}{r}
$$

Since $|t|=|\Phi(c)|^{2^{n}}=R \gg 0$, it follows that

$$
\left|\left(q_{c}^{n}\right)^{\prime}(c)\right| \geq C_{0} \cdot 2^{n} R^{1-1 / 2^{n}}\left(R^{1 / 2^{n}}-1\right)
$$

for some constant $C_{0}>0$. In particular, the map $\hat{c} \mapsto q_{\hat{c}}^{n}(\hat{c})$ is locally univalent near c. More precesely, there exists a maximal disk B of radius $\delta=\delta(c)$ centered at c where this map is univalent.

By the Koebe distortion theorem (see [CG] for example), there exist uniform constants $C_{1}, C_{2}>0$ depending only on the value $|\hat{c}-c| / \delta$ such that

$$
C_{1}\left|\left(q_{c}^{n}\right)^{\prime}(c)\right||\hat{c}-c| \leq\left|q_{\hat{c}}^{n}(\hat{c})-q_{c}^{n}(c)\right| \leq C_{2}\left|\left(q_{c}^{n}\right)^{\prime}(c)\right||\hat{c}-c|
$$

for $\hat{c} \in B$, and $C_{1}, C_{2} \rightarrow 1$ as $|\hat{c}-c| / \delta \rightarrow 0$. Hence by the inequality on the left we can take $\rho=|\hat{c}-c|$ as in the first estimate of the statement in order to have $\left|q_{\hat{c}}^{n}(\hat{c})-q_{c}^{n}(c)\right|>M / R$ when $R \gg 0$.

For the second estimate, recall that $|x| / 2 \leq\left|e^{x}-1\right| \leq 2|x|$ when $|x| \leq 1$. Now the estimate easily follows by setting $x:=(\log R) / 2^{n}$.

5 Exercises: Some possible improvements

Exercise 1. For calculation with less errors, we need to solve the equation $\phi_{c}\left(q_{c}^{n}(c)\right)=t$ more precisely. Now we improve the approximation of $\phi_{c}(z)$ to degree 3 , and consider the equation

$$
\phi_{c}\left(q_{c}^{n}(c)\right) \approx q_{c}^{n}(c)+\frac{c}{2 q_{c}^{n}(c)}=t
$$

In this case, how can we estimate the relative error? Show that the Newton map is

$$
N: c \mapsto c-\frac{2 C_{n}^{3}-2 t C_{n}^{2}+c C_{n}}{2 C_{n}^{2} D_{n}+C_{n}-c D_{n}}
$$

where $C_{n}=q_{c}^{n}(c), D_{n}=\left\{q_{c}^{n}(c)\right\}^{\prime}$.
Exercise 2. Next let us solve the equation $q_{c}^{n}(c)=\phi_{c}^{-1}(t)$ by Newton's method.
(1) First show that $\phi_{c}^{-1}(t)$ can be expanded as

$$
\phi_{c}^{-1}(t)=t-\frac{c}{2 t}+\frac{c(3 c-8)}{4 t^{3}}+O\left(\frac{1}{t^{5}}\right)
$$

when t is large enough.
(2) Show that the Newton map is

$$
N: c \mapsto c-\frac{2 t C_{n}-2 t^{2}+c}{2 t D_{n}-1}
$$

by using the approximation $q_{c}^{n}(c)=\phi_{c}^{-1}(t) \approx t-c /(2 t)$.
(3) Compared with the iteration above, can which one have less errors?

References

[CG] L. Carleson and T. Gamelin. Complex Dynamics . Springer-Verlag, 1993.
[H] P. Henrici. Elements of Numerical Analysis. Wiley, 1964.

[^0]: ${ }^{1}$ I learned its principle by M. Shishikura, but this idea of using Newton's method is probably well-known for many other people working on complex dynamics.

[^1]: ${ }^{2}$ More precisely, there exist constants $C>0$ and $0<\lambda<1$ such that $\left|w_{k}-\alpha\right| \leq C \lambda^{k}$. When α is a simple root of F, we have $\left|w_{k}-\alpha\right|=O\left(\left|w_{k-1}-\alpha\right|^{2}\right)$. In this case the convergence is super-exponentially fast.

[^2]: ${ }^{3}$ We always draw a bounded domain with a finite number of pixels. Hence drawing the subset \mathcal{R} is reasonable.

[^3]: ${ }^{4}$ The boundary of \mathbb{M} is very complicated so it would be reasonable to choose r 's in this way.
 ${ }^{5}$ This enumeration by m would be used only when we plot the segments. When we apply Newton's method to approximate c_{m}, we use loops by k and j.
 ${ }^{6}$ This part can be improved by using the expansion $\Phi^{-1}(z)=z-1 / 2+1 /(8 z)+\cdots$.

[^4]: ${ }^{7}$ This lemma is true for any $c \in \mathbb{C}$.

