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Abstract In this study, a participation game in a mechanism to produce a pure pub-
lic good is examined; in this game, agents decide simultaneously whether they will
participate in the mechanism or not, and only the agents that selected participation
decide the level of public good provision and distribute the cost of the public good in
proportion to the benefits that participants receive from the public good. We focus
on the economy in which the public good is produced in integer units. We first show
that if at most one unit of the public good can be provided in this economy, then the
participation game has a Nash equilibrium that supports a Pareto efficient allocation
and some of such Nash equilibria are strong equilibria (Aumann, 1959). However, the
results are not obtained in the economy in which the public good is provided in multiple
units. We second show that, in the economy where at most two units of the public good
are provided, if agents are identical and some conditions are satisfied, then no Nashe
quilibrium supports Pareto efficient allocations.
Keywords: Participation game, Proportional cost-sharing allocation rule, Public project,
Multi-unit public good, Strong equilibrium
JEL Classification Numbers: C72, D62, D71, H41.

1 Introduction

This paper studies a participation problem in a mechanism to produce a pure public
good. From the theory of implementation, the construction of a mechanism can solve
the “free-rider” problem in economies with public goods. For example, Bagnoli and
Lipman (1989), Jackson and Moulin (1992), and Bag (1997) constructed mechanisms
to implement desirable allocation rules in the economy with a discrete public good.
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However, implementation theory supposes the participation of all agents, and each
agent does not have the right to decide whether he participates in the mechanism or not.
Palfrey and Rosenthal (1984), Saijo and Yamato (1999), and Dixit and Olson (2000)
pointed out the importance of strategic behavior of agents as they can decide whether or
not to participate in the mechanisms. In the real world, as for example the participation
problems in international environmental treaties, agents often have the right to make
such decisions, and they may have an incentive not to enter the mechanism, hoping
that other agents will participate in the mechanism and provide a public good. This
will generate another kind of a free-rider problem.

These authors formulated a participation game in a public good mechanism. In the
game, each agent simultaneously chooses either participation or non-participation in
the mechanism. If an agent chooses participation, he pays the expense requested by the
mechanism and the public good is produced. If an agent selects non-participation, he
can enjoy the public good at no costs. Palfrey and Rosenthal (1984) and Dixit and Olson
(2000) analyzed the participation game in the case in which the public good is discrete
and at most one unit of the public good is produced. They showed that there exist
Nash equilibria that support efficient allocations in the game. Saijo and Yamato (1999)
examined the participation game in the case of a perfectly divisible public good. They
considered a mechanism that implements the Lindahl allocation rule. They showed
that not every agent enters the mechanism at Nash equilibria and proved that efficient
allocations of the economy are not achieved at the equilibrium of the game in many
cases. Hence, it depends on the form of the provision of a public good whether the
equilibrium of the participation game achieves the efficient allocations or not.

In this paper, we examine the participation game that is similar to that of the
earlier literature. We consider an economy in which the public good is discrete and
there is a mechanism that implements a proportional cost-sharing rule: The public
good is produced in a way that maximizes the total surplus of participants, and the
cost of producing the public good is distributed among participants in proportion to
the benefits that participants receive from the public good. First, we examine the
participation game where only one unit of the public good can be provided, which is
similar to Palfrey and Rosenthal (1984) and Dixit and Olson (2000). (We, hereafter,
call this game a participation game with a public project.) In this case, there is a
Nash equilibrium at which a Pareto efficient allocation is achieved and some of such
Nash equilibria are strong equilibria introduced by Aumann (1959). Second, we extend
our analysis to the case of a multi-unit public good. In particular, we focus on the
participation game in which the public good is discrete and at most two units of the
public good. In this case, a Nash equilibrium of the game can not necessarily support
the efficient allocation. We show that no Nash equilibrium supports a Pareto efficient
allocation if agents are identical and some conditions hold. We can conclude from these
results that the assumption that only one unit of the public good can be produced
is essential to the general existence of a Nash equilibrium that supports an efficient
allocation and that of a strong equilibrium. Moreover, we obtain the implication that
is similar to those of Saijo and Yamato (1999) even in the participation game in which
the public good is discrete and at most two units of the public good can be produced.

Before the model is introduced, let us discuss the relationship between our work
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and other work. First, we allow the case in which agents’ preferences are heteroge-
neous. Earlier literature on the participation game has focused on the case of identical
agents. Second, we consider the possibility that agents form a coalition and coordinate
the participation decisions. We analyze the effect of such coalitional behavior on the
participation decision. Palfrey and Rosenthal (1984), Saijo and Yamato (1999), and
Dixit and Olson (2000) have focused solely on Nash equilibria, disregarding the effects.
In this paper, analyses are presented of strong equilibria and Nash equilibria. A strong
equilibrium is a strategy profile that is stable against all possible coalitional deviations.
This is a very demanding equilibrium concept, and many games that are of interest
to economists do not have a strong equilibrium. In this paper, we identify a sufficient
condition for the existence of a strong equilibrium in games of the provision of pure
public goods.

2 A participation game with a public project

We consider the problem of undertaking a (pure) public project and distributing its
cost. Let n be the number of agents. We denote the set of agents by N = {1, . . . , n}.
Let y ∈ {0, 1} be the public project: y = 1 if the project is undertaken, and y = 0
if not. Let θi > 0 denote agent i’s willingness to pay for the project or benefit from
the project. Let xi ≥ 0 denote a transfer from agent i. Each agent i has a preference
relation which is represented by a quasi-linear utility function Vi(y, xi) = θiy − xi. The
cost of the project is c > 0.

In this paper, we assume that there exists a mechanism that implements the propor-
tional cost-sharing rule. We consider a two-stage game. In the first stage, each agent
simultaneously decides whether she participates in the mechanism or not. In the second
stage, following the rule of the mechanism, only the agents that selected participation in
the first stage decide the implementation of the project and the distribution of its cost.
As a result, the proportional cost-sharing allocation only for participants’ preferences is
achieved.

First, we formally define the outcome of the second stage. Let P be a set of partic-
ipants and let (yP , (xP

j )j∈N) be the outcome of the second stage when P is the set of
participants. We denote θP =

∑
j∈P θj for all sets of participants P : θP is the sum that

agents in P are willing to pay for the public project. For all subsets P of N, #P means
the cardinality of the set P .

Assumption 1 Let P denote a set of participants. The allocation to participants
(yP , (xP

j )j∈P ) that satisfies the following conditions is attained in the equilibrium of the
mechanism:

if θP > c, then xP
i =

θi

θP

c for all i ∈ P and yP = 1, and

if θP ≤ c, then xP
i = 0 for all i ∈ P and yP = 0.

In this study, we are not concerned with an implementation problem of the propor-
tional cost-sharing rule. However, there is such an mechanism. Jackson and Moulin(1992)
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constructed the mechanisms which implements a class of cost-sharing rules including
the proportional cost-sharing rule in subgame perfect Nash equilibria and undominated
Nash equilibria.

Assumption 2 Let P ⊆ N be a set of participants. We assume xP
i = 0 for all i /∈ P ,

and every non-participant can also consume yP .

Assumption 2 expresses the non-excludability of the project. In this assumption,
participants bear the cost share for the project, but non-participants do not. In spite
of this, non-participants can benefit from the project.

Given the outcome of the second stage, the participation decision stage can be
reduced to the following simultaneous game. In the game, each agent i simultaneously
chooses either si = I (participation) or si = O (non-participation), and then the set
of participants is determined. Let P s be the set of participants at an action profile
s = (s1, . . . , sn). Then each agent i obtains the utility Vi(y

P s

, xP s

i ) at the action profile
s. That is, if the public project is undertaken, then participants share the cost of it in
proportion to the benefits from the project. However, each non-participant can free-ride
the public project. On the other hand, if it is not provided, then the payoffs of both
participants and non-participants are zero. We call this reduced game participation

game and formally define as follows.

Definition 1 (Participation game) A participation game is represented by
G =

[
N, Sn = {I, O}n, (Ui)i∈N

]
, where Ui is the payoff function of i which associates

a real number Ui(s) with each strategy profile s ∈ Sn: if P s designates the set of
participants at s, then Ui(s) = Vi(y

P s

, xP s

i ) for all i.

Our attention is limited to the pure strategy profiles.
We define equilibrium concepts of the participation game. The Nash equilibria of

the participation game are defined as usual. First, a definition is given for a strict Nash
equilibrium.

Definition 2 (Strict Nash equilibrium) A strategy profile s∗ ∈ Sn is a strict Nash

equilibrium if for all i ∈ N and for all ŝi ∈ S \ {s∗i }, Ui(s
∗
i , s

∗
−i) > Ui(ŝi, s

∗
−i).

The strict Nash equilibrium is an equilibrium concept that is strongly robust to
unilateral deviations. Every strict Nash equilibrium is a trembling-perfect Nash equilib-

rium in normal form games. The trembling-perfect Nash equilibrium is the notion of
non-cooperative equilibria that is robust to the possibility that players make mistakes
with small probability. From this viewpoint, the notion of strict Nash equilibrium can
be considered as one of the plausible equilibria.

Before defining strong equilibrium, some notation is presented. For all D ⊆ N ,
denote the complement of D by −D. For all coalitions D, sD ∈ S#D represents a
strategy profile for D. For all sN ∈ Sn, denote sN by s.

Definition 3 (Strong equilibrium) A strategy profile s∗ ∈ Sn is a strong equilibrium

of G if there exit no coalition T ⊆ N and its strategy profiles̃T ∈ S#T such that∑
i∈T Ui(s̃T , s∗−T ) >

∑
i∈T Ui(s

∗) for all i ∈ T .
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A strong equilibrium is a strategy profile at which no coalition, taking the strategies
of others as given, can jointly deviate in a way that increases the sum of the payoffs
of its members. The strong equilibrium in Definition 3 is slightly different from that
originally defined by Aumann (1959). The difference lies in the possibility of monetary
transfers among agents in coalitions. Our definition allows that members of coalitions
can freely send monetary transfers each other, but Aumann (1959)’s definition does not.
Hence, in our model, members of a coalition can coordinate their participation decision
through monetary transfers.1 Since the definition implies that the strong equilibrium is
based on the stability against all possible coalitional deviations, this equilibrium is also
one of the preferable non-cooperative equilibrium concepts.

Note that all strict Nash equilibria and all strong equilibria are Nash equilibria. Note
also that the set of strict Nash equilibria and that of strong equilibria are not always
related by inclusion.

Example 1 Let N = {1, 2, 3}, θ1 = θ2 = θ3 = 3/4, and c = 1. The payoff matrix of this
example is depicted in Table 1, where agent 1 chooses rows, agent 2 chooses columns,
and agent 3 chooses matrices. The first entry in each box is agent 1’s payoff, the second
is agent 2’s, and the third is agent 3’s. There are two types of Nash equilibria. One is
the Nash equilibrium with two participants and the other is the Nash equilibrium with
no participants. Only the Nash equilibria with participation of two agents are strict
Nash equilibria and strong equilibria.

I O
I 5

12
, 5

12
, 5

12
1
4
, 3

4
, 1

4

O 3
4
, 1

4
, 1

4
0, 0, 0

I

I O
I 1

4
, 1

4
, 3

4
0, 0, 0

O 0, 0, 0 0, 0, 0
O

Table 1: Payoff matrix of Example 1

3 Nash equilibria of the participation game

In this section, we characterize the sets of participants attained at Nash equilibria. The
set of feasible allocations is defined as A:

A =

{
(y, (xj)j∈N) |xj ≥ 0 for all j ∈ N, y ∈ {0, 1} and

∑

j∈N

xj ≥ cy

}
.

Assumption 3 θN > c.

Definition 4 An allocation (y, (xj)j∈N) is called Pareto efficient if there exists no fea-
sible allocation (ŷ, (x̂j)j∈N) such that Vi(ŷ, x̂i) ≥ Vi(y, xi) for all i ∈ N with strict
inequality for at least one i ∈ N .

1It generally holds true that the set of strong equilibria in a game without monetary transfers
contains the set of strong equilibria in the game with monetary transfers. But the converse is not
always true.
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We, hereafter, consider a case in which Assumption 3 holds. By Assumption 3, the
public project is undertaken at every Pareto efficient allocation of the economy. In the
next Lemma, we characterize the sets of participants supported as Nash equilibria.

Lemma 1 (1.1) Let P ⊆ N be such that θP > c. Then, P is a set of participants
supported as a Nash equilibrium if and only if θP − θi ≤ c for all i ∈ P .

(1.2) Let P ⊆ N be such that θP ≤ c. Then P is a set of participants supported as a
Nash equilibrium if and only if θP + θi ≤ c for all i /∈ P .

Proof. First, we show (1.1). Let P be a set of participants that satisfies θP > c. Let
us assume that P is supportable as a Nash equilibrium. Then,

Vi(y
P , xP

i ) ≥ Vi(y
P\{i}, xP\{i}) for all i ∈ P , and

Vi(y
P , xP

i ) ≥ Vi(y
P∪{i}, x

P∪{i}
i ) for all i /∈ P.

Since θP > c, Vi(y
P , xP

i ) = θi −
θi

θP
c for all i ∈ P . If θP − θj > c for some j ∈ P , then

the agent j has an incentive to switch from I to O because Vj(y
P\{j}, x

P\{j}
j ) = θj >

θj −
θj

θP
c = Vj(y

P , xP
j ), which is a contradiction. Therefore, we must have θP − θi ≤ c

for all i ∈ P . Next, suppose that θP − θi ≤ c for all i ∈ P . Then, the conditions below
are satisfied:

Vi(y
P , xP

i ) = θi −
θi

θP

c > 0 = Vi(y
P\{i}, x

P\{i}
i ) for all i ∈ P , and

Vi(y
P , xP

i ) = θi > θi −
θi

θP + θi

c = Vi(y
P∪{i}, x

P∪{i}
i ) for all i /∈ P .

Hence, P is supportable as a Nash equilibrium.
Secondly, we prove (1.2). Let P be such that θP ≤ c. If θP +θi ≤ c for all i /∈ P , then

Vi(y
P , xP

i ) = Vi(y
P\{i}, x

P\{i}
i ) = 0 for all i ∈ P and Vi(y

P , xP
i ) = Vi(y

P∪{i}, x
P∪{i}
i ) = 0

for all i /∈ P . Hence, P is attained at a Nash equilibrium. Conversely, assume that P
is a set of participants that is supportable as a Nash equilibrium. Then, we must have
that Vi(y

P , xP
i ) ≥ Vi(y

P∪{i}, x
P∪{i}
i ) = 0 for all i /∈ P . We have Vi(y

P , xP
i ) = 0 for all

i /∈ P , because θP ≤ c. If there exists agent j /∈ P such that θP +θj > c, then we obtain

Vj(y
P∪{j}, x

P∪{j}
j ) = θj −

θj

θP +θj
c =

θj

θP +θj
(θP + θj − c) > 0. This means that agent j has

an incentive to deviate, which is a contradiction. Therefore, it follows that θP + θi ≤ c
for all i /∈ P . Q.E.D.

In the following Lemma, we show that there is a set of participants that satisfies
(1.1) of Lemma 1.

Lemma 2 There exists a set of participants that satisfies (1.1) of Lemma 1 under
Assumption 3 in the participation game. Therefore, there is a Nash equilibrium at
which th project is carried out in the game.
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Proof. Let P be a set of participants such that:

P ∈ arg min
Q⊆N

θQ such that θQ > c. (1)

Note that there is at least one set of participants R satisfying θR > c by Assumption
3. Clearly, P satisfies θP > c and θP − θi ≤ c for all i ∈ P . Q.E.D.

Remark 1 The set of Nash equilibria in (1.1) of Lemma 1 coincides with that of strict
Nash equilibria in the participation game. By Lemma 2, a strict Nash equilibrium exists
in the participation game.

In the participation game, there may be a non-strict Nash equilibrium. For example,
a Nash equilibrium in which no agents choose I is obviously not strict in Example
1. Note that, if non-strict Nash equilibria exist, then the project is not done in the
equilibrium, and the allocation supported as the equilibrium is Pareto dominated by
that attained at a strict Nash equilibrium. The following proposition shows that the set
of strict Nash equilibria coincides with the set of Nash equilibria that support efficient
allocations.

Proposition 1 A strategy profile is a strict Nash equilibrium if and only if it is a Nash
equilibrium that supports an efficient allocation in the participation game.

Proof. First, we prove that every strict Nash equilibrium is a Nash equilibrium that
supports an efficient allocation. Obviously, every strict Nash equilibrium is a Nash
equilibrium. Hence, we need to show that every allocation achieved at a strict Nash
equilibrium is Pareto efficient. Let s ∈ Sn denote a strict Nash equilibrium and let
P s be the set of participants at s. Denote the allocation that is attained at s by
(yP s

, (xP s

j )j∈N). Note that Vi(y
P s

, xP s

i ) = θi−
θi

θPs
c for all i ∈ P s and Vi(y

P s

, xP s

i ) = θi for

all i /∈ P s. Suppose, on the contrary, a feasible allocation (ŷ, (x̂j)j∈N) Pareto dominates
(yP s

, (xP s

j )j∈N). It must be satisfied that Vi(ŷ, x̂i) = θi for all i /∈ P s because θi is
the greatest payoff of agent i in A. Hence, there is at least one participant j ∈ P
such that Vj(ŷ, x̂j) > Vj(y

P s

, xP s

j ). Let J ⊆ P s be the set of such participants, and

let εj = Vj(ŷ, x̂j) − Vj(y
P s

, xP s

j ) > 0 for all j ∈ J . Since Vj(y
P s

, xP s

j ) = θj −
θj

θPs
c > 0

for every j ∈ J , we must have ŷ = 1: otherwise, Vj(ŷ, x̂i) = 0. Then, we obtain that
Vj(ŷ, x̂i) = θj − xP

j + εj for all j ∈ J . By the argument above,

x̂j = 0 for all j /∈ P s,

x̂j = xP s

j − εj for all j ∈ J , and

x̂j = xP s

j for all j ∈ P s \ J .

Summing up x̂j for all j ∈ N yields
∑

j∈N x̂j =
∑

j∈P s xP s

j −
∑

j∈J εj = c−
∑

j∈J εj < c,

which contradicts feasibility of (ŷ, (x̂j)j∈N). Hence, (yP s

, (xP s

i )i∈N) is Pareto efficient.
Secondly, every Nash equilibrium that supports an efficient allocation is a strict

Nash equilibrium. Let s ∈ Sn be a Nash equilibrium that attains an efficient allocation.
Denote the set of participants at s by P s. Since the project is done at efficient alloca-
tions, we have θP s > c. Furthermore, it is satisfied that θP s − θi ≤ c for all i ∈ P s: if
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there is an agent j ∈ P s such that θP s − θj > c, then agent j has an incentive to deviate
from s because θj > θj − xP s

j . This contradicts the idea that s is a Nash equilibrium.
By Lemma 1 and Remark 1, s is a strict Nash equilibrium. Q.E.D.

4 Strong equilibria of the participation game

In this section, we characterize the set of strong equilibria and show that there is a
strong equilibrium in the participation game. By Lemma 2 and Proposition 1, there
exists a Nash equilibrium supporting an efficient allocation in the participation game.
But not all Nash equilibria attaining efficient allocations are strong equilibria. Moreover,
existence of the Nash equilibria does not necessarily imply that of strong equilibria. By
Pareto efficiency, the grand coalition does not improve its members’ payoffs. By the
definition of Nash equilibrium, every singleton coalition does not have an incentive
to deviate. Applying these arguments, all of the Nash equilibria supporting efficient
allocations are strong equilibria, when the economy consists of at most two agents.
However, in games with more than two agents, coalitions consisting of more than one
and less than n agents may form and their members may be better off. In fact, this
applies to the participation game. The following example shows that there exists a Nash
equilibrium supporting an efficient allocation, which is not a strong equilibrium in the
participation game.

Example 2 Let N = {1, 2, 3} and let θ1 = θ2 = 8, θ3 = 4, and c = 10. Table 2
shows the payoff matrix of this example. This game has three strict Nash equilibria:
(s1, s2, s3) = (O, I, I), (I, O, I) and (I, I, O). All the strict Nash equilibria support
efficient allocations. We now focus on the strategy profile s∗ = (I, I, O). The payoffs at
s∗ are U1(s

∗) = U2(s
∗) = 3, and U3(s

∗) = 4. Suppose a coalition C = {2, 3} is formed
and deviate from s∗C to s̃C = (O, I). Note that the public project is undertaken at
(s∗1, s̃C). The payoffs of agent 2 and 3 at (s∗1, s̃C) are U2(s

∗
1, s̃C) = 8 and U3(s

∗
1, s̃C) = 2/3.

Hence, the aggregate payoff for C at (s∗1, s̃C) is 26/3, which is greater than the sum of
payoffs of C at s∗. Therefore, the strategy profile s∗ is not a strong equilibrium, while
the other strict Nash equilibria are strong equilibria.

I O
I 4, 4, 2 4

3
, 8, 2

3

O 8, 4
3
, 2

3
0, 0, 0

I

I O
I 3, 3, 4 0, 0, 0
O 0, 0, 0 0, 0, 0

O

Table 2: Payoff matrix of Example 2

Example 2 indicates that not all strict Nash equilibria are strong in the participation
game. In this example, the sum of the benefits that participants receive from the project
is 12 in all strong equilibria, which is the smallest sum of the benefits of participants
that can be attained in the set of strict Nash equilibria. In the following subsection,
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we identify which strict Nash equilibrium is a strong equilibrium in the participation
game.

4.1 A characterization of strong equilibria

Proposition 2 Let s∗ ∈ Sn denote a strict Nash equilibrium and let P ∗ be the set of
participants at s∗. The strict Nash equilibrium s∗ is a strong equilibrium of G if and
only if there is not coalition T and its strategy profile ŝT ∈ S#T such that

T ∗
I ( P ∗, θ

T ∗

I
\bTI

> θ
bTI\T

∗

I
> 0, and θP ∗ − θ

T ∗

I
\bTI

+ θ
bTI\T

∗

I
> c, (2)

where T ∗
I = {i ∈ T |s∗i = I} and T̂I = {i ∈ T |ŝi = I}.

Proof. Let s∗ denote a strict Nash equilibrium. Denote the set of participants by P ∗.
Let T denote a coalition and let ŝT denote a profile of strategies for T . The set of
participants at (ŝT , s∗−T ) is denoted by P̂ . If we define T ∗

I = P ∩ T and T̂I = P̂ ∩ T ,

then P̂ = (P ∗ \ (T ∗
I \ T̂I)) ∪ (T̂I \ T ∗

I ). Note that θ
bP

= θP ∗ − θ
T ∗

I
\bTI

+ θ
bTI\T

∗

I
.

We first show the following lemma.

Lemma 3 Only the deviations that satisfy (2) improve the sum of the payoffs that
members of T obtain.

Proof of Lemma 3.

Claim 1 If θ
bP
≥ θP ∗ , then the sum of the payoffs that agents in T obtain before the

deviation is greater than or equal to the sum of the payoffs that members of T receive
before the deviation.

Proof of Claim 1. The sum of the payoffs of agents in T at s∗ is

θT −
θT ∗

I

θP ∗

c, (3)

and that at (ŝT , s∗−T ) is

θT −
θ

bTI

θ
bP

c. (4)

Subtracting (4) from (3) yields

−
θT ∗

I

θP ∗

c +
θ

bTI

θ
bP

c

=
c

θP ∗θ
bP

(θP ∗θ
bTI
− θ

bP
θT ∗

I
)

=
c

θP ∗θ
bP

(
θP ∗θ

bTI
− θT ∗

I

(
θP ∗ − θ

T ∗

I
\bTI

+ θ
bTI\T

∗

I

))

=
c

θP ∗θ
bP

(
θP ∗

(
θ

bTI
− θT ∗

I

)
− θT ∗

I

(
θ

bTI\T
∗

I
− θ

T ∗

I
\bTI

))
.
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Using the equation θ
bTI
− θT ∗

I
= θ

bTI\T
∗

I
− θ

T ∗

I
\bTI

, we obtain

c

θP ∗θ
bP

(
θP ∗ − θT ∗

I

) (
θ

bTI\T
∗

I
− θ

T ∗

I
\bTI

)
. (5)

We have θP ∗ − θT ∗

I
≥ 0 because T ∗

I ⊆ P ∗. Since θ
bP
≥ θP ∗ , we obtain θ

bTI\T
∗

I
≥ θ

T ∗

I
\bTI

.

Therefore, (5) is greater than or equal to zero. (End of Proof of Claim 1)

By Claim 1, the deviations by T satisfies θP ∗ > θ
bP

if they result in improvements.
Since θP ∗ > θ

bP
, we obtain θ

T ∗

I
\bTI

> θ
bTI\T

∗

I
.

Claim 2 If θ
bP
≤ c, the deviation does not increase the sum of payoffs of agents in T .

Proof of Claim 2. Note that the project is not undertaken at (ŝT , s∗−T ); thus, the
sum of the payoffs that members of T receive after the deviation is zero. Since (3) is
more than zero, the deviations after which θ

bP
≤ c is satisfies are not profitable. (End

of Proof of Claim 2)

Combining Claim 1 and Claim 2 gives θP ∗ > θ
bP

> c. By Lemma 1, θP ∗−θi ≤ c for all
i ∈ P ∗. Therefore, θP ∗ − θ

T ∗

I
\bTI

≤ c. By Claim 2, θ
bP

= θP ∗ − θ
T ∗

I
\bTI

+ θ
bTI\T

∗

I
> c. Thus,

we have θ
bTI\T

∗

I
> 0. Accordingly, it follows that θP ∗ > θ

eP
> c and θ

T ∗

I
\bTI

> θ
bTI\T

∗

I
> 0.

Claim 3 If T ∗
I = P ∗, then the total payoff of T at s∗ is equal to that at (ŝT , s∗−T ).

Proof of Claim 3. Note that the difference between the total payoff of T at s∗ and
that at (ŝT , s∗−T ) is equal to (5). Therefore, if T ∗

I = P ∗, then (5) is equal to zero. (End
of Proof of Claim 3)

By Claims 1, 2, and 3, the statement of Lemma 3 is proven. (End of Proof of
Lemma 3)

It is clear from Lemma 3 that a strict Nash equilibrium is a strong equilibrium in
the participation game if and only if there are no coalitional deviations that satisfies
(2). Q.E.D.

Proposition 2 says that a deviation from a strict Nash equilibrium results in improve-
ments if and only if there exists the following situation: at the strict Nash equilibrium,
a proper subset of the set of participants and non-participants form a coalition and
they can coordinate in a way in which the sum of the benefits from the project of par-
ticipants decreases and the project is undertaken. In this situation, members of the
coalition changing their strategies I to O get benefits, and those who alter O to I suffer
losses. However, by transferring part of the benefits to the agents altering O to I, the
members switching I to O can make up for the losses. As a result, all members of the
coalition can improve their payoffs after this deviation.

From Proposition 2, we confirm that no deviations after which the total benefits from
the project of participants increases are profitable. Therefore, it is not profitable that
participants at a strict Nash equilibrium commit themselves to choose participation and

10



induce non-participants at the equilibrium to select participation by transferring money
to the non-participants. Since we can interpret that allocations are more equitable as
the number of participants increases, we conclude that the coalitional deviations from
a strict Nash equilibrium to attain more equitable allocations are not profitable.

Shinohara (2003b) also analyzed the similar participation game in a mechanism
that implements a class of allocation rules including the proportional cost allocation
rule. However, he assumed that monetary transfers among members in coalitions are
impossible. He showed that the set of strict Nash equilibria and that of strong equilibria
coincide in the participation game without monetary transfers. On the other hand, when
monetary transfers are possible, the set of strict Nash equilibria contains that of strong
equilibria, and the two sets do not necessarily coincide. Therefore, the set of strong
equilibria in the game with monetary transfers is a subset of that in the game without
monetary transfers. Proposition 2 shows that the set of strong equilibria may shrink in
the presence of the monetary transfers.

The following corollary shows that every strict Nash equilibrium at which only one
agent chooses I is a strong equilibrium.

Corollary 1 If there is an agent i ∈ N such that θi > c, then {i} is a set of participants
at a strong equilibrium.

Proof. Suppose that there is an agent i ∈ N be such that θi > c. Then, the set
{i} is supportable as a strict Nash equilibrium in the game. Let s∗ ∈ Sn be the strict
Nash equilibrium at which {i} is the set of participants. By Proposition 2, s∗ is a
strong equilibrium if and only if no coalitions deviate from s∗ in a way that satisfies (2).
Because the proper subset of {i} is empty, it is clear that no deviations from s∗ satisfy
(2). Therefore, {i} is attained at a strict Nash equilibrium. Q.E.D.

Finally, we mention multiplicity of strong equilibria. In Example 2, the sum of the
benefits that participants receive at strong equilibria is unique. However, this does not
hold true in some cases. By Corollary 1, every strict Nash equilibrium with only one
participant is a strong equilibrium even if the benefit of the participant is more than
θP min . For example, consider an example where n = 3, c = 10, θ1 = 5, θ2 = 6, and
θ3 = 12. Then, {1, 2} and {3} are the sets of participants that are supportable as a
strong equilibrium. Hence, strong equilibria may support multiple sum of the benefits
of participants.

4.2 Existence of a strong equilibrium

Proposition 3 A strong equilibrium exists in the participation game.

Proof. Let Pmin denote a set of participants such that θP min is the smallest sum of
the benefits that participants receive in the set of strict Nash equilibria. Let smin ∈ Sn

be a strict Nash equilibrium at which Pmin is the set of participants. We show that
smin is a strong equilibrium. By Proposition 2, it is sufficient to show that there is
no deviation that satisfies (2). Suppose, on the contrary, that there is a coalition
T and its strategy profile sT such that Tmin

I ( Pmin, θT min
I

\TI
> θTI\T

min
I

> 0, and

11



θP min−θT min
I

\TI
+θTI\T

min
I

> c, where Tmin
I = {i ∈ T |smin

i = I} and TI = {i ∈ T |si = I}.

Note that the set of participants at (sT , smin
−T ) is (Pmin ∪ (TI\T

min
I ))\(Tmin

I \TI). Let us

describe this set of participants by P̃ .
First of all, note that θP min > θ

eP
. Since θP min is the smallest sum of the benefits

that participants receive from the project at a strict Nash equilibrium, P̃ can not be
supported as a strict Nash equilibrium. Thus, by Lemma 1, there is at least one agent
i ∈ P̃ such that θ

eP
− θi > c .

Claim 4 Let i ∈ P̃ be such that θ
eP
− θi > c. Then, i ∈ P̃\Pmin.

Proof of Claim 4. Let i ∈ P̃ be such that θ
eP
− θi > c. Suppose, on the contrary,

i ∈ P̃ ∩ Pmin. Then, θP min − θi ≤ c holds. From this condition and θT min
I

\TI
> θTI\T

min
I

,
we obtain θP min − θi − θT min

I
\TI

+ θTI\T
min
I

< c. As θ
eP

= θP min − θT min
I

\TI
+ θTI\T

min
I

, we

obtain that θ
eP
− θi < c, which contradicts θ

eP
− θi > c. Therefore, we have i ∈ P̃\Pmin.

(End of Proof of Claim 4)

Note that P̃\Pmin = TI\T
min
I . From the conditions θ

eP
= θP min−θT min

I
\TI

+θTI\T
min
I

>

c and θP min−θT min
I

\TI
≤ c, we obtain θTI\T

min
I

> 0. Thus, TI\T
min
I is not empty. Suppose,

without loss of generality, that the set TI \ Tmin
I consists of h agents. Denote this set

by {j1, . . . , jh}. In addition, let us assume that θj1 ≤ θj2 ≤ · · · ≤ θjh
. First, consider

the set P̃ \{j1}. Since P̃ is not supported as strict Nash equilibria, we have θ
eP\{j1}

> c:
otherwise, we have

c ≥ θ
eP
− θj1 ≥ θ

eP
− θk for all k ∈ TI \ Tmin

I , and

c ≥ θP min − θk > θ
eP
− θk for all k ∈ P̃ ∩ Pmin,

which means that P̃ is supportable as a strict Nash equilibrium. This is a contradiction.
If θ

eP\{j1}
− θj2 ≤ c, then P̃ \ {j1} is supportable as a strict Nash equilibrium since

θ
eP\{j1}

−θj ≤ c for all j ∈ P̃ \{j1}. This contradicts the idea that θ
eP

is the smallest sum
of the benefits of participants that is attained at strict Nash equilibria. If θ

eP\{j1}
−θj2 >

c, then consider the set of participants P̃ \ {j1, j2}. If θ
eP\{j1,j2}

− θj3 ≤ c, then the set

P̃ \ {j1, j2} is supportable as a strict Nash equilibrium, which is a contradiction by the

same reason above. If else, consider the set P̃ \{j1, j2, j3}. Applying the same argument
and using the facts that θP min − θT min

I
\TI

≤ c and θP min − θT min
I

\TI
+ θTI\T

min
I

> c, we can

find the set K ⊆ TI \Tmin
I such that θ

eP\K > c and θ
eP\K − θj ≤ c for all j ∈ P̃ \K. This

implies that P̃ \K is supportable as a strict Nash equilibrium. This is a contradiction.
Therefore, coalition T can not deviate in a way that satisfies (2). Q.E.D.

From Proposition 2, the set of strict Nash equilibria contains that of strong equilibria,
but the converse is not always true. However, in the case of identical agents, every strict
Nash equilibrium is a strong equilibrium.

Corollary 2 Suppose that agents are identical: θi = θj for all pairs of agents {i, j}.
Then, all strict Nash equilibria are strong equilibria in the participation game.
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Proof. Let θ = θi for all i ∈ N and let P be a set of participants that is supported as
a strict Nash equilibrium. By Lemma 1, P satisfies #P θ > c and (#P − 1)θ ≤ c, or
c/θ < #P ≤ (c/θ) + 1. Since #P is a natural number, we find from these inequalities
that #P is unique. Therefore, #P θ is the smallest sum of the benefits that participants
receive from the project in the set of strict Nash equilibria. In the proof of Proposition
3, we show that a strict Nash equilibrium in which the sum of the benefits of the
participants is the smallest in the set of strict Nash equilibria is strong. Thus, P is
attained at a strong equilibrium of the game. Q.E.D.

In the participation game, strict Nash and strong equilibria are both non-empty
and the set of strong equilibria is included in that of strict Nash equilibria. This is an
interesting respect of our model, because strict Nash equilibria and strong equilibria are
based on different stability and there is not always the inclusion relation between the
two sets of equilibria.

It follows from Lemma 2 that there exists an efficient allocation which is supportable
as a Nash equilibrium. Moreover, some of the efficient allocations are also supported
as a strong equilibrium of the participation game. This feature can not be observed
in models of the provision of perfectly divisible public goods. In a participation game
in a mechanism producing a perfectly divisible public good, Nash equilibria frequently
support inefficient allocations, and there do not necessarily exist strong equilibria (Saijo
and Yamato, 1999; Shinohara, 2003a). In a game of the voluntary contribution of a
perfectly divisible public good, the allocation supported as a Nash equilibrium is not
efficient; hence, a strong equilibrium does not exist in the standard voluntary contribu-
tion game. However, in the participation game with a public project, strong equilibria
exist and an efficient allocation can always be attained not only Nash equilibria but
also strong equilibria. Therefore, the above phenomenon does not occur if there exists
one public project. This is the second interesting characteristic of our model.

The following theorem summarizes the results that have been obtained so far.

Theorem In the participation game with a public project, (i) there is a Nash equilib-
rium at which the efficiency of an allocation is achieved, (ii) the set of Nash equilibria
that supports efficient allocations coincides with the set of strict Nash equilibria, (iii)
a strong equilibrium exists, and (iv) the set of strict Nash equilibria includes that of
strong equilibria, but the converse inclusion relation does not necessarily hold.

Remark 2 Let us consider the participation game in which the project is undertaken
if and only if the sum of the benefits that participants receive from the project is more
than or equal to the cost c: for all sets of participants P , θP ≥ c if and only if yP = 1.
In this participation game, there are not necessarily strict Nash equilibria. However,
a Nash equilibrium at which an efficient allocation is attained exists in this game. If
P designates the set of participants at such Nash equilibria, then it is characterized as
θP ≥ c and θP − θi < c for all i ∈ P . We can similarly show that a strong equilibrium
exists and the set of strong equilibria is a subset of the set of Nash equilibria that
supports efficient allocations in this participation game.

13



5 Participation games with a multi-unit public good

5.1 A participation game in which at most two units of the
public good can be produced

In this section, we consider a participation game in a mechanism that implements the
proportional cost-sharing rule in which at most two units of the public good can be
provided. Let Y be a public good space such that Y = {(y1, y2) ∈ {0, 1}2|y1 ≥ y2}: if
y1 = y2 = 1, then two units of the public good are produced; if y1 = 1 and y2 = 0,
then one unit of the public good is produced; if y1 = y2 = 0, then zero units of the
public good are produced. Let c > 0 be the cost of producing one unit of the public
good. Each agent i has a preference relation that is represented by the utility function
Vi : Y × R+ → R+, which associates a real value Vi(y, xi) =

∑
k∈{1,2} θk

i yk − xi with

each element (y, xi) in Y × R+, where θk
i > 0 denotes agent i’s marginal benefit from

the k-th unit of the public good. We denote θk
P =

∑
j∈P θk

j for all k ∈ {1, 2} and for all

P ⊆ N . Let us assume that θ1
i > θ2

i for all i ∈ N and θ2
N > c. Thus, at every Pareto

efficient allocation, two units of the public good is produced.

Assumption 4 There exists a mechanism that implements the following allocation
rule. Let P denote a set of participants and ((xP

j )j∈P , yP ) be the allocation that is
implemented by the mechanism. Then,

yP = max{k ∈ {0, 1, 2} | θk
P − c > 0}, and

for all i ∈ P , xP
i =





0 if yP = 0,∑yP

k=1 θk
i∑yP

k=1 θk
P

yP c otherwise.

The following example indicates that a Nash equilibrium does not always support
an efficient allocation and strong equilibria do not necessarily exist in the participation
game with a multi-unit public good.

Example 3 Let N = {1, 2, 3, 4}. Suppose that θ1
i = 2 and θ2

i = 0.8 for all i ∈ N
and c = 1. Let P be a set of participants. Note that one unit of the public good is
produced if #P = 1, and two units of the public good are provided if #P ≥ 2. Table
3 shows the payoffs to participants and non-participants in this example. From the
table, we can easily find that one and only one agent enters the mechanism at every
strict Nash equilibrium. However, these Nash equilibria are not strong equilibria, since
three non-participants at the Nash equilibrium can gain higher payoffs if all of them
jointly deviate from non-participation to participation; thus, a strong equilibrium does
not exist in this example.

In the participation game with a public project, there is a Nash equilibrium that
supports an efficient allocation, and a strong equilibrium exists. However, in the par-
ticipation game with a multi-unit public good, efficient allocations are not necessarily
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The number of participants Payoffs to participants Payoffs to non-participants
0 - 0
1 1 2
2 1.8 2.8
3 32

15
2.8

4 2.3 -

Table 3: Payoffs of Example 3

supportable as Nash equilibria and there are not always strong equilibria. In Example
3, one unit of the public good is produced at every Nash equilibrium and no strong
equilibrium exists. This is a remarkable difference between the participation game with
a public project and that with a multi-unit public good.

5.2 Non-existence of equilibria that support efficient alloca-
tions

In this subsection, we investigate whether or not a Nash equilibrium supports an Pareto
efficient allocation in the participation game in which at most two units of the public
good can be produced. For this, we first characterize the set of Nash equilibria at which
two units of the public good are produced.

Proposition 4 Two units of the public good are produced at a Nash equilibrium in
the participation game if and only if there is a set of participants P ⊆ N that satisfies
(i) θ2

P > c, (ii) θ2
P − θ2

i ≤ c for all i ∈ P , and (iii) if there is an agent i ∈ P such

θ1
P − θ1

i > c, then θ2
i ≥

P

2

k=1
θk
i

P

2

k=1
θk
P

(2c).

Proof. (sufficiency) Suppose that there is a set P that satisfies the conditions (i), (ii),
and (iii). By (i), two units of the public good are produced if P is a set of participant.
By conditions (ii) and (iii), no agent i ∈ P have an incentive to switch I to O. Cleary,
no agents i /∈ P do not have an incentive to participate in the mechanism, given the
participation of P . Hence, P is a set of participants that is supportable as a Nash
equilibrium.

(necessity) Let us assume that there exists a Nash equilibrium at which two units
of the public good are produced. Let P be the set of participant attained at the Nash
equilibrium. Since two units of the public good are provided, condition (i) must be
satisfied. If P do not satisfy (ii), then there exists agent i such that θ2

P − θ2
i > c. Hence,

agent i has an incentive to deviate from I to O, which is a contradiction. Suppose that

there is an agent i ∈ P such that θ1
P − θ1

i > c and θ2
i <

P

2

k=1
θk
i

P

2

k=1
θk
P

(2c). Then, he obtains

the payoff θ1
i if he chooses I, and he receives the payoff

∑2

k=1 θk
i −

P

2

k=1
θk
i

P

2

k=1
θk
P

(2c). Since

θ2
i <

P

2

k=1
θk
i

P

2

k=1
θk
P

(2c), he has an incentive to switch from I to O. This is a contradiction.

Therefore, P satisfies (i), (ii), and (iii). Q.E.D.
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We examine whether two units of the public good are produced at a Nash equilibrium
or not. First consider the following case.

Case 1. For all P ⊆ N , P satisfies either θ2
P ≤ c or θ1

P\{i} > c for some i ∈ P .

Let P ∗ be a set of participants such that θ2
P ∗ > c and θ1

P ∗\{i} > c for some i ∈ P ∗.
If all agents in P ∗ participate in the mechanism, then two units of the public good are
produced, and one unit of the public good is supplied if some agent in P ∗ does not
choose participation. Since θ1

P ∗\{i} > c for some i ∈ P ∗, we have #P ≥ 2. We focus on

a case of identical agents: let θ1 = θ1
i and θ2 = θ2

i for all i ∈ N . By Proposition 4, the
set P ∗ is supportable as a Nash equilibrium if and only if it satisfies (i), (ii), and (iii).
By condition (i),

#P ∗θ2 > c. (6)

By condition (ii), we have (#P ∗ − 1)θ2 ≤ c. Therefore,

θ2 ≤
c

#P ∗ − 1
. (7)

By condition (iii),

θ2 ≥
2c

#P ∗
. (8)

Note that it is sufficient to focus solely on equations (7) and (8). Subtracting 2c
#P ∗

from
c

#P ∗−1
yields

c

#P ∗(#P ∗ − 1)
(2 − #P ∗). (9)

Since #P ∗ ≥ 2, we have (9) ≤ 0 with equality if #P ∗ = 2. Therefore, it is impossible for
a Nash equilibrium to support the provision of two units of the public good if #P ∗ > 2.
When #P ∗ = 2, two units of the public good are produced only in the case of θ2 = c.
Therefore, in this case, two units of the public good are hardly provided when agents
are identical.

The following proposition summarizes the above results.

Proposition 5 Suppose that, for all P ⊆ N , P satisfies either θ2
P ≤ c or θ1

P\{i} > c for
some i ∈ P . Suppose that agents are identical. Then, Nash equilibria do not support
efficient allocations at almost all values θ2.

Proposition 5 confirms that the strategic behavior on the participation decisions
often leads to the inefficiency of the allocations, even though a mechanism is constructed
in a way that implements an efficient allocation rule. Hence, the implication that is
similar to Saijo and Yamato (1999) can be derived even in the participation game in
which at most two units of the public good can be produced.

Proposition 6 In the participation game in which at most two units of the public
good, if a strategy profile is a strong equilibrium, then it is a Nash equilibrium that
supports an efficient allocation.
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Proof. Suppose, on the contrary, that there is a strong equilibrium s ∈ Sn that
supports an inefficient allocation. If zero units of the public good is produced at s, then
every agent receives the payoff zero, and if one units of the public good is produced,

then every participant i obtains θ1
i −

θ1

i

θ1

P

c and every non-participant j receives θ1
j . Note

that the sum of the payoffs of all agents is zero, when no public good is provided; the
sum of the payoffs to all agents is θ1

N − c > 0, when one unit of the public good is
supplied. On the other hand, when all agents choose I, the sum of the payoffs to all
agents is

∑2

k=1 θk
N − 2c, which is greater than θ1

N − c. Therefore, if the grand coalition
forms and every member chooses I, then all members of N are better off, which is a
contradiction. Q.E.D.

Obviously, every strong equilibrium is Pareto efficient within the set of strategy
profiles. However, in this model, it is not clear that a strong equilibrium supports an
efficient allocation, because the strategy sets of all agents consists of two alternatives.
Proposition 6 shows that two units of the public good is provided at every strong
equilibrium of this game. It follows from Propositions 5 and 6 that a strong equilibrium
does not necessarily exist in the participation game with a multiunit public good.

Finally, we briefly mention the case in which Case 1 is not satisfied: there exists a
set of participants P such that θ1

P − θ1
i ≤ c for all i ∈ P and θ2

P > c. Note that, for all
D ⊆ N , if D is not empry, then θ1

D > θ2
D. Thus, the above P satisfies θ2

P\{i} < θ1
P\{i} ≤ c

for all i ∈ P and θ2
P > c. If all agents in P choose participation, then two units of the

public good is provided. By Proposition 4, P can be supportable as a Nash equilibrium.
Thus, two units of the public good are produced at a Nash equilibrium in this case.

6 Conclusions

We have investigated the participation game in the mechanism implementing the pro-
portional cost-sharing rule. First, we considered the case of a public project. We show
that, in this case, strict Nash equilibria exist, the set of strict Nash equilibria and the
set of Nash equilibria that supports an efficient allocation coincide, there are strong
equilibria, and the set of strict Nash equilibria contains that of strong equilibria. Sec-
ondly, we considered the case in which at most two units of the public good can be
provided. In this case, there is not always a Nash equilibrium that supports an efficient
allocation and there is not necessarily a strong equilibrium. We found from these results
that the assumption that only one unit of the public good can be produced is essential
to the existence of a Nash equilibrium that supports the efficient allocation and that
of a strong equilibrium. We also found that the strategic behavior on the participation
decisions leads to the inefficiency of the allocations even in the participation game in
which at most two units of the public good can be produced.

Although efficient allocations are attained at the equilibria in the participation game
with a public project, the allocations are less desirable from the viewpoint of equity. In
the participation game with a multi-unit public good, there are not necessarily equilibria
to support a Pareto efficient allocation. To attain more desirable allocations at equilibria
of the participation game, it is desirable that all agents participate in the mechanism.

17



It is left for future researches to study the possibility of constructing the mechanism, in
which all agents participate at equilibria.
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