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Abstract

This note gives a simplified proof of the similarity between the Mandelbrot
set and the quadratic Julia sets at the Misiurewicz parameters, originally due
to Tan Lei [TL]. We also give an alternative proof of the global linearization
theorem of repelling fixed points.

The Mandelbrot set and the Julia sets. Let us consider the quadratic family{
fc(z) = z2 + c : c ∈ C

}
.

TheMandelbrot setM is the set of c ∈ C such that the sequence {fn
c (c)}n∈N is bounded.

For each c ∈ C, the filled Julia set Kc is the set of z ∈ C such that the sequence
{fn

c (z)}n∈N is bounded. One can easily check that

• c /∈ M if and only if |fn
c (c)| > 2 for some n ∈ N; and

• for each c ∈ M, z /∈ Kc if and only if |fn
c (z)| > 2 for some n ∈ N.

The Julia set Jc is the boundary of Kc. Note that all M, Kc, and Jc are compact, and
also non-empty because we can always solve the equations fn

c (c) = c and fn
c (z) = z.

Tan showed in [TL] that when c0 ∈ M is a Misiurewicz parameter (to be defined
below), the “shapes” of M and the Julia set Jc0 are asymptotically similar at the same
point c0. For example, (JM1) of Figure 1 shows M and Jc0 in squares centered at
c0 = i, whose widths range from 6.0 to 0.01. We will prove this by finding an entire
function that bridges the dynamical and parameter planes (Lemma 1).

Misiurewicz parameters and a key lemma. Following the terminology of [TL],
we say c0 ∈ M is a Misiurewicz parameter if the forward orbit of c0 by fc0 eventually
lands on a repelling periodic point. More precisely, there exist minimal l ≥ 1 and
p ≥ 1 such that a0 := f l

c0
(c0) satisfies a0 = fp

c0
(a0) and |(fp

c0
)′(a0)| > 1. By the implicit

function theorem, we can show that the repelling periodic point a0 is stable: that is,
there exists a neighborhood V of c0 and a holomorphic map a : c 7→ a(c) on V such
that a(c0) = a0; a(c) = fp

c (a(c)); and |(fp
c )

′(a(c))| > 1. We let λ(c) := (fp
c )

′(a(c)) and
λ0 := λ(c0).

Our key lemma is the following.

∗ver. 20190731. This note is now contained in a paper “Zalcman functions and similarity between
the Mandelbrot set, Julia sets, and the tricorn.”
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(JM1)

(JM2)

(JM3)

Figure 1: (JM1) Center: 0.0 + 1.0i, Square width: from 6.0 to 0.01. (JM2) Center:
−0.8597644816892409 + 0.23487923150145784i, Square width: from 5.0 to 0.001.
(JM3) Center: −1.162341599884035 + 0.2923689338965703i, Square width: from 6.0
to 0.001.
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Lemma 1 Suppose that c0 ∈ M is a Misiurewicz parameter as above. For k ∈ N, set
ρk := 1/(f l+kp

c0
)′(c0). Then we have the following.

(1) The function ϕk(w) = f l+kp
c0

(c0 + ρkw) converges to a non-constant entire function
ϕ : C → C as k → ∞ uniformly on any compact sets.

(2) There exists a constant Q ̸= 0 such that the function

Φk(w) := f l+kp
c0+Qρkw

(c0 +Qρkw)

converges to the same function ϕ(w) as k → ∞ uniformly on compact sets of C.

Proof. It is well-known that the sequence of (polynomial) functions

w 7−→ fkp
c0

(
a0 +

w

λk
0

)
(k ∈ N)

converges to a non-constant entire function ϕ(w) uniformly on compact sets of C. (See
Theorem 3 in Appendix. Such a ϕ is called a Poincaré function. Indeed, ϕ satisfies
the functional equation ϕ(λ0w) = fp

c0
◦ ϕ(w), but we will not use it.) Note that this

function satisfies ϕ(0) = a0 and ϕ′(0) = 1.
Now let us show (1): set A0 := (f l

c0
)′(c0), where A0 ̸= 0 since otherwise c0 is strictly

periodic. We also have (f l+kp
c0

)′(c0) = A0λ
k
0 = 1/ρk. For sufficiently small t ∈ C, we

have the expansion
f l
c0
(c0 + t) = a0 + A0 · t+ o(t).

Fix an arbitrarily large compact set E ⊂ C and take any w ∈ E. Then by setting
t = w/(A0λ

k
0),

fkp
c0

(
a0 +

w

λk
0

)
∼ f l+kp

c0

(
c0 +

w

A0λk
0

+ o(λ−k
0 )

)
∼ f l+kp

c0
(c0 + ρkw) = ϕk(w)

when k → ∞. (Here by Ak(w) ∼ Bk(w) we mean Ak(w) − Bk(w) → 0 uniformly on
E as k → ∞.) Hence we have ϕ(w) = limk→0 ϕk(w) on any compact sets. Note that ϕ
has no poles, since each ϕk is entire.

Next we show (2): suppose that Q ∈ C∗ is a constant and set c = c(w) := c0+Qρkw.
We also set Φk(w) := f l+kp

c (c) and b(c) := f l
c(c). Recall that a(c) denotes a repelling

periodic point (of fc) of period p with a(c0) = a0, and λ(c) denotes its multiplier.
Then Theorem 3 in Appendix again implies that the sequence of functions ϕc

k(w) :=
fkp
c (a(c) + w/λ(c)k) converges to an entire function ϕc(w) uniformly on compact sets.
In particular, by the proof of Theorem 3, it is not difficult to check that the function
c 7→ ϕc(w) is holomorphic near c = c0 when we fix a w ∈ C.

As in Tan’s original proof, we employ a theorem on transversality by Douady and
Hubbard [DH, Lemma 1, p.333]: There exists a B0 ̸= 0 such that

b(c)− a(c) = B0(c− c0) + o(c− c0).

Hence for c = c0 +Qρkw (taking w in a compact set), we have

b(c) = a(c) +B0Qρkw + o(ρk) = a(c) +
B0Q

A0

· λ(c)
k

λk
0

· w

λ(c)k
+ o(ρk).
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SetQ := A0/B0. Since λ(c) is a holomorphic function of c and thus λ(c) = λ0+O(c−c0),
we have |λ(c)/λ0 − 1| = O(c− c0). This implies that

log
λ(c)k

λk
0

= k ·O(c− c0) = O

(
k

λk
0

)
→ 0 (k → ∞)

for c = c0 +Qρkw = c0 +O(λ−k
0 ). Since

Φk(w) = fkp
c (b(c)) = fkp

c

(
a(c) +

w

λ(c)k
+ o(ρk)

)
and ϕc(w) → ϕ(w) as c → c0 (uniformly for w in a compact set), we conclude that

lim
k→∞

Φk(w) = ϕ(w),

where the convergence is uniform on any compact sets. ■

Remark. Lemma 1 implies that c0 ∈ Jc0 = ∂Kc0 and c0 ∈ ∂M. Indeed, we can find a
w ∈ C such that |ϕ(w)| > 2 and hence |ϕk(w)| > 2 for sufficiently large k. Equivalently,
we have c0 + ρkw /∈ Kc0 for sufficiently large k, where c0 + ρkw tends to c0 as k → ∞.
Since c0 ∈ Kc0 by definition, we have c0 ∈ Jc0 . The proof for c0 ∈ ∂M is analogous.

The Hausdorff topology. Let us briefly recall the Hausdorff topology of the set of
non-empty compact sets Comp∗(C) of C. For a sequence {Kk}k∈N ⊂ Comp∗(C), we
say Kk converges to K ∈ Comp∗(C) as k → ∞ if for any ϵ > 0, there exists k0 ∈ N
such that K ⊂ Nϵ(Kk) and Kk ⊂ Nϵ(K) for any k ≥ k0, where Nϵ(·) is the open ϵ
neighborhood in C.

Set D(r) := {z ∈ C : |z| < r}. For a compact set K in C, let [K]r denote the set
(K ∩D(r))∪ ∂D(r). For a ∈ C∗ and b ∈ C, let a(K − b) denote the set of a(z− b) with
z ∈ K.

Similarity. Let c0 be a Misiurewicz parameter. Now we state our version of Tan’s
similarity theorem.

Theorem 2 (Similarity between M and J) There exist a non-constant entire func-
tion ϕ on C, a sequence ρk → 0, and a constant q ̸= 0 such that if we set J :=
ϕ−1(Jc0) ⊂ C, then for any large constant r > 0, we have

(a)
[
ρ−1
k (Jc0 − c0)

]
r
→ [J ]r, and

(b)
[
ρ−1
k q(M− c0)

]
r
→ [J ]r

as k → ∞ in the Hausdorff topology.

Proof of (a). Let ϕk, ϕ, and ρk = 1/(A0λ
k
0) be as given in the proof of Lemma 1.

Since fn
c0
(Jc0) = Jc0 , we have

[
ρ−1
k (Jc0 − c0)

]
r
=

[
ϕ−1
k (Jc0)

]
r
. By [J ]r = [ϕ−1(Jc0)]r and

uniform convergence of ϕk → ϕ on D(r), the claim easily follows.
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Proof of (b). Set q := 1/Q (where Q ̸= 0 is defined in the proof of Lemma 1) and
Mk := ρ−1

k q(M − c0). Fix any ϵ > 0. Since the set D(r) − Nϵ(J ) is compact, there

exists an N = N(ϵ) such that |fN
c0

◦ ϕ(w)| > 2 for any w ∈ D(r)− Nϵ(J ). By uniform

convergence of Φk(w) = f l+kp
c0+Qρkw

(c0 + Qρkw) to ϕ(w) on compact sets in C (Lemma
1), we have

|f (l+kp)+N
c0+Qρkw

(c0 +Qρkw)| > 2

for all sufficiently large k. This implies that c0 + Qρkw /∈ M, equivalently, w /∈ Mk.
Hence we have

[Mk]r ⊂ Nϵ([J ]r).

Next we show the opposite inclusion [J ]r ⊂ Nϵ([Mk]r) for k large enough. Let us
approximate [J ]r by a finite subset E of [J ]r such that the ϵ/2 neighborhood of E
covers [J ]r. Now it is enough to prove that for any w0 ∈ E, there exists a sequence
wk ∈ [Mk]r such that |w0 − wk| < ϵ/2 for sufficiently large k.

Let ∆ be a disk of radius ϵ/2 centered at w0. When ∆ ∩ ∂D(r) ̸= ∅, we can take
such a wk in ∂D(r). Hence we may assume that ∆ ⊂ D(r).

Since ϕ(w0) ∈ Jc0 and repelling cycles are dense in Jc0 (see [Sch] and [Mi]. See
also the remark below), we can choose a w′

0 such that ϕ(w′
0) is a repelling periodic

point of some period m and |w0 − w′
0| < ϵ/4. This implies that the function χ : w 7→

fm
c0
(ϕ(w))− ϕ(w) has a zero at w = w′

0.
Let us consider the function χk : w 7→ fm

c0+Qρkw
(Φk(w)) − Φk(w), where Φk(w) =

f l+kp
c0+Qρkw

(c0+Qρkw) as in Lemma 1. By the Hurwitz theorem and uniform convergence
of Φk to ϕ on compact sets of C, χk has a zero wk in ∆ and |wk − w′

0| < ϵ/4 for all

sufficiently large k. In particular, ck := c0 + Qρkwk satisfies f
m+(l+kp)
ck (ck) = f l+kp

ck
(ck)

and thus ck ∈ M. Hence we have a desired wk ∈ Mk with |wk − w0| < ϵ/2. ■

Example (Calculation of Q). When c0 = −2 (hence l = p = 1), A0 = f ′
c0
(−2) = −4

and λ0 = f ′
c0
(fc0(−2)) = 4. Since a(c)2 + c = a(c) we find da(c)/dc = −1/(2a(c)− 1).

Moreover, db(c)/dc = (d/dc)(c2 + c) = 2c + 1. Hence for c = c0 = −2, we have
B0 = −3− (−1/3) = −8/3 and the constant Q is A0/B0 = 3/2.

Remarks.

• Note that in the proof of Theorem 2, ϕ(w′
0) need not be repelling. We only need

the density of periodic points in the Julia set, which is an easy consequence of
Montel’s theorem. See [Mi, p.157].

• A similar proof can be applied to semi-hyperbolic parameters (i.e., critically non-
recurrent parameters) in ∂M [Ka, Théorème 2.2], and to the unicritical family{
z 7→ zd + c : c ∈ C

}
with d ≥ 2. This gives an alternative proof of Rivera-

Letelier’s extension of Tan’s theorem [RL].

Appendix. Existence of the Poincaré function

Here we give a proof for the fact used in the proof of Lemma 1 that w 7→ fkp
c0

(
a0 +

w

λk
0

)
converges as k → ∞. This is originally shown by using a local linearization theorem
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by Kœnigs. See [Mi, Cor.8.12]. Our proof is based on the normal family argument and
the univalent function theory (see [Du] for example).

Theorem 3 Let g : C → C be an entire function with g(0) = 0, g′(0) = λ, and
|λ| > 1. Then the sequence ϕn(w) = gn(w/λn) converges uniformly on compact sets in
C. Moreover, the limit function ϕ : C → C satisfies g ◦ ϕ(w) = ϕ(λw) and ϕ′(0) = 1.

Proof. Since g(z) = λz +O(z2) near z = 0, there exists a disk ∆ = D(δ) = {|z| < δ}
such that g|∆ is univalent and ∆ ⋐ g(∆). Hence we have a univalent branch g−1

0 of g
that maps ∆ into itself.

First we show that ϕn is univalent on D(δ/4): Since the map ϕ−1
n : w 7→ λng−n

0 (w)
is well-defined on ∆ = D(δ) and univalent, its image contains D(δ/4) by the Koebe
1/4 theorem. Hence ϕn is univalent on D(δ/4), and by the Koebe distortion theorem,
the family {ϕn}n≥0 is locally uniformly bounded on D(δ/4) and thus equicontinuous.

Next we show that ϕn has a limit on D(δ/4): Fix an arbitrarily large r > 0 and
an integer N such that r < δ|λ|N/4. By using the Koebe 1/4 theorem as above, the
function GN,k(w) := λNgk(w/λN+k) (k ∈ N) satisfying ϕN+k = ϕN ◦ GN,k is univalent
on the disk D(δ|λ|N/4). By the Koebe distortion theorem, there exists a constant
C > 0 independent of N and k such that for any w ∈ D(r) and sufficiently large N we
have |G′

N,k(w)− 1| ≤ C|w|/|λ|N . By integration we have |GN,k(w)−w| ≤ Cr2/(2|λ|N)
on D(r). In particular, GN,k → id uniformly on D(δ/4) as N → ∞. Since the family
{ϕn} is equicontinuous on D(δ/4), the relation ϕN+k = ϕN ◦GN,k implies that {ϕn}n≥0

is Cauchy and has a unique limit ϕ on any compact sets in D(δ/4).
Let us check that the convergence extends to C: (We will not use the functional

equation gn ◦ ϕ(w) = ϕ(λnw). Compare [Mi, Cor.8.12].) Since |ϕN+k(w) − ϕN(w)| =
|ϕN(GN,k(w))− ϕN(w)| and |GN,k(w)− w| = Cr2/(2|λ|N) on D(r), it follows that the
family {ϕN+k}k≥0 (with fixed N) is uniformly bounded on D(r). Hence {ϕn}n≥0 is
normal on any compact set in C and any sequential limit coincides with the local limit
ϕ on D(δ/4).

The equation g ◦ ϕ(w) = ϕ(λw) and ϕ′(0) = 1 are immediate from g ◦ ϕn(w) =
ϕn+1(λw) and ϕ′

n(0) = 1. ■
Remark. One can easily extend this proof to the case of meromorphic g by using
the spherical metric.
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