Notes on Tan’s theorem on similarity
between the Mandelbrot set and the Julia sets *

Tomoki Kawahira

Abstract

This note gives a simplified proof of the similarity between the Mandelbrot
set and the quadratic Julia sets at the Misiurewicz parameters, originally due
to Tan Lei [TL]. We also give an alternative proof of the global linearization
theorem of repelling fixed points.

The Mandelbrot set and the Julia sets. Let us consider the quadratic family
{fo(z)=2"+c:ceC}

The Mandelbrot set Ml is the set of ¢ € C such that the sequence { f*(c)}, oy is bounded.
For each ¢ € C, the filled Julia set K. is the set of z € C such that the sequence
{f(2)},en is bounded. One can easily check that

e ¢ ¢ M if and only if |f”(¢)| > 2 for some n € N; and
e for cach c € M, z ¢ K, if and only if |f?(z)| > 2 for some n € N.

The Julia set J. is the boundary of K,.. Note that all M, K., and J. are compact, and
also non-empty because we can always solve the equations f'(c) = ¢ and f'(z) = .

Tan showed in [TL] that when ¢y € M is a Misiurewicz parameter (to be defined
below), the “shapes” of M and the Julia set J,, are asymptotically similar at the same
point ¢y. For example, (JM1) of Figure 1 shows M and J., in squares centered at
co = 1, whose widths range from 6.0 to 0.01. We will prove this by finding an entire
function that bridges the dynamical and parameter planes (Lemma 1).

Misiurewicz parameters and a key lemma. Following the terminology of [TL],
we say ¢y € M is a Misiurewicz parameter if the forward orbit of ¢y by f,, eventually
lands on a repelling periodic point. More precisely, there exist minimal [ > 1 and
p > 1 such that ag := f! (co) satisfies ag = f2 (ao) and |(f2 ) (ag)| > 1. By the implicit
function theorem, we can show that the repelling periodic point aq is stable: that is,
there exists a neighborhood V' of ¢y and a holomorphic map a : ¢ — a(c) on V such
that a(cy) = ag; a(c) = fP(a(c)); and [(f?)'(a(c))] > 1. We let A(c) := (f?)'(a(c)) and
)\0 = /\(Cg).
Our key lemma is the following.

*ver. 20190731. This note is now contained in a paper “Zalcman functions and similarity between
the Mandelbrot set, Julia sets, and the tricorn.”



5

; %N £ ¥ i
i ﬁ‘i{ M il
2: . 4 J“‘f“‘{« ;M%A K Fﬁr
4 £ bty e

(JM2)

(JM3)

T =
=

Ly

Figure 1: (JM1) Center: 0.0 + 1.0i, Square width: from 6.0 to 0.01. (JM2) Center:
—0.8597644816892409 + 0.234879231501457844, Square width: from 5.0 to 0.001.
(JM3) Center: —1.162341599884035 + 0.29236893389657037, Square width: from 6.0

to 0.001.



Lemma 1 Suppose that c¢o € M is a Misiurewicz parameter as above. For k € N, set
pr = 1/(fL*2) (co). Then we have the following.

(1) The function ¢p(w) = fL(co + prw) converges to a non-constant entire function
¢:C— C as k — oo uniformly on any compact sets.

(2) There exists a constant Q) # 0 such that the function

(bk(w) = cl:fgpkw@(] +kaw)
converges to the same function ¢p(w) as k — oo uniformly on compact sets of C.

Proof. It is well-known that the sequence of (polynomial) functions

w fclf)p(ao—i—%) (k € N)
0
converges to a non-constant entire function ¢(w) uniformly on compact sets of C. (See
Theorem 3 in Appendix. Such a ¢ is called a Poincaré function. Indeed, ¢ satisfies
the functional equation ¢(Aow) = f2 o ¢(w), but we will not use it.) Note that this
function satisfies ¢(0) = ap and ¢'(0) = 1.

Now let us show (1): set Ag := (fZ)/(co), where Ay # 0 since otherwise ¢y is strictly
periodic. We also have (fL*)(cy) = AgA§ = 1/py. For sufficiently small ¢t € C, we
have the expansion

CZIO(CO +t) = Qo +A0 t—f—O(t)

Fix an arbitrarily large compact set £ C C and take any w € E. Then by setting
t= w/<A0)\18)7

2 (a5 ) ~ 2 (et g o0 ~ S ) = )
A Ao\ 0

when k — oco. (Here by Ag(w) ~ By(w) we mean Ag(w) — Bi(w) — 0 uniformly on

E as k — 00.) Hence we have ¢(w) = limy_,o ¢ (w) on any compact sets. Note that ¢

has no poles, since each ¢y is entire.

Next we show (2): suppose that ) € C* is a constant and set ¢ = ¢(w) := co+Qprw.
We also set @y (w) := fi*(c) and b(c) := fl(c). Recall that a(c) denotes a repelling
periodic point (of f.) of period p with a(cy) = ag, and A(c) denotes its multiplier.

Then Theorem 3 in Appendix again implies that the sequence of functions ¢ (w) :=
fkr(a(c) +w/M(c)¥) converges to an entire function ¢¢(w) uniformly on compact sets.
In particular, by the proof of Theorem 3, it is not difficult to check that the function
¢ — ¢°(w) is holomorphic near ¢ = ¢y when we fix a w € C.

As in Tan’s original proof, we employ a theorem on transversality by Douady and
Hubbard [DH, Lemma 1, p.333|: There exists a By # 0 such that

b(c) — a(c) = Bo(c — o) + o(c — ¢p).
Hence for ¢ = ¢y + Qprw (taking w in a compact set), we have

Bo@Q Me)* w
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b(e) = alc) + BoQprw +o(p) = alc) +



Set @) := Ag/By. Since \(c) is a holomorphic function of ¢ and thus A(c) = A\g+O(c—cy),
we have [A\(¢)/Ao — 1| = O(c — ¢p). This implies that

log WV :k-O(c—co):O(%)%O (k — o0)
0 0

for ¢ = co + Qprw = co + O(\;*). Since

w
() = 720(6) = 122(a(0) + 55 + olon) )
and ¢°(w) — ¢(w) as ¢ — ¢g (uniformly for w in a compact set), we conclude that
lim ¢y (w) = o(w),
k—o0
where the convergence is uniform on any compact sets. [ |

Remark. Lemma 1 implies that ¢y € J., = 0K, and ¢y € OM. Indeed, we can find a
w € C such that |¢p(w)| > 2 and hence |¢y(w)| > 2 for sufficiently large k. Equivalently,
we have ¢y + ppw ¢ K, for sufficiently large k, where ¢y + prw tends to ¢q as k — oo.
Since ¢y € K., by definition, we have ¢y € J,,. The proof for ¢y € OM is analogous.

The Hausdorff topology. Let us briefly recall the Hausdorff topology of the set of
non-empty compact sets Comp*(C) of C. For a sequence {Kj}reny C Comp*(C), we
say K}, converges to K € Comp*(C) as k — oo if for any € > 0, there exists kg € N
such that K C N(Kj) and Ky C N (K) for any k > ko, where N.(-) is the open €
neighborhood in C.

Set D(r) := {z € C : |z] <r}. For a compact set K in C, let [K], denote the set
(KND(r))UoD(r). For a € C* and b € C, let a(K —b) denote the set of a(z —b) with
z € K.

Similarity. Let ¢y be a Misiurewicz parameter. Now we state our version of Tan’s
similarity theorem.

Theorem 2 (Similarity between M and J) There exist a non-constant entire func-
tion ¢ on C, a sequence pr — 0, and a constant q # 0 such that if we set J =
¢~ (J.) C C, then for any large constant r > 0, we have

(@) [p' (Jey = c0)], = [T)s, and

(b) [ a(M —co)], = [T,

as k — oo in the Hausdorff topology.

Proof of (a). Let ¢, ¢, and py = 1/(AgAF) be as given in the proof of Lemma 1.
Since f7 (Je,) = Joy, We have [p,?l(JCO — CO)L = [gb,;l(JcO)L. By [T, = [¢ ' (Js)], and

uniform convergence of ¢ — ¢ on D(r), the claim easily follows.




Proof of (b). Set ¢:=1/Q (where @ # 0 is defined in the proof of Lemma 1) and
My, = p;'q(M — ¢p). Fix any € > 0. Since the set D(r) — N(J) is compact, there

exists an N = N(e) such that |fY o ¢(w)| > 2 for any w € D(r) — N.(J). By uniform

flhp
co+Qprw

convergence of &y (w) = (co + Qprw) to ¢p(w) on compact sets in C (Lemma

1), we have

|fc(éilgp):$v(co + Qprw)| > 2
for all sufficiently large k. This implies that ¢y + Qprw ¢ M, equivalently, w ¢ M.
Hence we have

My], < N([T).

Next we show the opposite inclusion [J], C N.([My],) for k large enough. Let us
approximate [J], by a finite subset E of [7], such that the €/2 neighborhood of E
covers [J],.. Now it is enough to prove that for any wy € F, there exists a sequence
wyg € [Mg], such that |wy — wy| < €/2 for sufficiently large k.

Let A be a disk of radius €/2 centered at wg. When A N ID(r) # (), we can take
such a wy, in 0D(r). Hence we may assume that A C D(r).

Since ¢(wg) € J,, and repelling cycles are dense in J., (see [Sch] and [Mi]. See
also the remark below), we can choose a w{ such that ¢(wy() is a repelling periodic
point of some period m and |wy — wj| < €/4. This implies that the function x : w —

M(d(w)) — ¢(w) has a zero at w = wy,

Let us consider the function x; : w = fi', o, 0(Pr(w)) — Px(w), where Op(w) =
fé;fg pkw(CO +Qprw) as in Lemma 1. By the Hurwitz theorem and uniform convergence
of @ to ¢ on compact sets of C, x; has a zero wy in A and |w, — wj| < €/4 for all
sufficiently large k. In particular, ¢ := co + Qpgwy, satisfies fo ™ (¢,) = LR (e )
and thus ¢, € M. Hence we have a desired wy € My, with |wy — wp| < €/2. [ |

Example (Calculation of Q). When ¢y = =2 (hencel =p =1), Ay = f! (—2) = —4
and Ao = f! (fe,(—2)) = 4. Since a(c)® + ¢ = a(c) we find da(c)/dc = —1/(2a(c) — 1).
Moreover, db(c)/dc = (d/dc)(c* + ¢) = 2c + 1. Hence for ¢ = ¢y = —2, we have
By = —3—(—1/3) = —8/3 and the constant @ is Ay/By = 3/2.

Remarks.

e Note that in the proof of Theorem 2, ¢(wy,) need not be repelling. We only need
the density of periodic points in the Julia set, which is an easy consequence of
Montel’s theorem. See [Mi, p.157].

e A similar proof can be applied to semi-hyperbolic parameters (i.e., critically non-
recurrent parameters) in OM [Ka, Théoreme 2.2], and to the unicritical family
{z —20+c:ce (C} with d > 2. This gives an alternative proof of Rivera-
Letelier’s extension of Tan’s theorem [RL].

Appendix. Existence of the Poincaré function

w
Here we give a proof for the fact used in the proof of Lemma 1 that w ffop ap + VA

0
converges as k — oo. This is originally shown by using a local linearization theorem

5



by Koenigs. See [Mi, Cor.8.12]. Our proof is based on the normal family argument and
the univalent function theory (see [Du] for example).

Theorem 3 Let g : C — C be an entire function with g(0) = 0, ¢'(0) = A, and
|A| > 1. Then the sequence ¢p(w) = g"(w/A") converges uniformly on compact sets in
C. Moreover, the limit function ¢ : C — C satisfies g o p(w) = ¢(Aw) and ¢'(0) = 1.

Proof. Since g(z) = Az + O(2?%) near z = 0, there exists a disk A = D(4) = {|z| < ¢}
such that g|A is univalent and A € g(A). Hence we have a univalent branch g;* of g
that maps A into itself.

First we show that ¢,, is univalent on D(d/4): Since the map ¢, ' : w — A\"gy " (w)
is well-defined on A = D(§) and univalent, its image contains D(5/4) by the Koebe
1/4 theorem. Hence ¢, is univalent on ID(6/4), and by the Koebe distortion theorem,
the family {¢,},,~, is locally uniformly bounded on ID(§/4) and thus equicontinuous.

Next we show that ¢, has a limit on D(6/4): Fix an arbitrarily large » > 0 and
an integer N such that r < §|A\|V/4. By using the Koebe 1/4 theorem as above, the
function Gy i(w) := AN g"(w/ANT) (k € N) satisfying ¢y = ¢n o Gy is univalent
on the disk D(5|A\|V/4). By the Koebe distortion theorem, there exists a constant
C' > 0 independent of N and k such that for any w € D(r) and sufficiently large N we
have |G’y ;. (w) — 1] < Clw|/|A]Y. By integration we have |Gy x(w) —w| < Cr?/(2|AY)
on D(r). In particular, Gy — id uniformly on D(§/4) as N — oo. Since the family
{¢n} is equicontinuous on D(§/4), the relation ¢nir = ¢n 0 Gy implies that {¢,}, <,
is Cauchy and has a unique limit ¢ on any compact sets in D(5/4). -

Let us check that the convergence extends to C: (We will not use the functional
equation ¢g" o ¢(w) = ¢(A"w). Compare [Mi, Cor.8.12].) Since |pyix(w) — on(w)| =
|ON (Gng(w)) — dn(w)| and |Gy p(w) —w| = Cr?/(2|A|Y) on D(r), it follows that the
family {¢nir}~o (With fixed N) is uniformly bounded on D(r). Hence {¢,}, ., is
normal on any compact set in C and any sequential limit coincides with the local limit

¢ on D(5/4).
The equation g o ¢(w) = ¢(Aw) and ¢'(0) = 1 are immediate from g o ¢, (w) =
bnia () and @,(0) = 1. .

Remark. One can easily extend this proof to the case of meromorphic g by using
the spherical metric.
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