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Abstract

We present an interpretation of the Riemann hypothesis in terms of complex

and topological dynamics. For example, the Riemann hypothesis is true and all

zeros of the Riemann zeta function are simple if and only if a meromorphic func-

tion that is explicitly given in this note has no attracting fixed point. To obtain

this, we use the holomorphic index (residue fixed point index) that characterizes

the local properties of the fixed points in complex dynamics.

1 The Riemann zeta function

For s ∈ C, the series

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

converges if Re s > 1 and ζ(s) is analytic on the half-plane {s ∈ C : Re s > 1}. It

is also analytically continued to a holomorphic function on C − {1}, and s = 1 is a

simple pole. Hence we regard ζ(s) as a meromorphic function (a holomorphic map)

ζ : C → Ĉ = C ∪ {∞}. This is the Riemann zeta function ([T, p.13]).

It is known that ζ(s) = 0 when s = −2,−4,−6, . . .. These zeros are called trivial

zeros of the Riemann zeta function ([T, p.30]). We say the other zeros are non-trivial.

The Riemann hypothesis, the most important conjecture on the Riemann zeta func-

tion, concerns the alignment of the non-trivial zeros of ζ:

The Riemann hypothesis. All non-trivial zeros lie on the vertical line {s ∈ C :

Re s = 1/2}.
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The line {s ∈ C : Re s = 1/2} is called the critical line. It has been numerically

verified that the first 1013 non-trivial zeros above the real axis lie on the critical line

[G].

It has also been conjectured that every zero of ζ is simple. We refer to this conjecture

as the simplicity hypothesis. (See [RS, p176] or [Mu, p177] for example. For some

related results and observations, see [T, §10.29, §14.34, §14.36]. )
The aim of this note is to reformulate the Riemann hypothesis in terms of complex

and topological dynamical systems. More precisely, we translate the locations of the

non-trivial zeros into dynamical properties of the fixed points of a meromorphic function

of the form

νg(z) = z − g(z)

z g′(z)
,

where g is a meromorphic function on C that shares (non-trivial) zeros with ζ. For

example, we set g = ζ or the Riemann xi function

ξ(z) :=
1

2
z(1− z)π−z/2Γ

(z
2

)
ζ(z).

The function νg(z) is carefully chosen such that

• If g(α) = 0 then νg(α) = α; and

• the holomorphic index (or the residue fixed point index; see §2) of νg at α is α

itself when α is a simple zero of g(z).

See §3 for more details.

For a given meromorphic function g : C → Ĉ, we say a fixed point α of g is

attracting if |g′(α)| < 1, indifferent if |g′(α)| = 1, or repelling if |g′(α)| > 1. We show

the following translations of the Riemann hypothesis (plus the simplicity hypothesis):

Theorem 1 The following conditions are equivalent:

(a) The Riemann hypothesis is true and every non-trivial zero of ζ is simple.

(b) Every non-trivial zero of ζ is an indifferent fixed point of the meromorphic function

νζ(z) := z − ζ(z)

z ζ ′(z)
.

(c) The meromorphic function νζ above has no attracting fixed point.

(d) There is no topological disk D with νζ(D) ⊂ D.

Note that (d) is a topological property of the map νζ : C → Ĉ in contrast to the

analytic (or geometric) nature of (a). We will present the proof and some variants of

this theorem in §4.
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§5 is devoted to some numerical observations and questions on the linearization

problem. §6 is an appendix wherein we apply Newton’s method to the Riemann zeta

function. We also give a “semi-topological” criterion for the Riemann hypothesis in

terms of the Newton map (Theorem 14).

Remarks.

• The following well-known facts are used in this note (see p.13 and p.45 of [T]):

– The functional equation

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s) (∗)

implies that if α is a non-trivial zero of ζ(s), then so is 1−α and they have

the same order.

– Every non-trivial zero is located in the critical strip

S := {s ∈ C : 0 < Re s < 1}.

Hence the non-trivial zeros are symmetrically arrayed with respect to s = 1/2 in

S. In fact, there is another symmetry (which we do not use in this note) with

respect to the real axis, which comes from the relation ζ(s) = ζ(s).) By these

properties, we will primarily consider the zeros that lie on the upper half of the

critical strip S.

• We can apply the method of this note to other zeta functions without extra effort.

(See [I, §1.8] for examples of zeta functions.) However, we need a functional

equation, such as (∗), to obtain a result similar to Theorem 1. For example, it is

valid for the Dirichlet L-functions.

• We used Mathematica 10.0 for all the numerical calculations.

Acknowledgments. The author would like to thank Masatoshi Suzuki and the

referee for helpful, interesting, and stimulating comments.

2 Fixed points and holomorphic indices

Multiplier. Let g be a holomorphic function on a domain Ω ⊂ C. We say that α ∈ Ω

is a fixed point of g with multiplier λ ∈ C if g(α) = α and g′(α) = λ. The multiplier

λ is the primary factor that determines the local dynamics near α. We say the fixed

point α is attracting, indifferent, or repelling according to whether |λ| < 1, |λ| = 1, or

|λ| > 1.

Topological characterization. Attracting and repelling fixed points of holomorphic

mappings have purely topological characterizations (cf. Milnor [Mi, §8]):
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Proposition 2 (Topological characterization of fixed points) Let g be a holo-

morphic function on a domain Ω ⊂ C. The function g has an attracting (respectively,

repelling) fixed point if and only if there exists a topological disk D ⊂ Ω such that

g(D) ⊂ D (respectively, g|D is injective and D ⊂ g(D) ⊂ Ω).

The condition that g is holomorphic is essential. For example, if we only assume that

g is C∞, any kind of fixed point may exist in a disk D with g(D) ⊂ D.

Figure 1: Topological disks that contain an attracting or a repelling fixed point.

Proof. If a topological disk D in Ω satisfies g(D) ⊂ D, we may observe the map

g : D → g(D) ⊂ D via the Riemann map, and it is sufficient to consider the case of

D = D, the unit disk. By the Schwarz-Pick theorem (see [Ah2, §1]) the map is strictly

contracting with respect to the distance d(z, w) := |z −w|/|1− zw| (or the hyperbolic
distance) on D, and it must have an attracting fixed point.

The converse is easy, and the repelling case is analogous. ■

Holomorphic index. Let α be a fixed point of a holomorphic function g : Ω → C.
We define the holomorphic index (or residue fixed point index) of α by

ι(g, α) :=
1

2πi

∫
C

1

z − g(z)
dz,

where C is a small circle around α in the counterclockwise direction. The holomorphic

index is mostly determined by the multiplier:

Proposition 3 If the multiplier λ := g′(α) is not 1, then we have ι(g, α) =
1

1− λ
.

See [Mi, Lem.12.2] for the proof.

Remark. Any complex number K can be the holomorphic index of a fixed point of

multiplier 1. For example, the polynomial g(z) = z − z2 + Kz3 has a fixed point at

zero with g′(0) = 1 and ι(g, 0) = K.

Since the Möbius transformation λ 7→ 1

1− λ
= ι sends the unit disk to the half-

plane {ι ∈ C : Re ι > 1/2}, fixed points are classified as follows:
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Proposition 4 (Classification by index) Suppose that the multiplier λ = g′(α) is

not 1. Then α is attracting, indifferent, or repelling if and only if the holomorphic

index ι = ι(g, α) satisfies Re ι > 1/2, = 1/2, or < 1/2 respectively.

Figure 2: Relation between multipliers and holomorphic indices

Note that the “critical line” in the ι-plane corresponds to indifferent fixed points whose

multipliers are not 1.

3 The nu function

Let g : C → Ĉ be a non-constant meromorphic function. (We regard such a mero-

morphic function as a holomorphic map onto the Riemann sphere.) We define the nu

function νg : C → Ĉ of g by

νg(z) := z − g(z)

zg′(z)
.

This is also a non-constant meromorphic function on C unless g(z) = gm(z) :=

C

(
1− 1

mz

)m

for some C ∈ C− {0} and m ∈ Z− {0}.

Using the Taylor and Laurent series, it is not difficult to check:

Proposition 5 (Fixed points of νg) Suppose that α ̸= 0. Then, α is a fixed point

of νg if and only if α is a zero or a pole of g. Moreover,

• if α is a zero of g of order m ≥ 1, then ν ′
g(α) = 1− 1

mα
and ι(νg, α) = mα;

• if α is a pole of g of order m ≥ 1, then ν ′
g(α) = 1 +

1

mα
and ι(νg, α) = −mα.

If 0 is a zero or a pole of g of order m ≥ 1, then νg(0) = 1/m or −1/m respectively.

In particular, 0 is not a fixed point of νg.

An immediate corollary is the following:
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Corollary 6 The function νg has no fixed point with multiplier 1.

Hence we can always apply Proposition 4 to the fixed points of νg.

Remark. There is another way to calculate the holomorphic index. (This is actually

how the author found the function νg.) Suppose that α is a zero of g of order m.

A variant of the argument principle ([Ah1, p.153]) yields that for any holomorphic

function ϕ defined near α, we have

1

2πi

∫
C

ϕ(z)
g′(z)

g(z)
dz = mϕ(α),

where C is a small circle around α in the counterclockwise direction. Set ϕ(z) := z.

Then the equality above is equivalent to

1

2πi

∫
C

1

z − νg(z)
dz = mα.

The same argument is also valid when α is a pole.

Example. Consider a rational function g(z) =
(z + 1)(z − 1/2)2

z3(z − 1)
. By Propositions

4 and 5, the zeros −1 and 1/2 of g are repelling and attracting fixed points of νg
respectively. The pole 1 is a repelling fixed point, however, the other pole 0 is not a

fixed point of νg.

4 The Riemann hypothesis

Let us consider the nu function νζ of the Riemann zeta function, and prove Theorem

1.

Trivial zeros and the pole. It is known that the trivial zeros α = −2, −4, · · · of

ζ of ζ are all simple [T, p30]. By Propositions 4 and 5, their holomorphic indices are

α themselves and they are all repelling fixed points of νζ . Similarly, the unique pole

z = 1 of ζ is simple and it is a repelling fixed point of νζ . Hence we have the following:

Proposition 7 Every fixed point of νζ off the critical strip S is repelling.

Non-trivial zeros. Let α be a non-trivial zero of order m ≥ 1 in the critical strip

S. By Proposition 5, α is a fixed point of νζ with multiplier λ := 1− 1/(mα) ̸= 1, and

its holomorphic index is ι := mα.

If the Riemann hypothesis holds, then Re ι = mReα = m/2. Thus Re ι = 1/2 if

m = 1 and Re ι ≥ 1 if m ≥ 2. By Proposition 4, we have the following:

Proposition 8 Under the Riemann hypothesis, any fixed point α of νζ in S is a zero

of ζ that lies on the critical line. Moreover,
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• If α is a simple zero of ζ, then α is an indifferent fixed point of νζ with multiplier

̸= 1.

• If α is a multiple zero of ζ, then α is an attracting fixed point of νζ.

In particular, if the simplicity hypothesis also holds, then all non-trivial zeros of ζ are

indifferent fixed points of νζ.

Hence, (a) implies (b) in Theorem 1. Now we show the converse.

Proposition 9 If the fixed points of νζ in the critical strip S are all indifferent, then

both the Riemann hypothesis and the simplicity hypothesis are true.

Proof. Let α be an indifferent fixed point of νζ in the critical strip S. Since ζ

has no pole in S, α is a zero of ζ of some order m ≥ 1, and the holomorphic index is

ι(νζ , α) = mα by Proposition 5. By the functional equation (∗), the point 1−α is also a

zero of ζ of orderm contained in S. and the holomorphic index is ι(νζ , 1−α) = m(1−α).

By assumption, both α and 1 − α are indifferent fixed points of νζ . Hence by

Proposition 4, the real parts of ι(νζ , α) = mα and ι(νζ , 1 − α) = m(1 − α) are both

1/2. This happens only if m = 1 and Reα = 1/2. ■

Let us finish the proof of Theorem 1:

Proof of Theorem 1. The equivalence of (a) and (b) is shown by Proposition 8 and

Proposition 9 above. Condition (b) implies (c) by Proposition 7.

Suppose that (c) holds. Then any fixed point α of νζ in the critical strip S is

repelling or indifferent, and it is also a zero of ζ of some orderm by Proposition 5. Hence

the holomorphic index ι(νζ , α) = mα satisfies Remα ∈ (0, 1/2]. By the functional

equation (∗), the same holds for 1 − α ∈ S and the index ι(νζ , 1 − α) = m(1 − α)

satisfies Rem(1 − α) ∈ (0, 1/2]. This implies that m = 1 and Reα = 1/2, and we

conclude that (c) implies (a).

The equivalence of (c) and (d) comes from Proposition 2. ■

A more topological version. Note again that condition (d) of Theorem 1 is a purely

topological condition for the function νζ . This means that the condition is preserved

for any continuous function that are topologically conjugate to νζ . More precisely, we

have:

Theorem 10 Conditions (a) - (d) of Theorem 1 are equivalent to:

(e) For any homeomorphism h : Ĉ → Ĉ with h(∞) = ∞, the continuous function

νζ,h := h ◦ νζ ◦ h−1 has no topological disk D with νζ,h(D) ⊂ D.

The proof is a routine. We may regard the dynamics of the map νζ,h as a topological

deformation of the original dynamics of νζ (Figure 3). Note that the critical line may
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Figure 3: Topological deformation of the dynamics of νζ . By Theorem 10, we can still

state the Riemann hypothesis and the simplicity hypothesis in the deformed dynamics.

not be a “line” any more when it is mapped by a homeomorphism. (That may even

have a positive area!)

Variants. Next we consider νg for g = ξ, the Riemann xi function presented in the

first section. It is known that ξ : C → C is an entire function whose zeros are exactly

the non-trivial zeros of the Riemann zeta function. Moreover, we have the functional

equation ξ(z) = ξ(1− z). See [T, p.16] for example.

Following the same argument as in the proof of Theorem 1, we have its variant in

terms of ξ:

Theorem 11 The following conditions are equivalent to conditions (a) - (e) stated

above :

(b’) All the fixed points of the meromorphic function νξ(z) := z− ξ(z)

z ξ′(z)
are indiffer-

ent.

(c’) The meromorphic function νξ above has no attracting fixed point.

(d’) There is no topological disk D with νξ(D) ⊂ D.

The proof is simpler because ξ has neither trivial zeros nor poles.

Remark. To have an entire function it is enough to consider the function

η(z) := (z − 1)ζ(z).

In this case, η(z) and ζ(z) share all the zeros and one can state a theorem similar to

Theorem 1. (We will apply Newton’s method to this η in §6.)
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5 Linearization problem

Under the Riemann hypothesis and the simplicity hypothesis, each non-trivial zero of

ζ is of the form α = 1/2 + γi (γ ∈ R), and α is an indifferent fixed point of νζ with

ν ′
ζ(α) = 1 − 1/α (Theorem 1 and Proposition 5). In this section, we present some

brief observations on these fixed points. (This section is addressed to readers familiar

with complex dynamics. See [Mi, §10, §11] and references therein for more details on

this subject.)

Non-trivial zeros and rotation number. We first point out the following easy

fact:

Proposition 12 Under the Riemann and simplicity hypotheses, non-trivial zero α =

1/2 + γi (γ ∈ R) is an indifferent fixed point of νζ with multiplier e2πiθ (θ ∈ R), where

the values γ and θ are related by γ =
1

2 tan πθ
, or equivalently, θ =

1

π
arctan

1

2γ
.

Such a θ is called the rotation number of the indifferent fixed point α. We say α is

linearizable if the local dynamics near α is conjugate to the rigid rotation w 7→ e2πiθw.

A Siegel disk is the maximal domain where such a conjugacy exists. Now it is natural

to ask:

Linearization problem. Can θ be a rational number? Is α linearizable?

That is, can νζ have a Siegel disk?

It is known that for Lebesgue almost every θ ∈ [0, 1) − Q, the irrationally indifferent

fixed points with multiplier e2πiθ are all linearizable. However, there is a dense subset

of rotation numbers (consisting of some irrationals and all rationals in [0, 1)) that

always gives non-linearizable indifferent fixed points. The sufficient conditions for

(non)-linearizability are often described in terms of the continued fraction expansion

of the rotation number θ ∈ [0, 1), which we denote by

θ =
1

a1 +
1

a2 +
1

a3 + · · ·

=: [a1, a2, a3, . . .]

where a1, a2, a3, . . . are all in N.

Numerical observation. Table 1 lists the continued fractions up to the 50th term

for some zeros calculated by built-in functions ZetaZero and ContinuedFraction of

Mathematica 10.0. (Here, 1/2+γni (γn > 0) is the nth non-trivial zero of ζ from below

and γn = 1/(2 tan πθn). Note that θn → 0 as γn → ∞.)

Figure 4 shows some orbits near the first four non-trivial zeros of ζ in the dynamics

of νζ and νξ.
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Figure 4: First four Siegel disks (?) of νζ (left) and νξ (right).
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n Im γn θn [a1, a2, · · · , a25, a26, · · · , a50]
1 14.1347 0.0112552 [88,1,5,1,1,2,2,5,2,15,2,4,2,4,1,9,1,1,5,2,10,1,1,5,1,

2,7,100,9,2,2,3,2,5,1,8,179,23,1,1,35,1,3,1,2,8,7,34,4,1]

2 21.0220 0.00756943 [132,9,14,1,1,1,2,1,52,1,9,3,4,1,1,1,1,2,2,3,2,1,10,1,1,

1,9,1,1,6,5,1,5,3,1,5,2,6,1,135,1,1,5,1,2,3,2,9,1,3]

3 25.0109 0.00636259 [157,5,1,12,3,1,1,1,1,2,11,1,29,5,1,4,1,1,3,5,14,1,3,1,2,

3,6,14,4,1,41,4,1,1,7,4,1,3,21,1,4,3,1,2,2,1,16,1,2,3]

4 30.4249 0.00523061 [191,5,2,15,3,2,2,7,2,1,2,46,2,1,1,6,1,4,2,2,4,1,6,1,1,

2,5,1,8,1,2,2,5,1,4,39,3,19,5,2,9,1,1876,2,12,1,4,4,1,6]

10 49.7738 0.00319746 [312,1,2,1,48,1,1,4,1,3,1,2,5,1,21,1,4,1,3,2,1,1,8,1,6,

9,1,2,3,2,1,2,1,1,1,4,1,1,1,5,2,1,3,126,1,24,3,2,29,5]

102 236.524 0.00067289 [1486, 7,1,4,1,2,1,53,2,8,1,4,6,3,1,3,1,13,3,1,7,2,18,3,1,

1,1,1,1,2,1,210,3,4,1,3,1,2,2,8,1,1,7,2,2,2,1,12,2,2]

103 1419.42 0.000112127 [8918,2,48,220,1,15,1,1,6,1,1,6,2,4,149,1,15,3,6,1,4,1,1,64,11,

1,1,13,11,2,4,2,3,2,4,1,2,1,1,2,3,46,1,11,3,1,18,1,6,4]

104 9877.78 0.0000161124 [62063,1,15,2,1,2,1,8,1,2,6,2,1,2,2,1,5,1,1,186,3,5,4,14,9,

1,12,1,12,1,6,4,22,1,3,15,1,2,1,14,1,2,2,12,3,1,1,1,45,2]

Table 1: Continued fraction expansions for some zeros of ζ.

6 Appendix: Newton’s method

There are many root finding algorithms, but the most popular one is Newton’s method.

Let us apply it to the Riemann zeta function and its variants. The aim of this ap-

pendix is to describe it in terms of the holomorphic index. (See [S] for an intriguing

investigation on how we can efficiently detect all the zeros of ζ by Newton’s method. )

Newton maps and fixed points. Let g : C → Ĉ be a non-constant meromorphic

function. We define its Newton map Ng : C → Ĉ by

Ng(z) = z − g(z)

g′(z)
,

which is again meromorphic. (See [B, §6].) Here is a version of Proposition 5 (and

Corollary 6) for Ng:

Proposition 13 (Fixed points of Ng) A given point α ∈ C is a fixed point of Ng if

and only if α is a zero or a pole of g. Moreover,

• if α is a zero of g of order m ≥ 1, then α is an attracting fixed point of multiplier

N ′
g(α) = 1− 1/m and its index is ι(Ng, α) = m.

• if α is a pole of g of order m ≥ 1, then α is a repelling fixed point of multiplier

N ′
g(α) = 1 + 1/m and its index is ι(Ng, α) = −m.
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In particular, Ng has no fixed point of multiplier 1.

The proof is similar to that of Proposition 5 and is left to the reader.

Newton’s method. The idea of Newton’s method is to use the attracting fixed points

of Ng to detect the zeros of g. More precisely, by taking an initial value z0 sufficiently

close to a zero α, the sequence
{
Nn

g (z0)
}
n≥0

converges rapidly to the attracting fixed

point α.

Holomorphic index and the argument principle. For the fixed point α of Ng

its holomorphic index is

ι(Ng, α) =
1

2πi

∫
C

1

z −Ng(z)
dz =

1

2πi

∫
C

g′(z)

g(z)
dz

where C is a small circle around α in the counterclockwise direction. This is exactly

the argument principle applied to g.

The Riemann hypothesis. When we apply Newton’s method to the Riemann zeta

function, all zeros of ζ are converted to attracting fixed points of Nζ(z) = z−ζ(z)/ζ ′(z).

By Proposition 2, we have:

Theorem 14 The Riemann hypothesis is true if and only if there is no topological disk

D contained in the strip S ′ = {z ∈ C : 1/2 < Re z < 1} satisfying Nζ(D) ⊂ D.

Some pictures. It is easier to draw pictures of the chaotic locus (the Julia set) of

Newton’s map Nζ than of νζ . After the list of references, we present some pictures

of the chaotic loci for the Newton maps of ζ(z), η(z) := (z − 1)ζ(z) (this is an entire

function), ξ(z) and cosh(z) with comments.
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Figure 5: Left: The Julia set of Nζ in {Re z ∈ [−20, 10], Im z ∈ [−1, 39]}. (It is

symmetric with respect to the real axis.) The orange dots are disks that are close to

the zeros of ζ. More bluish colors indicate the points that require more iteration to get

close to the zeros. Right: The same region in different colors. Colors distinguish the

zeros to converge.

14



Figure 6: The Julia set of Nη in {Re z ∈ [−20, 20], Im z ∈ [−1, 39]}, drawn in the same

colors as in Figure 5. Probably because η is entire, the dynamics of Nη is simpler than

that of Nζ . It is known that for any transcendental entire function g and its zeros,

their immediate basins (the connected components of the Fatou set of Ng that contain

the zeros) are simply connected and unbounded ([MS]).
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Figure 7: Details of the Julia set of Nη in {Re z ∈ [−2, 10], Im z ∈ [10, 60]} (“Heads of

Chickens”).
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Figure 8: Details of the Julia set of Nξ in {Re z ∈ [0, 40], Im z ∈ [−1, 39]}. (It is

symmetric with respect to the real axis and the critical line.) The dynamics seems

surprisingly simple. Compare with the case of the hyperbolic cosine in Figure 10.

Figure 9: Details of the Julia set of Nξ in {Re z ∈ [0.5, 6.5], Im z ∈ [0, 2.5]}.
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Figure 10: The Julia set of the Newton map Ncosh of the hyperbolic cosine cosh z in

{Re z ∈ [0, 40], Im z ∈ [−1, 39]}. Does the Julia set of Ncosh have the same topology as

that of Nξ? Do they belong to the same deformation space?

Figure 11: Details of the Julia set of the Newton map Ncosh in {Re z ∈ [0, 1.5], Im z ∈
[0, 3.5]}.
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